| Step | Hyp | Ref
| Expression |
| 1 | | dffn3 6748 |
. . . . . 6
⊢ (𝐹 Fn (𝐶 +o 𝐷) ↔ 𝐹:(𝐶 +o 𝐷)⟶ran 𝐹) |
| 2 | 1 | biimpi 216 |
. . . . 5
⊢ (𝐹 Fn (𝐶 +o 𝐷) → 𝐹:(𝐶 +o 𝐷)⟶ran 𝐹) |
| 3 | 2 | adantr 480 |
. . . 4
⊢ ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → 𝐹:(𝐶 +o 𝐷)⟶ran 𝐹) |
| 4 | | fndm 6671 |
. . . . . . . 8
⊢ (𝐹 Fn (𝐶 +o 𝐷) → dom 𝐹 = (𝐶 +o 𝐷)) |
| 5 | 4 | adantr 480 |
. . . . . . 7
⊢ ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → dom 𝐹 = (𝐶 +o 𝐷)) |
| 6 | | oacl 8573 |
. . . . . . . 8
⊢ ((𝐶 ∈ On ∧ 𝐷 ∈ On) → (𝐶 +o 𝐷) ∈ On) |
| 7 | 6 | adantl 481 |
. . . . . . 7
⊢ ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐶 +o 𝐷) ∈ On) |
| 8 | 5, 7 | eqeltrd 2841 |
. . . . . 6
⊢ ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → dom 𝐹 ∈ On) |
| 9 | | fnfun 6668 |
. . . . . . 7
⊢ (𝐹 Fn (𝐶 +o 𝐷) → Fun 𝐹) |
| 10 | 9 | adantr 480 |
. . . . . 6
⊢ ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → Fun 𝐹) |
| 11 | | funrnex 7978 |
. . . . . 6
⊢ (dom
𝐹 ∈ On → (Fun
𝐹 → ran 𝐹 ∈ V)) |
| 12 | 8, 10, 11 | sylc 65 |
. . . . 5
⊢ ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ran 𝐹 ∈ V) |
| 13 | 12, 7 | elmapd 8880 |
. . . 4
⊢ ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐹 ∈ (ran 𝐹 ↑m (𝐶 +o 𝐷)) ↔ 𝐹:(𝐶 +o 𝐷)⟶ran 𝐹)) |
| 14 | 3, 13 | mpbird 257 |
. . 3
⊢ ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → 𝐹 ∈ (ran 𝐹 ↑m (𝐶 +o 𝐷))) |
| 15 | | oaword1 8590 |
. . . 4
⊢ ((𝐶 ∈ On ∧ 𝐷 ∈ On) → 𝐶 ⊆ (𝐶 +o 𝐷)) |
| 16 | 15 | adantl 481 |
. . 3
⊢ ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → 𝐶 ⊆ (𝐶 +o 𝐷)) |
| 17 | | elmapssres 8907 |
. . 3
⊢ ((𝐹 ∈ (ran 𝐹 ↑m (𝐶 +o 𝐷)) ∧ 𝐶 ⊆ (𝐶 +o 𝐷)) → (𝐹 ↾ 𝐶) ∈ (ran 𝐹 ↑m 𝐶)) |
| 18 | 14, 16, 17 | syl2anc 584 |
. 2
⊢ ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐹 ↾ 𝐶) ∈ (ran 𝐹 ↑m 𝐶)) |
| 19 | | simpl 482 |
. . . . 5
⊢ ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → 𝐹 Fn (𝐶 +o 𝐷)) |
| 20 | | oaordi 8584 |
. . . . . . . 8
⊢ ((𝐷 ∈ On ∧ 𝐶 ∈ On) → (𝑑 ∈ 𝐷 → (𝐶 +o 𝑑) ∈ (𝐶 +o 𝐷))) |
| 21 | 20 | ancoms 458 |
. . . . . . 7
⊢ ((𝐶 ∈ On ∧ 𝐷 ∈ On) → (𝑑 ∈ 𝐷 → (𝐶 +o 𝑑) ∈ (𝐶 +o 𝐷))) |
| 22 | 21 | adantl 481 |
. . . . . 6
⊢ ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝑑 ∈ 𝐷 → (𝐶 +o 𝑑) ∈ (𝐶 +o 𝐷))) |
| 23 | 22 | imp 406 |
. . . . 5
⊢ (((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑 ∈ 𝐷) → (𝐶 +o 𝑑) ∈ (𝐶 +o 𝐷)) |
| 24 | | fnfvelrn 7100 |
. . . . 5
⊢ ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 +o 𝑑) ∈ (𝐶 +o 𝐷)) → (𝐹‘(𝐶 +o 𝑑)) ∈ ran 𝐹) |
| 25 | 19, 23, 24 | syl2an2r 685 |
. . . 4
⊢ (((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑 ∈ 𝐷) → (𝐹‘(𝐶 +o 𝑑)) ∈ ran 𝐹) |
| 26 | 25 | fmpttd 7135 |
. . 3
⊢ ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝑑 ∈ 𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))):𝐷⟶ran 𝐹) |
| 27 | | simprr 773 |
. . . 4
⊢ ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → 𝐷 ∈ On) |
| 28 | 12, 27 | elmapd 8880 |
