| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 2polssN | Structured version Visualization version GIF version | ||
| Description: A set of atoms is a subset of its double polarity. (Contributed by NM, 29-Jan-2012.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 2polss.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| 2polss.p | ⊢ ⊥ = (⊥𝑃‘𝐾) |
| Ref | Expression |
|---|---|
| 2polssN | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → 𝑋 ⊆ ( ⊥ ‘( ⊥ ‘𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlclat 39344 | . . . . . 6 ⊢ (𝐾 ∈ HL → 𝐾 ∈ CLat) | |
| 2 | 1 | ad3antrrr 730 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ 𝑝 ∈ 𝐴) ∧ 𝑝 ∈ 𝑋) → 𝐾 ∈ CLat) |
| 3 | simpr 484 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ 𝑝 ∈ 𝐴) ∧ 𝑝 ∈ 𝑋) → 𝑝 ∈ 𝑋) | |
| 4 | simpllr 775 | . . . . . 6 ⊢ ((((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ 𝑝 ∈ 𝐴) ∧ 𝑝 ∈ 𝑋) → 𝑋 ⊆ 𝐴) | |
| 5 | eqid 2729 | . . . . . . 7 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 6 | 2polss.a | . . . . . . 7 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 7 | 5, 6 | atssbase 39276 | . . . . . 6 ⊢ 𝐴 ⊆ (Base‘𝐾) |
| 8 | 4, 7 | sstrdi 3956 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ 𝑝 ∈ 𝐴) ∧ 𝑝 ∈ 𝑋) → 𝑋 ⊆ (Base‘𝐾)) |
| 9 | eqid 2729 | . . . . . 6 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 10 | eqid 2729 | . . . . . 6 ⊢ (lub‘𝐾) = (lub‘𝐾) | |
| 11 | 5, 9, 10 | lubel 18455 | . . . . 5 ⊢ ((𝐾 ∈ CLat ∧ 𝑝 ∈ 𝑋 ∧ 𝑋 ⊆ (Base‘𝐾)) → 𝑝(le‘𝐾)((lub‘𝐾)‘𝑋)) |
| 12 | 2, 3, 8, 11 | syl3anc 1373 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ 𝑝 ∈ 𝐴) ∧ 𝑝 ∈ 𝑋) → 𝑝(le‘𝐾)((lub‘𝐾)‘𝑋)) |
| 13 | 12 | ex 412 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ 𝑝 ∈ 𝐴) → (𝑝 ∈ 𝑋 → 𝑝(le‘𝐾)((lub‘𝐾)‘𝑋))) |
| 14 | 13 | ss2rabdv 4035 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → {𝑝 ∈ 𝐴 ∣ 𝑝 ∈ 𝑋} ⊆ {𝑝 ∈ 𝐴 ∣ 𝑝(le‘𝐾)((lub‘𝐾)‘𝑋)}) |
| 15 | sseqin2 4182 | . . . . 5 ⊢ (𝑋 ⊆ 𝐴 ↔ (𝐴 ∩ 𝑋) = 𝑋) | |
| 16 | 15 | biimpi 216 | . . . 4 ⊢ (𝑋 ⊆ 𝐴 → (𝐴 ∩ 𝑋) = 𝑋) |
| 17 | 16 | adantl 481 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → (𝐴 ∩ 𝑋) = 𝑋) |
| 18 | dfin5 3919 | . . 3 ⊢ (𝐴 ∩ 𝑋) = {𝑝 ∈ 𝐴 ∣ 𝑝 ∈ 𝑋} | |
| 19 | 17, 18 | eqtr3di 2779 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → 𝑋 = {𝑝 ∈ 𝐴 ∣ 𝑝 ∈ 𝑋}) |
| 20 | eqid 2729 | . . . 4 ⊢ (pmap‘𝐾) = (pmap‘𝐾) | |
| 21 | 2polss.p | . . . 4 ⊢ ⊥ = (⊥𝑃‘𝐾) | |
| 22 | 10, 6, 20, 21 | 2polvalN 39901 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘( ⊥ ‘𝑋)) = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑋))) |
| 23 | sstr 3952 | . . . . . 6 ⊢ ((𝑋 ⊆ 𝐴 ∧ 𝐴 ⊆ (Base‘𝐾)) → 𝑋 ⊆ (Base‘𝐾)) | |
| 24 | 7, 23 | mpan2 691 | . . . . 5 ⊢ (𝑋 ⊆ 𝐴 → 𝑋 ⊆ (Base‘𝐾)) |
| 25 | 5, 10 | clatlubcl 18444 | . . . . 5 ⊢ ((𝐾 ∈ CLat ∧ 𝑋 ⊆ (Base‘𝐾)) → ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾)) |
| 26 | 1, 24, 25 | syl2an 596 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾)) |
| 27 | 5, 9, 6, 20 | pmapval 39744 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾)) → ((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)) = {𝑝 ∈ 𝐴 ∣ 𝑝(le‘𝐾)((lub‘𝐾)‘𝑋)}) |
| 28 | 26, 27 | syldan 591 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)) = {𝑝 ∈ 𝐴 ∣ 𝑝(le‘𝐾)((lub‘𝐾)‘𝑋)}) |
| 29 | 22, 28 | eqtrd 2764 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘( ⊥ ‘𝑋)) = {𝑝 ∈ 𝐴 ∣ 𝑝(le‘𝐾)((lub‘𝐾)‘𝑋)}) |
| 30 | 14, 19, 29 | 3sstr4d 3999 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → 𝑋 ⊆ ( ⊥ ‘( ⊥ ‘𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3402 ∩ cin 3910 ⊆ wss 3911 class class class wbr 5102 ‘cfv 6499 Basecbs 17155 lecple 17203 lubclub 18250 CLatccla 18439 Atomscatm 39249 HLchlt 39336 pmapcpmap 39484 ⊥𝑃cpolN 39889 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-proset 18235 df-poset 18254 df-plt 18269 df-lub 18285 df-glb 18286 df-join 18287 df-meet 18288 df-p0 18364 df-p1 18365 df-lat 18373 df-clat 18440 df-oposet 39162 df-ol 39164 df-oml 39165 df-covers 39252 df-ats 39253 df-atl 39284 df-cvlat 39308 df-hlat 39337 df-pmap 39491 df-polarityN 39890 |
| This theorem is referenced by: polcon2N 39906 pclss2polN 39908 sspmaplubN 39912 paddunN 39914 pnonsingN 39920 osumcllem1N 39943 osumcllem11N 39953 pexmidN 39956 |
| Copyright terms: Public domain | W3C validator |