Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2polssN Structured version   Visualization version   GIF version

Theorem 2polssN 37856
Description: A set of atoms is a subset of its double polarity. (Contributed by NM, 29-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
2polss.a 𝐴 = (Atoms‘𝐾)
2polss.p = (⊥𝑃𝐾)
Assertion
Ref Expression
2polssN ((𝐾 ∈ HL ∧ 𝑋𝐴) → 𝑋 ⊆ ( ‘( 𝑋)))

Proof of Theorem 2polssN
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 hlclat 37299 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ CLat)
21ad3antrrr 726 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ 𝑝𝐴) ∧ 𝑝𝑋) → 𝐾 ∈ CLat)
3 simpr 484 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ 𝑝𝐴) ∧ 𝑝𝑋) → 𝑝𝑋)
4 simpllr 772 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ 𝑝𝐴) ∧ 𝑝𝑋) → 𝑋𝐴)
5 eqid 2738 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
6 2polss.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
75, 6atssbase 37231 . . . . . 6 𝐴 ⊆ (Base‘𝐾)
84, 7sstrdi 3929 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ 𝑝𝐴) ∧ 𝑝𝑋) → 𝑋 ⊆ (Base‘𝐾))
9 eqid 2738 . . . . . 6 (le‘𝐾) = (le‘𝐾)
10 eqid 2738 . . . . . 6 (lub‘𝐾) = (lub‘𝐾)
115, 9, 10lubel 18147 . . . . 5 ((𝐾 ∈ CLat ∧ 𝑝𝑋𝑋 ⊆ (Base‘𝐾)) → 𝑝(le‘𝐾)((lub‘𝐾)‘𝑋))
122, 3, 8, 11syl3anc 1369 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ 𝑝𝐴) ∧ 𝑝𝑋) → 𝑝(le‘𝐾)((lub‘𝐾)‘𝑋))
1312ex 412 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ 𝑝𝐴) → (𝑝𝑋𝑝(le‘𝐾)((lub‘𝐾)‘𝑋)))
1413ss2rabdv 4005 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐴) → {𝑝𝐴𝑝𝑋} ⊆ {𝑝𝐴𝑝(le‘𝐾)((lub‘𝐾)‘𝑋)})
15 sseqin2 4146 . . . . 5 (𝑋𝐴 ↔ (𝐴𝑋) = 𝑋)
1615biimpi 215 . . . 4 (𝑋𝐴 → (𝐴𝑋) = 𝑋)
1716adantl 481 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝐴𝑋) = 𝑋)
18 dfin5 3891 . . 3 (𝐴𝑋) = {𝑝𝐴𝑝𝑋}
1917, 18eqtr3di 2794 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐴) → 𝑋 = {𝑝𝐴𝑝𝑋})
20 eqid 2738 . . . 4 (pmap‘𝐾) = (pmap‘𝐾)
21 2polss.p . . . 4 = (⊥𝑃𝐾)
2210, 6, 20, 212polvalN 37855 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ( ‘( 𝑋)) = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)))
23 sstr 3925 . . . . . 6 ((𝑋𝐴𝐴 ⊆ (Base‘𝐾)) → 𝑋 ⊆ (Base‘𝐾))
247, 23mpan2 687 . . . . 5 (𝑋𝐴𝑋 ⊆ (Base‘𝐾))
255, 10clatlubcl 18136 . . . . 5 ((𝐾 ∈ CLat ∧ 𝑋 ⊆ (Base‘𝐾)) → ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾))
261, 24, 25syl2an 595 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾))
275, 9, 6, 20pmapval 37698 . . . 4 ((𝐾 ∈ HL ∧ ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾)) → ((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)) = {𝑝𝐴𝑝(le‘𝐾)((lub‘𝐾)‘𝑋)})
2826, 27syldan 590 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)) = {𝑝𝐴𝑝(le‘𝐾)((lub‘𝐾)‘𝑋)})
2922, 28eqtrd 2778 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ( ‘( 𝑋)) = {𝑝𝐴𝑝(le‘𝐾)((lub‘𝐾)‘𝑋)})
3014, 19, 293sstr4d 3964 1 ((𝐾 ∈ HL ∧ 𝑋𝐴) → 𝑋 ⊆ ( ‘( 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  {crab 3067  cin 3882  wss 3883   class class class wbr 5070  cfv 6418  Basecbs 16840  lecple 16895  lubclub 17942  CLatccla 18131  Atomscatm 37204  HLchlt 37291  pmapcpmap 37438  𝑃cpolN 37843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-riotaBAD 36894
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-undef 8060  df-proset 17928  df-poset 17946  df-plt 17963  df-lub 17979  df-glb 17980  df-join 17981  df-meet 17982  df-p0 18058  df-p1 18059  df-lat 18065  df-clat 18132  df-oposet 37117  df-ol 37119  df-oml 37120  df-covers 37207  df-ats 37208  df-atl 37239  df-cvlat 37263  df-hlat 37292  df-pmap 37445  df-polarityN 37844
This theorem is referenced by:  polcon2N  37860  pclss2polN  37862  sspmaplubN  37866  paddunN  37868  pnonsingN  37874  osumcllem1N  37897  osumcllem11N  37907  pexmidN  37910
  Copyright terms: Public domain W3C validator