Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tfsconcatrev Structured version   Visualization version   GIF version

Theorem tfsconcatrev 43321
Description: If the domain of a transfinite sequence is an ordinal sum, the sequence can be decomposed into two sequences with domains corresponding to the addends. Theorem 2 in Grzegorz Bancerek, "Epsilon Numbers and Cantor Normal Form", Formalized Mathematics, Vol. 17, No. 4, Pages 249–256, 2009. DOI: 10.2478/v10037-009-0032-8 (Contributed by RP, 2-Mar-2025.)
Hypothesis
Ref Expression
tfsconcat.op + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏𝑧)))}))
Assertion
Ref Expression
tfsconcatrev ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ∃𝑢 ∈ (ran 𝐹m 𝐶)∃𝑣 ∈ (ran 𝐹m 𝐷)((𝑢 + 𝑣) = 𝐹 ∧ dom 𝑢 = 𝐶 ∧ dom 𝑣 = 𝐷))
Distinct variable groups:   𝑎,𝑏,𝑢,𝑣,𝑥,𝑦,𝑧,𝐶   𝐷,𝑎,𝑏,𝑢,𝑣,𝑥,𝑦,𝑧   𝐹,𝑎,𝑏,𝑢,𝑣,𝑥,𝑦,𝑧   𝑢, + ,𝑣
Allowed substitution hints:   + (𝑥,𝑦,𝑧,𝑎,𝑏)

Proof of Theorem tfsconcatrev
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 dffn3 6668 . . . . . 6 (𝐹 Fn (𝐶 +o 𝐷) ↔ 𝐹:(𝐶 +o 𝐷)⟶ran 𝐹)
21biimpi 216 . . . . 5 (𝐹 Fn (𝐶 +o 𝐷) → 𝐹:(𝐶 +o 𝐷)⟶ran 𝐹)
32adantr 480 . . . 4 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → 𝐹:(𝐶 +o 𝐷)⟶ran 𝐹)
4 fndm 6589 . . . . . . . 8 (𝐹 Fn (𝐶 +o 𝐷) → dom 𝐹 = (𝐶 +o 𝐷))
54adantr 480 . . . . . . 7 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → dom 𝐹 = (𝐶 +o 𝐷))
6 oacl 8460 . . . . . . . 8 ((𝐶 ∈ On ∧ 𝐷 ∈ On) → (𝐶 +o 𝐷) ∈ On)
76adantl 481 . . . . . . 7 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐶 +o 𝐷) ∈ On)
85, 7eqeltrd 2828 . . . . . 6 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → dom 𝐹 ∈ On)
9 fnfun 6586 . . . . . . 7 (𝐹 Fn (𝐶 +o 𝐷) → Fun 𝐹)
109adantr 480 . . . . . 6 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → Fun 𝐹)
11 funrnex 7896 . . . . . 6 (dom 𝐹 ∈ On → (Fun 𝐹 → ran 𝐹 ∈ V))
128, 10, 11sylc 65 . . . . 5 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ran 𝐹 ∈ V)
1312, 7elmapd 8774 . . . 4 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐹 ∈ (ran 𝐹m (𝐶 +o 𝐷)) ↔ 𝐹:(𝐶 +o 𝐷)⟶ran 𝐹))
143, 13mpbird 257 . . 3 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → 𝐹 ∈ (ran 𝐹m (𝐶 +o 𝐷)))
15 oaword1 8477 . . . 4 ((𝐶 ∈ On ∧ 𝐷 ∈ On) → 𝐶 ⊆ (𝐶 +o 𝐷))
1615adantl 481 . . 3 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → 𝐶 ⊆ (𝐶 +o 𝐷))
17 elmapssres 8801 . . 3 ((𝐹 ∈ (ran 𝐹m (𝐶 +o 𝐷)) ∧ 𝐶 ⊆ (𝐶 +o 𝐷)) → (𝐹𝐶) ∈ (ran 𝐹m 𝐶))
1814, 16, 17syl2anc 584 . 2 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐹𝐶) ∈ (ran 𝐹m 𝐶))
19 simpl 482 . . . . 5 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → 𝐹 Fn (𝐶 +o 𝐷))
20 oaordi 8471 . . . . . . . 8 ((𝐷 ∈ On ∧ 𝐶 ∈ On) → (𝑑𝐷 → (𝐶 +o 𝑑) ∈ (𝐶 +o 𝐷)))
2120ancoms 458 . . . . . . 7 ((𝐶 ∈ On ∧ 𝐷 ∈ On) → (𝑑𝐷 → (𝐶 +o 𝑑) ∈ (𝐶 +o 𝐷)))
2221adantl 481 . . . . . 6 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝑑𝐷 → (𝐶 +o 𝑑) ∈ (𝐶 +o 𝐷)))
2322imp 406 . . . . 5 (((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷) → (𝐶 +o 𝑑) ∈ (𝐶 +o 𝐷))