. . 3
⊢ ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ((𝑑 ∈ 𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))) ∈ (ran 𝐹 ↑m 𝐷) ↔ (𝑑 ∈ 𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))):𝐷⟶ran 𝐹)) |
| 29 | 26, 28 | mpbird 257 |
. 2
⊢ ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝑑 ∈ 𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))) ∈ (ran 𝐹 ↑m 𝐷)) |
| 30 | 19, 16 | fnssresd 6692 |
. . . . 5
⊢ ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐹 ↾ 𝐶) Fn 𝐶) |
| 31 | | fvex 6919 |
. . . . . . 7
⊢ (𝐹‘(𝐶 +o 𝑑)) ∈ V |
| 32 | | eqid 2737 |
. . . . . . 7
⊢ (𝑑 ∈ 𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))) = (𝑑 ∈ 𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))) |
| 33 | 31, 32 | fnmpti 6711 |
. . . . . 6
⊢ (𝑑 ∈ 𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))) Fn 𝐷 |
| 34 | 33 | a1i 11 |
. . . . 5
⊢ ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝑑 ∈ 𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))) Fn 𝐷) |
| 35 | | simpr 484 |
. . . . 5
⊢ ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐶 ∈ On ∧ 𝐷 ∈ On)) |
| 36 | | tfsconcat.op |
. . . . . 6
⊢ + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏‘𝑧)))})) |
| 37 | 36 | tfsconcatun 43350 |
. . . . 5
⊢ ((((𝐹 ↾ 𝐶) Fn 𝐶 ∧ (𝑑 ∈ 𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))) Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ((𝐹 ↾ 𝐶) + (𝑑 ∈ 𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))) = ((𝐹 ↾ 𝐶) ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = ((𝑑 ∈ 𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧)))})) |
| 38 | 30, 34, 35, 37 | syl21anc 838 |
. . . 4
⊢ ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ((𝐹 ↾ 𝐶) + (𝑑 ∈ 𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))) = ((𝐹 ↾ 𝐶) ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = ((𝑑 ∈ 𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧)))})) |
| 39 | | oveq2 7439 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑑 = 𝑧 → (𝐶 +o 𝑑) = (𝐶 +o 𝑧)) |
| 40 | 39 | fveq2d 6910 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑑 = 𝑧 → (𝐹‘(𝐶 +o 𝑑)) = (𝐹‘(𝐶 +o 𝑧))) |
| 41 | | fvex 6919 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹‘(𝐶 +o 𝑧)) ∈ V |
| 42 | 40, 32, 41 | fvmpt 7016 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ∈ 𝐷 → ((𝑑 ∈ 𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧) = (𝐹‘(𝐶 +o 𝑧))) |
| 43 | 42 | ad2antlr 727 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) ∧ 𝑧 ∈ 𝐷) ∧ 𝑥 = (𝐶 +o 𝑧)) → ((𝑑 ∈ 𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧) = (𝐹‘(𝐶 +o 𝑧))) |
| 44 | | fveq2 6906 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = (𝐶 +o 𝑧) → (𝐹‘𝑥) = (𝐹‘(𝐶 +o 𝑧))) |
| 45 | 44 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) ∧ 𝑧 ∈ 𝐷) ∧ 𝑥 = (𝐶 +o 𝑧)) → (𝐹‘𝑥) = (𝐹‘(𝐶 +o 𝑧))) |
| 46 | 43, 45 | eqtr4d 2780 |
. . . . . . . . . . . . . 14
⊢
