![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 2polssN | Structured version Visualization version GIF version |
Description: A set of atoms is a subset of its double polarity. (Contributed by NM, 29-Jan-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
2polss.a | ⊢ 𝐴 = (Atoms‘𝐾) |
2polss.p | ⊢ ⊥ = (⊥𝑃‘𝐾) |
Ref | Expression |
---|---|
2polssN | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → 𝑋 ⊆ ( ⊥ ‘( ⊥ ‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlclat 38980 | . . . . . 6 ⊢ (𝐾 ∈ HL → 𝐾 ∈ CLat) | |
2 | 1 | ad3antrrr 728 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ 𝑝 ∈ 𝐴) ∧ 𝑝 ∈ 𝑋) → 𝐾 ∈ CLat) |
3 | simpr 483 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ 𝑝 ∈ 𝐴) ∧ 𝑝 ∈ 𝑋) → 𝑝 ∈ 𝑋) | |
4 | simpllr 774 | . . . . . 6 ⊢ ((((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ 𝑝 ∈ 𝐴) ∧ 𝑝 ∈ 𝑋) → 𝑋 ⊆ 𝐴) | |
5 | eqid 2725 | . . . . . . 7 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
6 | 2polss.a | . . . . . . 7 ⊢ 𝐴 = (Atoms‘𝐾) | |
7 | 5, 6 | atssbase 38912 | . . . . . 6 ⊢ 𝐴 ⊆ (Base‘𝐾) |
8 | 4, 7 | sstrdi 3989 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ 𝑝 ∈ 𝐴) ∧ 𝑝 ∈ 𝑋) → 𝑋 ⊆ (Base‘𝐾)) |
9 | eqid 2725 | . . . . . 6 ⊢ (le‘𝐾) = (le‘𝐾) | |
10 | eqid 2725 | . . . . . 6 ⊢ (lub‘𝐾) = (lub‘𝐾) | |
11 | 5, 9, 10 | lubel 18525 | . . . . 5 ⊢ ((𝐾 ∈ CLat ∧ 𝑝 ∈ 𝑋 ∧ 𝑋 ⊆ (Base‘𝐾)) → 𝑝(le‘𝐾)((lub‘𝐾)‘𝑋)) |
12 | 2, 3, 8, 11 | syl3anc 1368 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ 𝑝 ∈ 𝐴) ∧ 𝑝 ∈ 𝑋) → 𝑝(le‘𝐾)((lub‘𝐾)‘𝑋)) |
13 | 12 | ex 411 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ 𝑝 ∈ 𝐴) → (𝑝 ∈ 𝑋 → 𝑝(le‘𝐾)((lub‘𝐾)‘𝑋))) |
14 | 13 | ss2rabdv 4069 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → {𝑝 ∈ 𝐴 ∣ 𝑝 ∈ 𝑋} ⊆ {𝑝 ∈ 𝐴 ∣ 𝑝(le‘𝐾)((lub‘𝐾)‘𝑋)}) |
15 | sseqin2 4213 | . . . . 5 ⊢ (𝑋 ⊆ 𝐴 ↔ (𝐴 ∩ 𝑋) = 𝑋) | |
16 | 15 | biimpi 215 | . . . 4 ⊢ (𝑋 ⊆ 𝐴 → (𝐴 ∩ 𝑋) = 𝑋) |
17 | 16 | adantl 480 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → (𝐴 ∩ 𝑋) = 𝑋) |
18 | dfin5 3952 | . . 3 ⊢ (𝐴 ∩ 𝑋) = {𝑝 ∈ 𝐴 ∣ 𝑝 ∈ 𝑋} | |
19 | 17, 18 | eqtr3di 2780 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → 𝑋 = {𝑝 ∈ 𝐴 ∣ 𝑝 ∈ 𝑋}) |
20 | eqid 2725 | . . . 4 ⊢ (pmap‘𝐾) = (pmap‘𝐾) | |
21 | 2polss.p | . . . 4 ⊢ ⊥ = (⊥𝑃‘𝐾) | |
22 | 10, 6, 20, 21 | 2polvalN 39537 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘( ⊥ ‘𝑋)) = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑋))) |
23 | sstr 3985 | . . . . . 6 ⊢ ((𝑋 ⊆ 𝐴 ∧ 𝐴 ⊆ (Base‘𝐾)) → 𝑋 ⊆ (Base‘𝐾)) | |
24 | 7, 23 | mpan2 689 | . . . . 5 ⊢ (𝑋 ⊆ 𝐴 → 𝑋 ⊆ (Base‘𝐾)) |
25 | 5, 10 | clatlubcl 18514 | . . . . 5 ⊢ ((𝐾 ∈ CLat ∧ 𝑋 ⊆ (Base‘𝐾)) → ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾)) |
26 | 1, 24, 25 | syl2an 594 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾)) |
27 | 5, 9, 6, 20 | pmapval 39380 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾)) → ((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)) = {𝑝 ∈ 𝐴 ∣ 𝑝(le‘𝐾)((lub‘𝐾)‘𝑋)}) |
28 | 26, 27 | syldan 589 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)) = {𝑝 ∈ 𝐴 ∣ 𝑝(le‘𝐾)((lub‘𝐾)‘𝑋)}) |
29 | 22, 28 | eqtrd 2765 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘( ⊥ ‘𝑋)) = {𝑝 ∈ 𝐴 ∣ 𝑝(le‘𝐾)((lub‘𝐾)‘𝑋)}) |
30 | 14, 19, 29 | 3sstr4d 4024 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → 𝑋 ⊆ ( ⊥ ‘( ⊥ ‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 {crab 3418 ∩ cin 3943 ⊆ wss 3944 class class class wbr 5149 ‘cfv 6549 Basecbs 17199 lecple 17259 lubclub 18320 CLatccla 18509 Atomscatm 38885 HLchlt 38972 pmapcpmap 39120 ⊥𝑃cpolN 39525 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-iin 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-proset 18306 df-poset 18324 df-plt 18341 df-lub 18357 df-glb 18358 df-join 18359 df-meet 18360 df-p0 18436 df-p1 18437 df-lat 18443 df-clat 18510 df-oposet 38798 df-ol 38800 df-oml 38801 df-covers 38888 df-ats 38889 df-atl 38920 df-cvlat 38944 df-hlat 38973 df-pmap 39127 df-polarityN 39526 |
This theorem is referenced by: polcon2N 39542 pclss2polN 39544 sspmaplubN 39548 paddunN 39550 pnonsingN 39556 osumcllem1N 39579 osumcllem11N 39589 pexmidN 39592 |
Copyright terms: Public domain | W3C validator |