Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2polssN Structured version   Visualization version   GIF version

Theorem 2polssN 39914
Description: A set of atoms is a subset of its double polarity. (Contributed by NM, 29-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
2polss.a 𝐴 = (Atoms‘𝐾)
2polss.p = (⊥𝑃𝐾)
Assertion
Ref Expression
2polssN ((𝐾 ∈ HL ∧ 𝑋𝐴) → 𝑋 ⊆ ( ‘( 𝑋)))

Proof of Theorem 2polssN
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 hlclat 39357 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ CLat)
21ad3antrrr 730 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ 𝑝𝐴) ∧ 𝑝𝑋) → 𝐾 ∈ CLat)
3 simpr 484 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ 𝑝𝐴) ∧ 𝑝𝑋) → 𝑝𝑋)
4 simpllr 775 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ 𝑝𝐴) ∧ 𝑝𝑋) → 𝑋𝐴)
5 eqid 2729 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
6 2polss.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
75, 6atssbase 39289 . . . . . 6 𝐴 ⊆ (Base‘𝐾)
84, 7sstrdi 3948 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ 𝑝𝐴) ∧ 𝑝𝑋) → 𝑋 ⊆ (Base‘𝐾))
9 eqid 2729 . . . . . 6 (le‘𝐾) = (le‘𝐾)
10 eqid 2729 . . . . . 6 (lub‘𝐾) = (lub‘𝐾)
115, 9, 10lubel 18420 . . . . 5 ((𝐾 ∈ CLat ∧ 𝑝𝑋𝑋 ⊆ (Base‘𝐾)) → 𝑝(le‘𝐾)((lub‘𝐾)‘𝑋))
122, 3, 8, 11syl3anc 1373 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ 𝑝𝐴) ∧ 𝑝𝑋) → 𝑝(le‘𝐾)((lub‘𝐾)‘𝑋))
1312ex 412 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ 𝑝𝐴) → (𝑝𝑋𝑝(le‘𝐾)((lub‘𝐾)‘𝑋)))
1413ss2rabdv 4027 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐴) → {𝑝𝐴𝑝𝑋} ⊆ {𝑝𝐴𝑝(le‘𝐾)((lub‘𝐾)‘𝑋)})
15 sseqin2 4174 . . . . 5 (𝑋𝐴 ↔ (𝐴𝑋) = 𝑋)
1615biimpi 216 . . . 4 (𝑋𝐴 → (𝐴𝑋) = 𝑋)
1716adantl 481 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝐴𝑋) = 𝑋)
18 dfin5 3911 . . 3 (𝐴𝑋) = {𝑝𝐴𝑝𝑋}
1917, 18eqtr3di 2779 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐴) → 𝑋 = {𝑝𝐴𝑝𝑋})
20 eqid 2729 . . . 4 (pmap‘𝐾) = (pmap‘𝐾)
21 2polss.p . . . 4 = (⊥𝑃𝐾)
2210, 6, 20, 212polvalN 39913 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ( ‘( 𝑋)) = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)))
23 sstr 3944 . . . . . 6 ((𝑋𝐴𝐴 ⊆ (Base‘𝐾)) → 𝑋 ⊆ (Base‘𝐾))
247, 23mpan2 691 . . . . 5 (𝑋𝐴𝑋 ⊆ (Base‘𝐾))
255, 10clatlubcl 18409 . . . . 5 ((𝐾 ∈ CLat ∧ 𝑋 ⊆ (Base‘𝐾)) → ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾))
261, 24, 25syl2an 596 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾))
275, 9, 6, 20pmapval 39756 . . . 4 ((𝐾 ∈ HL ∧ ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾)) → ((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)) = {𝑝𝐴𝑝(le‘𝐾)((lub‘𝐾)‘𝑋)})
2826, 27syldan 591 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)) = {𝑝𝐴𝑝(le‘𝐾)((lub‘𝐾)‘𝑋)})
2922, 28eqtrd 2764 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ( ‘( 𝑋)) = {𝑝𝐴𝑝(le‘𝐾)((lub‘𝐾)‘𝑋)})
3014, 19, 293sstr4d 3991 1 ((𝐾 ∈ HL ∧ 𝑋𝐴) → 𝑋 ⊆ ( ‘( 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3394  cin 3902  wss 3903   class class class wbr 5092  cfv 6482  Basecbs 17120  lecple 17168  lubclub 18215  CLatccla 18404  Atomscatm 39262  HLchlt 39349  pmapcpmap 39496  𝑃cpolN 39901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-p1 18330  df-lat 18338  df-clat 18405  df-oposet 39175  df-ol 39177  df-oml 39178  df-covers 39265  df-ats 39266  df-atl 39297  df-cvlat 39321  df-hlat 39350  df-pmap 39503  df-polarityN 39902
This theorem is referenced by:  polcon2N  39918  pclss2polN  39920  sspmaplubN  39924  paddunN  39926  pnonsingN  39932  osumcllem1N  39955  osumcllem11N  39965  pexmidN  39968
  Copyright terms: Public domain W3C validator