24 fnfvelrn 7018 . . . . 5 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 +o 𝑑) ∈ (𝐶 +o 𝐷)) → (𝐹‘(𝐶 +o 𝑑)) ∈ ran 𝐹)
2519, 23, 24syl2an2r 685 . . . 4 (((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷) → (𝐹‘(𝐶 +o 𝑑)) ∈ ran 𝐹)
2625fmpttd 7053 . . 3 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))):𝐷⟶ran 𝐹)
27 simprr 772 . . . 4 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → 𝐷 ∈ On)
2812, 27elmapd 8774 . . 3 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ((𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))) ∈ (ran 𝐹m 𝐷) ↔ (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))):𝐷⟶ran 𝐹))
2926, 28mpbird 257 . 2 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))) ∈ (ran 𝐹m 𝐷))
3019, 16fnssresd 6610 . . . . 5 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐹𝐶) Fn 𝐶)
31 fvex 6839 . . . . . . 7 (𝐹‘(𝐶 +o 𝑑)) ∈ V
32 eqid 2729 . . . . . . 7 (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))) = (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))
3331, 32fnmpti 6629 . . . . . 6 (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))) Fn 𝐷
3433a1i 11 . . . . 5 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))) Fn 𝐷)
35 simpr 484 . . . . 5 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐶 ∈ On ∧ 𝐷 ∈ On))
36 tfsconcat.op . . . . . 6 + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏𝑧)))}))
3736tfsconcatun 43310 . . . . 5 ((((𝐹𝐶) Fn 𝐶 ∧ (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))) Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ((𝐹𝐶) + (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))) = ((𝐹𝐶) ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = ((𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧)))}))
3830, 34, 35, 37syl21anc 837 . . . 4 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ((𝐹𝐶) + (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))) = ((𝐹𝐶) ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = ((𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧)))}))
39 oveq2 7361 . . . . . . . . . . . . . . . . . 18 (𝑑 = 𝑧 → (𝐶 +o 𝑑) = (𝐶 +o 𝑧))
4039fveq2d 6830 . . . . . . . . . . . . . . . . 17 (𝑑 = 𝑧 → (𝐹‘(𝐶 +o 𝑑)) = (𝐹‘(𝐶 +o 𝑧)))
41 fvex 6839 . . . . . . . . . . . . . . . . 17 (𝐹‘(𝐶 +o 𝑧)) ∈ V
4240, 32, 41fvmpt 6934 . . . . . . . . . . . . . . . 16 (𝑧𝐷 → ((𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧) = (𝐹‘(𝐶 +o 𝑧)))
4342ad2antlr 727 . . . . . . . . . . . . . . 15 (((((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) ∧ 𝑧𝐷) ∧ 𝑥 = (𝐶 +o 𝑧)) → ((𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧) = (𝐹‘(𝐶 +o 𝑧)))
44 fveq2 6826 . . . . . . . . . . . . . . . 16 (𝑥 = (𝐶 +o 𝑧) → (𝐹𝑥) = (𝐹‘(𝐶 +o 𝑧)))
4544adantl 481 . . . . . . . . . . . . . . 15 (((((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) ∧ 𝑧𝐷) ∧ 𝑥 = (𝐶 +o 𝑧)) → (𝐹𝑥) = (𝐹‘(𝐶 +o 𝑧)))
4643, 45eqtr4d 2767 . . . . . . . . . . . . . 14 (((((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) ∧ 𝑧𝐷) ∧ 𝑥 = (𝐶 +o 𝑧)) → ((𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧) = (𝐹𝑥))