(((((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) ∧ 𝑧 ∈ 𝐷) ∧ 𝑥 = (𝐶 +o 𝑧)) → ((𝑑 ∈ 𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧) = (𝐹‘𝑥)) |
| 47 | 46 | eqeq2d 2748 |
. . . . . . . . . . . . 13
⊢
(((((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) ∧ 𝑧 ∈ 𝐷) ∧ 𝑥 = (𝐶 +o 𝑧)) → (𝑦 = ((𝑑 ∈ 𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧) ↔ 𝑦 = (𝐹‘𝑥))) |
| 48 | 47 | biimpd 229 |
. . . . . . . . . . . 12
⊢
(((((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) ∧ 𝑧 ∈ 𝐷) ∧ 𝑥 = (𝐶 +o 𝑧)) → (𝑦 = ((𝑑 ∈ 𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧) → 𝑦 = (𝐹‘𝑥))) |
| 49 | 48 | expimpd 453 |
. . . . . . . . . . 11
⊢ ((((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) ∧ 𝑧 ∈ 𝐷) → ((𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = ((𝑑 ∈ 𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧)) → 𝑦 = (𝐹‘𝑥))) |
| 50 | 49 | rexlimdva 3155 |
. . . . . . . . . 10
⊢ (((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) → (∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = ((𝑑 ∈ 𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧)) → 𝑦 = (𝐹‘𝑥))) |
| 51 | | simplr 769 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) → (𝐶 ∈ On ∧ 𝐷 ∈ On)) |
| 52 | | eloni 6394 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐶 +o 𝐷) ∈ On → Ord (𝐶 +o 𝐷)) |
| 53 | 6, 52 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐶 ∈ On ∧ 𝐷 ∈ On) → Ord (𝐶 +o 𝐷)) |
| 54 | | eloni 6394 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐶 ∈ On → Ord 𝐶) |
| 55 | 54 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐶 ∈ On ∧ 𝐷 ∈ On) → Ord 𝐶) |
| 56 | | ordeldif 43271 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((Ord
(𝐶 +o 𝐷) ∧ Ord 𝐶) → (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ↔ (𝑥 ∈ (𝐶 +o 𝐷) ∧ 𝐶 ⊆ 𝑥))) |
| 57 | 53, 55, 56 | syl2anc 584 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐶 ∈ On ∧ 𝐷 ∈ On) → (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ↔ (𝑥 ∈ (𝐶 +o 𝐷) ∧ 𝐶 ⊆ 𝑥))) |
| 58 | 57 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ↔ (𝑥 ∈ (𝐶 +o 𝐷) ∧ 𝐶 ⊆ 𝑥))) |
| 59 | 58 | biimpa 476 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) → (𝑥 ∈ (𝐶 +o 𝐷) ∧ 𝐶 ⊆ 𝑥)) |
| 60 | 59 | ancomd 461 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) → (𝐶 ⊆ 𝑥 ∧ 𝑥 ∈ (𝐶 +o 𝐷))) |
| 61 | 51, 60 | jca 511 |
. . . . . . . . . . . . . 14
⊢ (((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) → ((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐶 ⊆ 𝑥 ∧ 𝑥 ∈ (𝐶 +o 𝐷)))) |
| 62 | 61 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) ∧ 𝑦 = (𝐹‘𝑥)) → ((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐶 ⊆ 𝑥 ∧ 𝑥 ∈ (𝐶 +o 𝐷)))) |
| 63 | | oawordex2 43339 |
. . . . . . . . . . . . 13
⊢ (((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐶 ⊆ 𝑥 ∧ 𝑥 ∈ (𝐶 +o 𝐷))) → ∃𝑧 ∈ 𝐷 (𝐶 +o 𝑧) = 𝑥) |
| 64 | 62, 63 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) ∧ 𝑦 = (𝐹‘𝑥)) → ∃𝑧 ∈ 𝐷 (𝐶 +o 𝑧) = 𝑥) |
