Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2polssN Structured version   Visualization version   GIF version

Theorem 2polssN 39538
Description: A set of atoms is a subset of its double polarity. (Contributed by NM, 29-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
2polss.a 𝐴 = (Atoms‘𝐾)
2polss.p = (⊥𝑃𝐾)
Assertion
Ref Expression
2polssN ((𝐾 ∈ HL ∧ 𝑋𝐴) → 𝑋 ⊆ ( ‘( 𝑋)))

Proof of Theorem 2polssN
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 hlclat 38980 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ CLat)
21ad3antrrr 728 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ 𝑝𝐴) ∧ 𝑝𝑋) → 𝐾 ∈ CLat)
3 simpr 483 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ 𝑝𝐴) ∧ 𝑝𝑋) → 𝑝𝑋)
4 simpllr 774 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ 𝑝𝐴) ∧ 𝑝𝑋) → 𝑋𝐴)
5 eqid 2725 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
6 2polss.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
75, 6atssbase 38912 . . . . . 6 𝐴 ⊆ (Base‘𝐾)
84, 7sstrdi 3989 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ 𝑝𝐴) ∧ 𝑝𝑋) → 𝑋 ⊆ (Base‘𝐾))
9 eqid 2725 . . . . . 6 (le‘𝐾) = (le‘𝐾)
10 eqid 2725 . . . . . 6 (lub‘𝐾) = (lub‘𝐾)
115, 9, 10lubel 18525 . . . . 5 ((𝐾 ∈ CLat ∧ 𝑝𝑋𝑋 ⊆ (Base‘𝐾)) → 𝑝(le‘𝐾)((lub‘𝐾)‘𝑋))
122, 3, 8, 11syl3anc 1368 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ 𝑝𝐴) ∧ 𝑝𝑋) → 𝑝(le‘𝐾)((lub‘𝐾)‘𝑋))
1312ex 411 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ 𝑝𝐴) → (𝑝𝑋𝑝(le‘𝐾)((lub‘𝐾)‘𝑋)))
1413ss2rabdv 4069 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐴) → {𝑝𝐴𝑝𝑋} ⊆ {𝑝𝐴𝑝(le‘𝐾)((lub‘𝐾)‘𝑋)})
15 sseqin2 4213 . . . . 5 (𝑋𝐴 ↔ (𝐴𝑋) = 𝑋)
1615biimpi 215 . . . 4 (𝑋𝐴 → (𝐴𝑋) = 𝑋)
1716adantl 480 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝐴𝑋) = 𝑋)
18 dfin5 3952 . . 3 (𝐴𝑋) = {𝑝𝐴𝑝𝑋}
1917, 18eqtr3di 2780 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐴) → 𝑋 = {𝑝𝐴𝑝𝑋})
20 eqid 2725 . . . 4 (pmap‘𝐾) = (pmap‘𝐾)
21 2polss.p . . . 4 = (⊥𝑃𝐾)
2210, 6, 20, 212polvalN 39537 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ( ‘( 𝑋)) = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)))
23 sstr 3985 . . . . . 6 ((𝑋𝐴𝐴 ⊆ (Base‘𝐾)) → 𝑋 ⊆ (Base‘𝐾))
247, 23mpan2 689 . . . . 5 (𝑋𝐴𝑋 ⊆ (Base‘𝐾))
255, 10clatlubcl 18514 . . . . 5 ((𝐾 ∈ CLat ∧ 𝑋 ⊆ (Base‘𝐾)) → ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾))
261, 24, 25syl2an 594 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾))
275, 9, 6, 20pmapval 39380 . . . 4 ((𝐾 ∈ HL ∧ ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾)) → ((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)) = {𝑝𝐴𝑝(le‘𝐾)((lub‘𝐾)‘𝑋)})
2826, 27syldan 589 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)) = {𝑝𝐴𝑝(le‘𝐾)((lub‘𝐾)‘𝑋)})
2922, 28eqtrd 2765 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ( ‘( 𝑋)) = {𝑝𝐴𝑝(le‘𝐾)((lub‘𝐾)‘𝑋)})
3014, 19, 293sstr4d 4024 1 ((𝐾 ∈ HL ∧ 𝑋𝐴) → 𝑋 ⊆ ( ‘( 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  {crab 3418  cin 3943  wss 3944   class class class wbr 5149  cfv 6549  Basecbs 17199  lecple 17259  lubclub 18320  CLatccla 18509  Atomscatm 38885  HLchlt 38972  pmapcpmap 39120  𝑃cpolN 39525
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-iin 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-proset 18306  df-poset 18324  df-plt 18341  df-lub 18357  df-glb 18358  df-join 18359  df-meet 18360  df-p0 18436  df-p1 18437  df-lat 18443  df-clat 18510  df-oposet 38798  df-ol 38800  df-oml 38801  df-covers 38888  df-ats 38889  df-atl 38920  df-cvlat 38944  df-hlat 38973  df-pmap 39127  df-polarityN 39526
This theorem is referenced by:  polcon2N  39542  pclss2polN  39544  sspmaplubN  39548  paddunN  39550  pnonsingN  39556  osumcllem1N  39579  osumcllem11N  39589  pexmidN  39592
  Copyright terms: Public domain W3C validator