4746eqeq2d 2740 . . . . . . . . . . . . 13 (((((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) ∧ 𝑧𝐷) ∧ 𝑥 = (𝐶 +o 𝑧)) → (𝑦 = ((𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧) ↔ 𝑦 = (𝐹𝑥)))
4847biimpd 229 . . . . . . . . . . . 12 (((((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) ∧ 𝑧𝐷) ∧ 𝑥 = (𝐶 +o 𝑧)) → (𝑦 = ((𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧) → 𝑦 = (𝐹𝑥)))
4948expimpd 453 . . . . . . . . . . 11 ((((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) ∧ 𝑧𝐷) → ((𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = ((𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧)) → 𝑦 = (𝐹𝑥)))
5049rexlimdva 3130 . . . . . . . . . 10 (((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) → (∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = ((𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧)) → 𝑦 = (𝐹𝑥)))
51 simplr 768 . . . . . . . . . . . . . . 15 (((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) → (𝐶 ∈ On ∧ 𝐷 ∈ On))
52 eloni 6321 . . . . . . . . . . . . . . . . . . . 20 ((𝐶 +o 𝐷) ∈ On → Ord (𝐶 +o 𝐷))
536, 52syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝐶 ∈ On ∧ 𝐷 ∈ On) → Ord (𝐶 +o 𝐷))
54 eloni 6321 . . . . . . . . . . . . . . . . . . . 20 (𝐶 ∈ On → Ord 𝐶)
5554adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝐶 ∈ On ∧ 𝐷 ∈ On) → Ord 𝐶)
56 ordeldif 43231 . . . . . . . . . . . . . . . . . . 19 ((Ord (𝐶 +o 𝐷) ∧ Ord 𝐶) → (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ↔ (𝑥 ∈ (𝐶 +o 𝐷) ∧ 𝐶𝑥)))
5753, 55, 56syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((𝐶 ∈ On ∧ 𝐷 ∈ On) → (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ↔ (𝑥 ∈ (𝐶 +o 𝐷) ∧ 𝐶𝑥)))
5857adantl 481 . . . . . . . . . . . . . . . . 17 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ↔ (𝑥 ∈ (𝐶 +o 𝐷) ∧ 𝐶𝑥)))
5958biimpa 476 . . . . . . . . . . . . . . . 16 (((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) → (𝑥 ∈ (𝐶 +o 𝐷) ∧ 𝐶𝑥))
6059ancomd 461 . . . . . . . . . . . . . . 15 (((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) → (𝐶𝑥𝑥 ∈ (𝐶 +o 𝐷)))
6151, 60jca 511 . . . . . . . . . . . . . 14 (((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) → ((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐶𝑥𝑥 ∈ (𝐶 +o 𝐷))))
6261adantr 480 . . . . . . . . . . . . 13 ((((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) ∧ 𝑦 = (𝐹𝑥)) → ((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐶𝑥𝑥 ∈ (𝐶 +o 𝐷))))
63 oawordex2 43299 . . . . . . . . . . . . 13 (((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐶𝑥𝑥 ∈ (𝐶 +o 𝐷))) → ∃𝑧𝐷 (𝐶 +o 𝑧) = 𝑥)
6462, 63syl 17 . . . . . . . . . . . 12 ((((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) ∧ 𝑦 = (𝐹𝑥)) → ∃𝑧𝐷 (𝐶 +o 𝑧) = 𝑥)
65 simpr 484 . . . . . . . . . . . . . . . 16 ((((((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) ∧ 𝑦 = (𝐹𝑥)) ∧ 𝑧𝐷) ∧ (𝐶 +o 𝑧) = 𝑥) → (𝐶 +o 𝑧) = 𝑥)
6665eqcomd 2735 . . . . . . . . . . . . . . 15 ((((((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) ∧ 𝑦 = (𝐹𝑥)) ∧ 𝑧𝐷) ∧ (𝐶 +o 𝑧) = 𝑥) → 𝑥 = (𝐶 +o 𝑧))