| 65 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) ∧ 𝑦 = (𝐹‘𝑥)) ∧ 𝑧 ∈ 𝐷) ∧ (𝐶 +o 𝑧) = 𝑥) → (𝐶 +o 𝑧) = 𝑥) |
| 66 | 65 | eqcomd 2743 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) ∧ 𝑦 = (𝐹‘𝑥)) ∧ 𝑧 ∈ 𝐷) ∧ (𝐶 +o 𝑧) = 𝑥) → 𝑥 = (𝐶 +o 𝑧)) |
| 67 | 65 | fveq2d 6910 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) ∧ 𝑦 = (𝐹‘𝑥)) ∧ 𝑧 ∈ 𝐷) ∧ (𝐶 +o 𝑧) = 𝑥) → (𝐹‘(𝐶 +o 𝑧)) = (𝐹‘𝑥)) |
| 68 | 42 | ad2antlr 727 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) ∧ 𝑦 = (𝐹‘𝑥)) ∧ 𝑧 ∈ 𝐷) ∧ (𝐶 +o 𝑧) = 𝑥) → ((𝑑 ∈ 𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧) = (𝐹‘(𝐶 +o 𝑧))) |
| 69 | | simpllr 776 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) ∧ 𝑦 = (𝐹‘𝑥)) ∧ 𝑧 ∈ 𝐷) ∧ (𝐶 +o 𝑧) = 𝑥) → 𝑦 = (𝐹‘𝑥)) |
| 70 | 67, 68, 69 | 3eqtr4rd 2788 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) ∧ 𝑦 = (𝐹‘𝑥)) ∧ 𝑧 ∈ 𝐷) ∧ (𝐶 +o 𝑧) = 𝑥) → 𝑦 = ((𝑑 ∈ 𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧)) |
| 71 | 66, 70 | jca 511 |
. . . . . . . . . . . . . 14
⊢
((((((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) ∧ 𝑦 = (𝐹‘𝑥)) ∧ 𝑧 ∈ 𝐷) ∧ (𝐶 +o 𝑧) = 𝑥) → (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = ((𝑑 ∈ 𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧))) |
| 72 | 71 | ex 412 |
. . . . . . . . . . . . 13
⊢
(((((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) ∧ 𝑦 = (𝐹‘𝑥)) ∧ 𝑧 ∈ 𝐷) → ((𝐶 +o 𝑧) = 𝑥 → (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = ((𝑑 ∈ 𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧)))) |
| 73 | 72 | reximdva 3168 |
. . . . . . . . . . . 12
⊢ ((((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) ∧ 𝑦 = (𝐹‘𝑥)) → (∃𝑧 ∈ 𝐷 (𝐶 +o 𝑧) = 𝑥 → ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = ((𝑑 ∈ 𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧)))) |
| 74 | 64, 73 | mpd 15 |
. . . . . . . . . . 11
⊢ ((((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) ∧ 𝑦 = (𝐹‘𝑥)) → ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = ((𝑑 ∈ 𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧))) |
| 75 | 74 | ex 412 |
. . . . . . . . . 10
⊢ (((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) → (𝑦 = (𝐹‘𝑥) → ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = ((𝑑 ∈ 𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧)))) |
| 76 | 50, 75 | impbid 212 |
. . . . . . . . 9
⊢ (((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) → (∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = ((𝑑 ∈ 𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧)) ↔ 𝑦 = (𝐹‘𝑥))) |
| 77 | | eldifi 4131 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) → 𝑥 ∈ (𝐶 +o 𝐷)) |
| 78 | | eqcom 2744 |
. . . . . . . . . . 11
⊢ (𝑦 = (𝐹‘𝑥) ↔ (𝐹‘𝑥) = 𝑦) |
| 79 | | fnbrfvb 6959 |
. . . . . . . . . . 11
⊢ ((𝐹 Fn (𝐶 +o 𝐷) ∧ 𝑥 ∈ (𝐶 +o 𝐷)) → ((𝐹‘𝑥) = 𝑦 ↔ 𝑥𝐹𝑦)) |
| 80 | 78, 79 | bitrid 283 |
. . . . . . . . . 10
⊢ ((𝐹 Fn (𝐶 +o 𝐷) ∧ 𝑥 ∈ (𝐶 +o 𝐷)) → (𝑦 = (𝐹‘𝑥) ↔ 𝑥𝐹𝑦)) |
