| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 2polssN | Structured version Visualization version GIF version | ||
| Description: A set of atoms is a subset of its double polarity. (Contributed by NM, 29-Jan-2012.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 2polss.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| 2polss.p | ⊢ ⊥ = (⊥𝑃‘𝐾) |
| Ref | Expression |
|---|---|
| 2polssN | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → 𝑋 ⊆ ( ⊥ ‘( ⊥ ‘𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlclat 39357 | . . . . . 6 ⊢ (𝐾 ∈ HL → 𝐾 ∈ CLat) | |
| 2 | 1 | ad3antrrr 730 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ 𝑝 ∈ 𝐴) ∧ 𝑝 ∈ 𝑋) → 𝐾 ∈ CLat) |
| 3 | simpr 484 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ 𝑝 ∈ 𝐴) ∧ 𝑝 ∈ 𝑋) → 𝑝 ∈ 𝑋) | |
| 4 | simpllr 775 | . . . . . 6 ⊢ ((((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ 𝑝 ∈ 𝐴) ∧ 𝑝 ∈ 𝑋) → 𝑋 ⊆ 𝐴) | |
| 5 | eqid 2729 | . . . . . . 7 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 6 | 2polss.a | . . . . . . 7 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 7 | 5, 6 | atssbase 39289 | . . . . . 6 ⊢ 𝐴 ⊆ (Base‘𝐾) |
| 8 | 4, 7 | sstrdi 3948 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ 𝑝 ∈ 𝐴) ∧ 𝑝 ∈ 𝑋) → 𝑋 ⊆ (Base‘𝐾)) |
| 9 | eqid 2729 | . . . . . 6 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 10 | eqid 2729 | . . . . . 6 ⊢ (lub‘𝐾) = (lub‘𝐾) | |
| 11 | 5, 9, 10 | lubel 18420 | . . . . 5 ⊢ ((𝐾 ∈ CLat ∧ 𝑝 ∈ 𝑋 ∧ 𝑋 ⊆ (Base‘𝐾)) → 𝑝(le‘𝐾)((lub‘𝐾)‘𝑋)) |
| 12 | 2, 3, 8, 11 | syl3anc 1373 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ 𝑝 ∈ 𝐴) ∧ 𝑝 ∈ 𝑋) → 𝑝(le‘𝐾)((lub‘𝐾)‘𝑋)) |
| 13 | 12 | ex 412 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ 𝑝 ∈ 𝐴) → (𝑝 ∈ 𝑋 → 𝑝(le‘𝐾)((lub‘𝐾)‘𝑋))) |
| 14 | 13 | ss2rabdv 4027 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → {𝑝 ∈ 𝐴 ∣ 𝑝 ∈ 𝑋} ⊆ {𝑝 ∈ 𝐴 ∣ 𝑝(le‘𝐾)((lub‘𝐾)‘𝑋)}) |
| 15 | sseqin2 4174 | . . . . 5 ⊢ (𝑋 ⊆ 𝐴 ↔ (𝐴 ∩ 𝑋) = 𝑋) | |
| 16 | 15 | biimpi 216 | . . . 4 ⊢ (𝑋 ⊆ 𝐴 → (𝐴 ∩ 𝑋) = 𝑋) |
| 17 | 16 | adantl 481 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → (𝐴 ∩ 𝑋) = 𝑋) |
| 18 | dfin5 3911 | . . 3 ⊢ (𝐴 ∩ 𝑋) = {𝑝 ∈ 𝐴 ∣ 𝑝 ∈ 𝑋} | |
| 19 | 17, 18 | eqtr3di 2779 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → 𝑋 = {𝑝 ∈ 𝐴 ∣ 𝑝 ∈ 𝑋}) |
| 20 | eqid 2729 | . . . 4 ⊢ (pmap‘𝐾) = (pmap‘𝐾) | |
| 21 | 2polss.p | . . . 4 ⊢ ⊥ = (⊥𝑃‘𝐾) | |
| 22 | 10, 6, 20, 21 | 2polvalN 39913 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘( ⊥ ‘𝑋)) = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑋))) |
| 23 | sstr 3944 | . . . . . 6 ⊢ ((𝑋 ⊆ 𝐴 ∧ 𝐴 ⊆ (Base‘𝐾)) → 𝑋 ⊆ (Base‘𝐾)) | |
| 24 | 7, 23 | mpan2 691 | . . . . 5 ⊢ (𝑋 ⊆ 𝐴 → 𝑋 ⊆ (Base‘𝐾)) |
| 25 | 5, 10 | clatlubcl 18409 | . . . . 5 ⊢ ((𝐾 ∈ CLat ∧ 𝑋 ⊆ (Base‘𝐾)) → ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾)) |
| 26 | 1, 24, 25 | syl2an 596 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾)) |
| 27 | 5, 9, 6, 20 | pmapval 39756 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾)) → ((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)) = {𝑝 ∈ 𝐴 ∣ 𝑝(le‘𝐾)((lub‘𝐾)‘𝑋)}) |
| 28 | 26, 27 | syldan 591 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)) = {𝑝 ∈ 𝐴 ∣ 𝑝(le‘𝐾)((lub‘𝐾)‘𝑋)}) |
| 29 | 22, 28 | eqtrd 2764 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘( ⊥ ‘𝑋)) = {𝑝 ∈ 𝐴 ∣ 𝑝(le‘𝐾)((lub‘𝐾)‘𝑋)}) |
| 30 | 14, 19, 29 | 3sstr4d 3991 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → 𝑋 ⊆ ( ⊥ ‘( ⊥ ‘𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3394 ∩ cin 3902 ⊆ wss 3903 class class class wbr 5092 ‘cfv 6482 Basecbs 17120 lecple 17168 lubclub 18215 CLatccla 18404 Atomscatm 39262 HLchlt 39349 pmapcpmap 39496 ⊥𝑃cpolN 39901 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-proset 18200 df-poset 18219 df-plt 18234 df-lub 18250 df-glb 18251 df-join 18252 df-meet 18253 df-p0 18329 df-p1 18330 df-lat 18338 df-clat 18405 df-oposet 39175 df-ol 39177 df-oml 39178 df-covers 39265 df-ats 39266 df-atl 39297 df-cvlat 39321 df-hlat 39350 df-pmap 39503 df-polarityN 39902 |
| This theorem is referenced by: polcon2N 39918 pclss2polN 39920 sspmaplubN 39924 paddunN 39926 pnonsingN 39932 osumcllem1N 39955 osumcllem11N 39965 pexmidN 39968 |
| Copyright terms: Public domain | W3C validator |