6765fveq2d 6830 . . . . . . . . . . . . . . . 16 ((((((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) ∧ 𝑦 = (𝐹𝑥)) ∧ 𝑧𝐷) ∧ (𝐶 +o 𝑧) = 𝑥) → (𝐹‘(𝐶 +o 𝑧)) = (𝐹𝑥))
6842ad2antlr 727 . . . . . . . . . . . . . . . 16 ((((((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) ∧ 𝑦 = (𝐹𝑥)) ∧ 𝑧𝐷) ∧ (𝐶 +o 𝑧) = 𝑥) → ((𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧) = (𝐹‘(𝐶 +o 𝑧)))
69 simpllr 775 . . . . . . . . . . . . . . . 16 ((((((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) ∧ 𝑦 = (𝐹𝑥)) ∧ 𝑧𝐷) ∧ (𝐶 +o 𝑧) = 𝑥) → 𝑦 = (𝐹𝑥))
7067, 68, 693eqtr4rd 2775 . . . . . . . . . . . . . . 15 ((((((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) ∧ 𝑦 = (𝐹𝑥)) ∧ 𝑧𝐷) ∧ (𝐶 +o 𝑧) = 𝑥) → 𝑦 = ((𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧))
7166, 70jca 511 . . . . . . . . . . . . . 14 ((((((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) ∧ 𝑦 = (𝐹𝑥)) ∧ 𝑧𝐷) ∧ (𝐶 +o 𝑧) = 𝑥) → (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = ((𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧)))
7271ex 412 . . . . . . . . . . . . 13 (((((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) ∧ 𝑦 = (𝐹𝑥)) ∧ 𝑧𝐷) → ((𝐶 +o 𝑧) = 𝑥 → (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = ((𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧))))
7372reximdva 3142 . . . . . . . . . . . 12 ((((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) ∧ 𝑦 = (𝐹𝑥)) → (∃𝑧𝐷 (𝐶 +o 𝑧) = 𝑥 → ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = ((𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧))))
7464, 73mpd 15 . . . . . . . . . . 11 ((((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) ∧ 𝑦 = (𝐹𝑥)) → ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = ((𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧)))
7574ex 412 . . . . . . . . . 10 (((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) → (𝑦 = (𝐹𝑥) → ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = ((𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧))))
7650, 75impbid 212 . . . . . . . . 9 (((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) → (∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = ((𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧)) ↔ 𝑦 = (𝐹𝑥)))
77 eldifi 4084 . . . . . . . . . 10 (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) → 𝑥 ∈ (𝐶 +o 𝐷))
78 eqcom 2736 . . . . . . . . . . 11 (𝑦 = (𝐹𝑥) ↔ (𝐹𝑥) = 𝑦)
79 fnbrfvb 6877 . . . . . . . . . . 11 ((𝐹 Fn (𝐶 +o 𝐷) ∧ 𝑥 ∈ (𝐶 +o 𝐷)) → ((𝐹𝑥) = 𝑦𝑥𝐹𝑦))
8078, 79bitrid 283 . . . . . . . . . 10 ((𝐹 Fn (𝐶 +o 𝐷) ∧ 𝑥 ∈ (𝐶 +o 𝐷)) → (𝑦 = (𝐹𝑥) ↔ 𝑥𝐹𝑦))
8119, 77, 80syl2an 596 . . . . . . . . 9 (((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) → (𝑦 = (𝐹𝑥) ↔ 𝑥𝐹𝑦))
8276, 81bitrd 279 . . . . . . . 8 (((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) → (∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = ((𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧)) ↔ 𝑥𝐹𝑦))
