MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  shftidt2 Structured version   Visualization version   GIF version

Theorem shftidt2 14782
Description: Identity law for the shift operation. (Contributed by Mario Carneiro, 5-Nov-2013.)
Hypothesis
Ref Expression
shftfval.1 𝐹 ∈ V
Assertion
Ref Expression
shftidt2 (𝐹 shift 0) = (𝐹 ↾ ℂ)

Proof of Theorem shftidt2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subid1 11233 . . . . 5 (𝑥 ∈ ℂ → (𝑥 − 0) = 𝑥)
21breq1d 5089 . . . 4 (𝑥 ∈ ℂ → ((𝑥 − 0)𝐹𝑦𝑥𝐹𝑦))
32pm5.32i 575 . . 3 ((𝑥 ∈ ℂ ∧ (𝑥 − 0)𝐹𝑦) ↔ (𝑥 ∈ ℂ ∧ 𝑥𝐹𝑦))
43opabbii 5146 . 2 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 0)𝐹𝑦)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ 𝑥𝐹𝑦)}
5 0cn 10960 . . 3 0 ∈ ℂ
6 shftfval.1 . . . 4 𝐹 ∈ V
76shftfval 14771 . . 3 (0 ∈ ℂ → (𝐹 shift 0) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 0)𝐹𝑦)})
85, 7ax-mp 5 . 2 (𝐹 shift 0) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 0)𝐹𝑦)}
9 dfres2 5947 . 2 (𝐹 ↾ ℂ) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ 𝑥𝐹𝑦)}
104, 8, 93eqtr4i 2778 1 (𝐹 shift 0) = (𝐹 ↾ ℂ)
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1542  wcel 2110  Vcvv 3431   class class class wbr 5079  {copab 5141  cres 5591  (class class class)co 7269  cc 10862  0cc0 10864  cmin 11197   shift cshi 14767
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7580  ax-resscn 10921  ax-1cn 10922  ax-icn 10923  ax-addcl 10924  ax-addrcl 10925  ax-mulcl 10926  ax-mulrcl 10927  ax-mulcom 10928  ax-addass 10929  ax-mulass 10930  ax-distr 10931  ax-i2m1 10932  ax-1ne0 10933  ax-1rid 10934  ax-rnegex 10935  ax-rrecex 10936  ax-cnre 10937  ax-pre-lttri 10938  ax-pre-lttrn 10939  ax-pre-ltadd 10940
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6389  df-fun 6433  df-fn 6434  df-f 6435  df-f1 6436  df-fo 6437  df-f1o 6438  df-fv 6439  df-riota 7226  df-ov 7272  df-oprab 7273  df-mpo 7274  df-er 8473  df-en 8709  df-dom 8710  df-sdom 8711  df-pnf 11004  df-mnf 11005  df-ltxr 11007  df-sub 11199  df-shft 14768
This theorem is referenced by:  shftidt  14783
  Copyright terms: Public domain W3C validator