| 81 | 19, 77, 80 | syl2an 596 |
. . . . . . . . 9
⊢ (((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) → (𝑦 = (𝐹‘𝑥) ↔ 𝑥𝐹𝑦)) |
| 82 | 76, 81 | bitrd 279 |
. . . . . . . 8
⊢ (((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) → (∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = ((𝑑 ∈ 𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧)) ↔ 𝑥𝐹𝑦)) |
| 83 | 82 | pm5.32da 579 |
. . . . . . 7
⊢ ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ((𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = ((𝑑 ∈ 𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧))) ↔ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ 𝑥𝐹𝑦))) |
| 84 | 83 | opabbidv 5209 |
. . . . . 6
⊢ ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = ((𝑑 ∈ 𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧)))} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ 𝑥𝐹𝑦)}) |
| 85 | | dfres2 6059 |
. . . . . 6
⊢ (𝐹 ↾ ((𝐶 +o 𝐷) ∖ 𝐶)) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ 𝑥𝐹𝑦)} |
| 86 | 84, 85 | eqtr4di 2795 |
. . . . 5
⊢ ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = ((𝑑 ∈ 𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧)))} = (𝐹 ↾ ((𝐶 +o 𝐷) ∖ 𝐶))) |
| 87 | 86 | uneq2d 4168 |
. . . 4
⊢ ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ((𝐹 ↾ 𝐶) ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = ((𝑑 ∈ 𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧)))}) = ((𝐹 ↾ 𝐶) ∪ (𝐹 ↾ ((𝐶 +o 𝐷) ∖ 𝐶)))) |
| 88 | 38, 87 | eqtrd 2777 |
. . 3
⊢ ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ((𝐹 ↾ 𝐶) + (𝑑 ∈ 𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))) = ((𝐹 ↾ 𝐶) ∪ (𝐹 ↾ ((𝐶 +o 𝐷) ∖ 𝐶)))) |
| 89 | | resundi 6011 |
. . . 4
⊢ (𝐹 ↾ (𝐶 ∪ ((𝐶 +o 𝐷) ∖ 𝐶))) = ((𝐹 ↾ 𝐶) ∪ (𝐹 ↾ ((𝐶 +o 𝐷) ∖ 𝐶))) |
| 90 | 89 | a1i 11 |
. . 3
⊢ ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐹 ↾ (𝐶 ∪ ((𝐶 +o 𝐷) ∖ 𝐶))) = ((𝐹 ↾ 𝐶) ∪ (𝐹 ↾ ((𝐶 +o 𝐷) ∖ 𝐶)))) |
| 91 | | undif 4482 |
. . . . . . 7
⊢ (𝐶 ⊆ (𝐶 +o 𝐷) ↔ (𝐶 ∪ ((𝐶 +o 𝐷) ∖ 𝐶)) = (𝐶 +o 𝐷)) |
| 92 | 15, 91 | sylib 218 |
. . . . . 6
⊢ ((𝐶 ∈ On ∧ 𝐷 ∈ On) → (𝐶 ∪ ((𝐶 +o 𝐷) ∖ 𝐶)) = (𝐶 +o 𝐷)) |
| 93 | 92 | adantl 481 |
. . . . 5
⊢ ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐶 ∪ ((𝐶 +o 𝐷) ∖ 𝐶)) = (𝐶 +o 𝐷)) |
| 94 | 93 | reseq2d 5997 |
. . . 4
⊢ ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐹 ↾ (𝐶 ∪ ((𝐶 +o 𝐷) ∖ 𝐶))) = (𝐹 ↾ (𝐶 +o 𝐷))) |
| 95 | | fnresdm 6687 |
. . . . 5
⊢ (𝐹 Fn (𝐶 +o 𝐷) → (𝐹 ↾ (𝐶 +o 𝐷)) = 𝐹) |
| 96 | 95 | adantr 480 |
. . . 4
⊢ ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐹 ↾ (𝐶 +o 𝐷)) = 𝐹) |
| 97 | 94, 96 | eqtrd 2777 |
. . 3
⊢ ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐹 ↾ (𝐶 ∪ ((𝐶 +o 𝐷) ∖ 𝐶))) = 𝐹) |
| 98 | 88, 90, 97 | 3eqtr2d 2783 |
. 2
⊢ ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ((𝐹 ↾ 𝐶) + (𝑑 ∈ 𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))) = 𝐹) |
| 99 | | dmres 6030 |
. . 3
⊢ dom
