Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2polssN Structured version   Visualization version   GIF version

Theorem 2polssN 39252
Description: A set of atoms is a subset of its double polarity. (Contributed by NM, 29-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
2polss.a 𝐴 = (Atomsβ€˜πΎ)
2polss.p βŠ₯ = (βŠ₯π‘ƒβ€˜πΎ)
Assertion
Ref Expression
2polssN ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ 𝑋 βŠ† ( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)))

Proof of Theorem 2polssN
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 hlclat 38694 . . . . . 6 (𝐾 ∈ HL β†’ 𝐾 ∈ CLat)
21ad3antrrr 727 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) ∧ 𝑝 ∈ 𝐴) ∧ 𝑝 ∈ 𝑋) β†’ 𝐾 ∈ CLat)
3 simpr 484 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) ∧ 𝑝 ∈ 𝐴) ∧ 𝑝 ∈ 𝑋) β†’ 𝑝 ∈ 𝑋)
4 simpllr 773 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) ∧ 𝑝 ∈ 𝐴) ∧ 𝑝 ∈ 𝑋) β†’ 𝑋 βŠ† 𝐴)
5 eqid 2731 . . . . . . 7 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
6 2polss.a . . . . . . 7 𝐴 = (Atomsβ€˜πΎ)
75, 6atssbase 38626 . . . . . 6 𝐴 βŠ† (Baseβ€˜πΎ)
84, 7sstrdi 3994 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) ∧ 𝑝 ∈ 𝐴) ∧ 𝑝 ∈ 𝑋) β†’ 𝑋 βŠ† (Baseβ€˜πΎ))
9 eqid 2731 . . . . . 6 (leβ€˜πΎ) = (leβ€˜πΎ)
10 eqid 2731 . . . . . 6 (lubβ€˜πΎ) = (lubβ€˜πΎ)
115, 9, 10lubel 18477 . . . . 5 ((𝐾 ∈ CLat ∧ 𝑝 ∈ 𝑋 ∧ 𝑋 βŠ† (Baseβ€˜πΎ)) β†’ 𝑝(leβ€˜πΎ)((lubβ€˜πΎ)β€˜π‘‹))
122, 3, 8, 11syl3anc 1370 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) ∧ 𝑝 ∈ 𝐴) ∧ 𝑝 ∈ 𝑋) β†’ 𝑝(leβ€˜πΎ)((lubβ€˜πΎ)β€˜π‘‹))
1312ex 412 . . 3 (((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) ∧ 𝑝 ∈ 𝐴) β†’ (𝑝 ∈ 𝑋 β†’ 𝑝(leβ€˜πΎ)((lubβ€˜πΎ)β€˜π‘‹)))
1413ss2rabdv 4073 . 2 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ {𝑝 ∈ 𝐴 ∣ 𝑝 ∈ 𝑋} βŠ† {𝑝 ∈ 𝐴 ∣ 𝑝(leβ€˜πΎ)((lubβ€˜πΎ)β€˜π‘‹)})
15 sseqin2 4215 . . . . 5 (𝑋 βŠ† 𝐴 ↔ (𝐴 ∩ 𝑋) = 𝑋)
1615biimpi 215 . . . 4 (𝑋 βŠ† 𝐴 β†’ (𝐴 ∩ 𝑋) = 𝑋)
1716adantl 481 . . 3 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ (𝐴 ∩ 𝑋) = 𝑋)
18 dfin5 3956 . . 3 (𝐴 ∩ 𝑋) = {𝑝 ∈ 𝐴 ∣ 𝑝 ∈ 𝑋}
1917, 18eqtr3di 2786 . 2 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ 𝑋 = {𝑝 ∈ 𝐴 ∣ 𝑝 ∈ 𝑋})
20 eqid 2731 . . . 4 (pmapβ€˜πΎ) = (pmapβ€˜πΎ)
21 2polss.p . . . 4 βŠ₯ = (βŠ₯π‘ƒβ€˜πΎ)
2210, 6, 20, 212polvalN 39251 . . 3 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ ( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)) = ((pmapβ€˜πΎ)β€˜((lubβ€˜πΎ)β€˜π‘‹)))
23 sstr 3990 . . . . . 6 ((𝑋 βŠ† 𝐴 ∧ 𝐴 βŠ† (Baseβ€˜πΎ)) β†’ 𝑋 βŠ† (Baseβ€˜πΎ))
247, 23mpan2 688 . . . . 5 (𝑋 βŠ† 𝐴 β†’ 𝑋 βŠ† (Baseβ€˜πΎ))
255, 10clatlubcl 18466 . . . . 5 ((𝐾 ∈ CLat ∧ 𝑋 βŠ† (Baseβ€˜πΎ)) β†’ ((lubβ€˜πΎ)β€˜π‘‹) ∈ (Baseβ€˜πΎ))
261, 24, 25syl2an 595 . . . 4 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ ((lubβ€˜πΎ)β€˜π‘‹) ∈ (Baseβ€˜πΎ))
275, 9, 6, 20pmapval 39094 . . . 4 ((𝐾 ∈ HL ∧ ((lubβ€˜πΎ)β€˜π‘‹) ∈ (Baseβ€˜πΎ)) β†’ ((pmapβ€˜πΎ)β€˜((lubβ€˜πΎ)β€˜π‘‹)) = {𝑝 ∈ 𝐴 ∣ 𝑝(leβ€˜πΎ)((lubβ€˜πΎ)β€˜π‘‹)})
2826, 27syldan 590 . . 3 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ ((pmapβ€˜πΎ)β€˜((lubβ€˜πΎ)β€˜π‘‹)) = {𝑝 ∈ 𝐴 ∣ 𝑝(leβ€˜πΎ)((lubβ€˜πΎ)β€˜π‘‹)})
2922, 28eqtrd 2771 . 2 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ ( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)) = {𝑝 ∈ 𝐴 ∣ 𝑝(leβ€˜πΎ)((lubβ€˜πΎ)β€˜π‘‹)})
3014, 19, 293sstr4d 4029 1 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ 𝑋 βŠ† ( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1540   ∈ wcel 2105  {crab 3431   ∩ cin 3947   βŠ† wss 3948   class class class wbr 5148  β€˜cfv 6543  Basecbs 17151  lecple 17211  lubclub 18272  CLatccla 18461  Atomscatm 38599  HLchlt 38686  pmapcpmap 38834  βŠ₯𝑃cpolN 39239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-proset 18258  df-poset 18276  df-plt 18293  df-lub 18309  df-glb 18310  df-join 18311  df-meet 18312  df-p0 18388  df-p1 18389  df-lat 18395  df-clat 18462  df-oposet 38512  df-ol 38514  df-oml 38515  df-covers 38602  df-ats 38603  df-atl 38634  df-cvlat 38658  df-hlat 38687  df-pmap 38841  df-polarityN 39240
This theorem is referenced by:  polcon2N  39256  pclss2polN  39258  sspmaplubN  39262  paddunN  39264  pnonsingN  39270  osumcllem1N  39293  osumcllem11N  39303  pexmidN  39306
  Copyright terms: Public domain W3C validator