![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > shftidt2 | Structured version Visualization version GIF version |
Description: Identity law for the shift operation. (Contributed by Mario Carneiro, 5-Nov-2013.) |
Ref | Expression |
---|---|
shftfval.1 | ⊢ 𝐹 ∈ V |
Ref | Expression |
---|---|
shftidt2 | ⊢ (𝐹 shift 0) = (𝐹 ↾ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subid1 11556 | . . . . 5 ⊢ (𝑥 ∈ ℂ → (𝑥 − 0) = 𝑥) | |
2 | 1 | breq1d 5176 | . . . 4 ⊢ (𝑥 ∈ ℂ → ((𝑥 − 0)𝐹𝑦 ↔ 𝑥𝐹𝑦)) |
3 | 2 | pm5.32i 574 | . . 3 ⊢ ((𝑥 ∈ ℂ ∧ (𝑥 − 0)𝐹𝑦) ↔ (𝑥 ∈ ℂ ∧ 𝑥𝐹𝑦)) |
4 | 3 | opabbii 5233 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 0)𝐹𝑦)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ 𝑥𝐹𝑦)} |
5 | 0cn 11282 | . . 3 ⊢ 0 ∈ ℂ | |
6 | shftfval.1 | . . . 4 ⊢ 𝐹 ∈ V | |
7 | 6 | shftfval 15119 | . . 3 ⊢ (0 ∈ ℂ → (𝐹 shift 0) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 0)𝐹𝑦)}) |
8 | 5, 7 | ax-mp 5 | . 2 ⊢ (𝐹 shift 0) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 0)𝐹𝑦)} |
9 | dfres2 6070 | . 2 ⊢ (𝐹 ↾ ℂ) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ 𝑥𝐹𝑦)} | |
10 | 4, 8, 9 | 3eqtr4i 2778 | 1 ⊢ (𝐹 shift 0) = (𝐹 ↾ ℂ) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 class class class wbr 5166 {copab 5228 ↾ cres 5702 (class class class)co 7448 ℂcc 11182 0cc0 11184 − cmin 11520 shift cshi 15115 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-ltxr 11329 df-sub 11522 df-shft 15116 |
This theorem is referenced by: shftidt 15131 |
Copyright terms: Public domain | W3C validator |