Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > shftidt2 | Structured version Visualization version GIF version |
Description: Identity law for the shift operation. (Contributed by Mario Carneiro, 5-Nov-2013.) |
Ref | Expression |
---|---|
shftfval.1 | ⊢ 𝐹 ∈ V |
Ref | Expression |
---|---|
shftidt2 | ⊢ (𝐹 shift 0) = (𝐹 ↾ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subid1 11233 | . . . . 5 ⊢ (𝑥 ∈ ℂ → (𝑥 − 0) = 𝑥) | |
2 | 1 | breq1d 5089 | . . . 4 ⊢ (𝑥 ∈ ℂ → ((𝑥 − 0)𝐹𝑦 ↔ 𝑥𝐹𝑦)) |
3 | 2 | pm5.32i 575 | . . 3 ⊢ ((𝑥 ∈ ℂ ∧ (𝑥 − 0)𝐹𝑦) ↔ (𝑥 ∈ ℂ ∧ 𝑥𝐹𝑦)) |
4 | 3 | opabbii 5146 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 0)𝐹𝑦)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ 𝑥𝐹𝑦)} |
5 | 0cn 10960 | . . 3 ⊢ 0 ∈ ℂ | |
6 | shftfval.1 | . . . 4 ⊢ 𝐹 ∈ V | |
7 | 6 | shftfval 14771 | . . 3 ⊢ (0 ∈ ℂ → (𝐹 shift 0) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 0)𝐹𝑦)}) |
8 | 5, 7 | ax-mp 5 | . 2 ⊢ (𝐹 shift 0) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 0)𝐹𝑦)} |
9 | dfres2 5947 | . 2 ⊢ (𝐹 ↾ ℂ) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ 𝑥𝐹𝑦)} | |
10 | 4, 8, 9 | 3eqtr4i 2778 | 1 ⊢ (𝐹 shift 0) = (𝐹 ↾ ℂ) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1542 ∈ wcel 2110 Vcvv 3431 class class class wbr 5079 {copab 5141 ↾ cres 5591 (class class class)co 7269 ℂcc 10862 0cc0 10864 − cmin 11197 shift cshi 14767 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7580 ax-resscn 10921 ax-1cn 10922 ax-icn 10923 ax-addcl 10924 ax-addrcl 10925 ax-mulcl 10926 ax-mulrcl 10927 ax-mulcom 10928 ax-addass 10929 ax-mulass 10930 ax-distr 10931 ax-i2m1 10932 ax-1ne0 10933 ax-1rid 10934 ax-rnegex 10935 ax-rrecex 10936 ax-cnre 10937 ax-pre-lttri 10938 ax-pre-lttrn 10939 ax-pre-ltadd 10940 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 df-fv 6439 df-riota 7226 df-ov 7272 df-oprab 7273 df-mpo 7274 df-er 8473 df-en 8709 df-dom 8710 df-sdom 8711 df-pnf 11004 df-mnf 11005 df-ltxr 11007 df-sub 11199 df-shft 14768 |
This theorem is referenced by: shftidt 14783 |
Copyright terms: Public domain | W3C validator |