(𝐹 ↾ 𝐶) = (𝐶 ∩ dom 𝐹) |
| 100 | 16, 5 | sseqtrrd 4021 |
. . . 4
⊢ ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → 𝐶 ⊆ dom 𝐹) |
| 101 | | dfss2 3969 |
. . . 4
⊢ (𝐶 ⊆ dom 𝐹 ↔ (𝐶 ∩ dom 𝐹) = 𝐶) |
| 102 | 100, 101 | sylib 218 |
. . 3
⊢ ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐶 ∩ dom 𝐹) = 𝐶) |
| 103 | 99, 102 | eqtrid 2789 |
. 2
⊢ ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → dom (𝐹 ↾ 𝐶) = 𝐶) |
| 104 | 31, 32 | dmmpti 6712 |
. . 3
⊢ dom
(𝑑 ∈ 𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))) = 𝐷 |
| 105 | 104 | a1i 11 |
. 2
⊢ ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → dom (𝑑 ∈ 𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))) = 𝐷) |
| 106 | | oveq1 7438 |
. . . . 5
⊢ (𝑢 = (𝐹 ↾ 𝐶) → (𝑢 + 𝑣) = ((𝐹 ↾ 𝐶) + 𝑣)) |
| 107 | 106 | eqeq1d 2739 |
. . . 4
⊢ (𝑢 = (𝐹 ↾ 𝐶) → ((𝑢 + 𝑣) = 𝐹 ↔ ((𝐹 ↾ 𝐶) + 𝑣) = 𝐹)) |
| 108 | | dmeq 5914 |
. . . . 5
⊢ (𝑢 = (𝐹 ↾ 𝐶) → dom 𝑢 = dom (𝐹 ↾ 𝐶)) |
| 109 | 108 | eqeq1d 2739 |
. . . 4
⊢ (𝑢 = (𝐹 ↾ 𝐶) → (dom 𝑢 = 𝐶 ↔ dom (𝐹 ↾ 𝐶) = 𝐶)) |
| 110 | 107, 109 | 3anbi12d 1439 |
. . 3
⊢ (𝑢 = (𝐹 ↾ 𝐶) → (((𝑢 + 𝑣) = 𝐹 ∧ dom 𝑢 = 𝐶 ∧ dom 𝑣 = 𝐷) ↔ (((𝐹 ↾ 𝐶) + 𝑣) = 𝐹 ∧ dom (𝐹 ↾ 𝐶) = 𝐶 ∧ dom 𝑣 = 𝐷))) |
| 111 | | oveq2 7439 |
. . . . 5
⊢ (𝑣 = (𝑑 ∈ 𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))) → ((𝐹 ↾ 𝐶) + 𝑣) = ((𝐹 ↾ 𝐶) + (𝑑 ∈ 𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))))) |
| 112 | 111 | eqeq1d 2739 |
. . . 4
⊢ (𝑣 = (𝑑 ∈ 𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))) → (((𝐹 ↾ 𝐶) + 𝑣) = 𝐹 ↔ ((𝐹 ↾ 𝐶) + (𝑑 ∈ 𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))) = 𝐹)) |
| 113 | | dmeq 5914 |
. . . . 5
⊢ (𝑣 = (𝑑 ∈ 𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))) → dom 𝑣 = dom (𝑑 ∈ 𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))) |
| 114 | 113 | eqeq1d 2739 |
. . . 4
⊢ (𝑣 = (𝑑 ∈ 𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))) → (dom 𝑣 = 𝐷 ↔ dom (𝑑 ∈ 𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))) = 𝐷)) |
| 115 | 112, 114 | 3anbi13d 1440 |
. . 3
⊢ (𝑣 = (𝑑 ∈ 𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))) → ((((𝐹 ↾ 𝐶) + 𝑣) = 𝐹 ∧ dom (𝐹 ↾ 𝐶) = 𝐶 ∧ dom 𝑣 = 𝐷) ↔ (((𝐹 ↾ 𝐶) + (𝑑 ∈ 𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))) = 𝐹 ∧ dom (𝐹 ↾ 𝐶) = 𝐶 ∧ dom (𝑑 ∈ 𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))) = 𝐷))) |
| 116 | 110, 115 | rspc2ev 3635 |
. 2
⊢ (((𝐹 ↾ 𝐶) ∈ (ran 𝐹 ↑m 𝐶) ∧ (𝑑 ∈ 𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))) ∈ (ran 𝐹 ↑m 𝐷) ∧ (((𝐹 ↾ 𝐶) + (𝑑 ∈ 𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))) = 𝐹 ∧ dom (𝐹 ↾ 𝐶) = 𝐶 ∧ dom (𝑑 ∈ 𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))) = 𝐷)) → ∃𝑢 ∈ (ran 𝐹 ↑m 𝐶)∃𝑣 ∈ (ran 𝐹 ↑m 𝐷)((𝑢 + 𝑣) = 𝐹 ∧ dom 𝑢 = 𝐶 ∧ dom 𝑣 = 𝐷)) |
| 117 | 18, 29, 98, 103, 105, 116 | syl113anc 1384 |
1
⊢ ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ∃𝑢 ∈ (ran 𝐹 ↑m 𝐶)∃𝑣 ∈ (ran 𝐹 ↑m 𝐷)((𝑢 + 𝑣) = 𝐹 ∧ dom 𝑢 = 𝐶 ∧ dom 𝑣 = 𝐷)) |