Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2polssN Structured version   Visualization version   GIF version

Theorem 2polssN 38774
Description: A set of atoms is a subset of its double polarity. (Contributed by NM, 29-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
2polss.a 𝐴 = (Atomsβ€˜πΎ)
2polss.p βŠ₯ = (βŠ₯π‘ƒβ€˜πΎ)
Assertion
Ref Expression
2polssN ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ 𝑋 βŠ† ( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)))

Proof of Theorem 2polssN
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 hlclat 38216 . . . . . 6 (𝐾 ∈ HL β†’ 𝐾 ∈ CLat)
21ad3antrrr 728 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) ∧ 𝑝 ∈ 𝐴) ∧ 𝑝 ∈ 𝑋) β†’ 𝐾 ∈ CLat)
3 simpr 485 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) ∧ 𝑝 ∈ 𝐴) ∧ 𝑝 ∈ 𝑋) β†’ 𝑝 ∈ 𝑋)
4 simpllr 774 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) ∧ 𝑝 ∈ 𝐴) ∧ 𝑝 ∈ 𝑋) β†’ 𝑋 βŠ† 𝐴)
5 eqid 2732 . . . . . . 7 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
6 2polss.a . . . . . . 7 𝐴 = (Atomsβ€˜πΎ)
75, 6atssbase 38148 . . . . . 6 𝐴 βŠ† (Baseβ€˜πΎ)
84, 7sstrdi 3993 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) ∧ 𝑝 ∈ 𝐴) ∧ 𝑝 ∈ 𝑋) β†’ 𝑋 βŠ† (Baseβ€˜πΎ))
9 eqid 2732 . . . . . 6 (leβ€˜πΎ) = (leβ€˜πΎ)
10 eqid 2732 . . . . . 6 (lubβ€˜πΎ) = (lubβ€˜πΎ)
115, 9, 10lubel 18463 . . . . 5 ((𝐾 ∈ CLat ∧ 𝑝 ∈ 𝑋 ∧ 𝑋 βŠ† (Baseβ€˜πΎ)) β†’ 𝑝(leβ€˜πΎ)((lubβ€˜πΎ)β€˜π‘‹))
122, 3, 8, 11syl3anc 1371 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) ∧ 𝑝 ∈ 𝐴) ∧ 𝑝 ∈ 𝑋) β†’ 𝑝(leβ€˜πΎ)((lubβ€˜πΎ)β€˜π‘‹))
1312ex 413 . . 3 (((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) ∧ 𝑝 ∈ 𝐴) β†’ (𝑝 ∈ 𝑋 β†’ 𝑝(leβ€˜πΎ)((lubβ€˜πΎ)β€˜π‘‹)))
1413ss2rabdv 4072 . 2 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ {𝑝 ∈ 𝐴 ∣ 𝑝 ∈ 𝑋} βŠ† {𝑝 ∈ 𝐴 ∣ 𝑝(leβ€˜πΎ)((lubβ€˜πΎ)β€˜π‘‹)})
15 sseqin2 4214 . . . . 5 (𝑋 βŠ† 𝐴 ↔ (𝐴 ∩ 𝑋) = 𝑋)
1615biimpi 215 . . . 4 (𝑋 βŠ† 𝐴 β†’ (𝐴 ∩ 𝑋) = 𝑋)
1716adantl 482 . . 3 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ (𝐴 ∩ 𝑋) = 𝑋)
18 dfin5 3955 . . 3 (𝐴 ∩ 𝑋) = {𝑝 ∈ 𝐴 ∣ 𝑝 ∈ 𝑋}
1917, 18eqtr3di 2787 . 2 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ 𝑋 = {𝑝 ∈ 𝐴 ∣ 𝑝 ∈ 𝑋})
20 eqid 2732 . . . 4 (pmapβ€˜πΎ) = (pmapβ€˜πΎ)
21 2polss.p . . . 4 βŠ₯ = (βŠ₯π‘ƒβ€˜πΎ)
2210, 6, 20, 212polvalN 38773 . . 3 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ ( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)) = ((pmapβ€˜πΎ)β€˜((lubβ€˜πΎ)β€˜π‘‹)))
23 sstr 3989 . . . . . 6 ((𝑋 βŠ† 𝐴 ∧ 𝐴 βŠ† (Baseβ€˜πΎ)) β†’ 𝑋 βŠ† (Baseβ€˜πΎ))
247, 23mpan2 689 . . . . 5 (𝑋 βŠ† 𝐴 β†’ 𝑋 βŠ† (Baseβ€˜πΎ))
255, 10clatlubcl 18452 . . . . 5 ((𝐾 ∈ CLat ∧ 𝑋 βŠ† (Baseβ€˜πΎ)) β†’ ((lubβ€˜πΎ)β€˜π‘‹) ∈ (Baseβ€˜πΎ))
261, 24, 25syl2an 596 . . . 4 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ ((lubβ€˜πΎ)β€˜π‘‹) ∈ (Baseβ€˜πΎ))
275, 9, 6, 20pmapval 38616 . . . 4 ((𝐾 ∈ HL ∧ ((lubβ€˜πΎ)β€˜π‘‹) ∈ (Baseβ€˜πΎ)) β†’ ((pmapβ€˜πΎ)β€˜((lubβ€˜πΎ)β€˜π‘‹)) = {𝑝 ∈ 𝐴 ∣ 𝑝(leβ€˜πΎ)((lubβ€˜πΎ)β€˜π‘‹)})
2826, 27syldan 591 . . 3 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ ((pmapβ€˜πΎ)β€˜((lubβ€˜πΎ)β€˜π‘‹)) = {𝑝 ∈ 𝐴 ∣ 𝑝(leβ€˜πΎ)((lubβ€˜πΎ)β€˜π‘‹)})
2922, 28eqtrd 2772 . 2 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ ( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)) = {𝑝 ∈ 𝐴 ∣ 𝑝(leβ€˜πΎ)((lubβ€˜πΎ)β€˜π‘‹)})
3014, 19, 293sstr4d 4028 1 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ 𝑋 βŠ† ( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  {crab 3432   ∩ cin 3946   βŠ† wss 3947   class class class wbr 5147  β€˜cfv 6540  Basecbs 17140  lecple 17200  lubclub 18258  CLatccla 18447  Atomscatm 38121  HLchlt 38208  pmapcpmap 38356  βŠ₯𝑃cpolN 38761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-proset 18244  df-poset 18262  df-plt 18279  df-lub 18295  df-glb 18296  df-join 18297  df-meet 18298  df-p0 18374  df-p1 18375  df-lat 18381  df-clat 18448  df-oposet 38034  df-ol 38036  df-oml 38037  df-covers 38124  df-ats 38125  df-atl 38156  df-cvlat 38180  df-hlat 38209  df-pmap 38363  df-polarityN 38762
This theorem is referenced by:  polcon2N  38778  pclss2polN  38780  sspmaplubN  38784  paddunN  38786  pnonsingN  38792  osumcllem1N  38815  osumcllem11N  38825  pexmidN  38828
  Copyright terms: Public domain W3C validator