8382pm5.32da 579 . . . . . . 7 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ((𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = ((𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧))) ↔ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ 𝑥𝐹𝑦)))
8483opabbidv 5161 . . . . . 6 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = ((𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧)))} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ 𝑥𝐹𝑦)})
85 dfres2 5996 . . . . . 6 (𝐹 ↾ ((𝐶 +o 𝐷) ∖ 𝐶)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ 𝑥𝐹𝑦)}
8684, 85eqtr4di 2782 . . . . 5 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = ((𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧)))} = (𝐹 ↾ ((𝐶 +o 𝐷) ∖ 𝐶)))
8786uneq2d 4121 . . . 4 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ((𝐹𝐶) ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = ((𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧)))}) = ((𝐹𝐶) ∪ (𝐹 ↾ ((𝐶 +o 𝐷) ∖ 𝐶))))
8838, 87eqtrd 2764 . . 3 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ((𝐹𝐶) + (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))) = ((𝐹𝐶) ∪ (𝐹 ↾ ((𝐶 +o 𝐷) ∖ 𝐶))))
89 resundi 5948 . . . 4 (𝐹 ↾ (𝐶 ∪ ((𝐶 +o 𝐷) ∖ 𝐶))) = ((𝐹𝐶) ∪ (𝐹 ↾ ((𝐶 +o 𝐷) ∖ 𝐶)))
9089a1i 11 . . 3 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐹 ↾ (𝐶 ∪ ((𝐶 +o 𝐷) ∖ 𝐶))) = ((𝐹𝐶) ∪ (𝐹 ↾ ((𝐶 +o 𝐷) ∖ 𝐶))))
91 undif 4435 . . . . . . 7 (𝐶 ⊆ (𝐶 +o 𝐷) ↔ (𝐶 ∪ ((𝐶 +o 𝐷) ∖ 𝐶)) = (𝐶 +o 𝐷))
9215, 91sylib 218 . . . . . 6 ((𝐶 ∈ On ∧ 𝐷 ∈ On) → (𝐶 ∪ ((𝐶 +o 𝐷) ∖ 𝐶)) = (𝐶 +o 𝐷))
9392adantl 481 . . . . 5 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐶 ∪ ((𝐶 +o 𝐷) ∖ 𝐶)) = (𝐶 +o 𝐷))
9493reseq2d 5934 . . . 4 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐹 ↾ (𝐶 ∪ ((𝐶 +o 𝐷) ∖ 𝐶))) = (𝐹 ↾ (𝐶 +o 𝐷)))
95 fnresdm 6605 . . . . 5 (𝐹 Fn (𝐶 +o 𝐷) → (𝐹 ↾ (𝐶 +o 𝐷)) = 𝐹)
9695adantr 480 . . . 4 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐹 ↾ (𝐶 +o 𝐷)) = 𝐹)
9794, 96eqtrd 2764 . . 3 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐹 ↾ (𝐶 ∪ ((𝐶 +o 𝐷) ∖ 𝐶))) = 𝐹)
9888, 90, 973eqtr2d 2770 . 2 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ((𝐹𝐶) + (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))) = 𝐹)
99 dmres 5967 . . 3 dom (𝐹𝐶) = (𝐶 ∩ dom 𝐹)
10016, 5sseqtrrd 3975 . . . 4 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → 𝐶 ⊆ dom 𝐹)
101 dfss2 3923 . . . 4 (𝐶 ⊆ dom 𝐹 ↔ (𝐶 ∩ dom 𝐹) = 𝐶)
102100, 101sylib 218 . . 3 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐶 ∩ dom 𝐹) = 𝐶)
10399, 102eqtrid 2776 . 2 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → dom (𝐹𝐶) = 𝐶)
10431, 32dmmpti 6630 . . 3 dom (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))) = 𝐷
105104a1i 11 . 2 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → dom (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))) = 𝐷)
106 oveq1 7360 . . . . 5 (𝑢 = (𝐹𝐶) → (𝑢 + 𝑣) = ((𝐹𝐶) + 𝑣))
107106eqeq1d 2731 . . . 4 (𝑢 = (𝐹𝐶) → ((𝑢 + 𝑣) = 𝐹 ↔ ((𝐹𝐶) + 𝑣) = 𝐹))
108 dmeq 5850 . . . . 5 (𝑢 = (𝐹𝐶) → dom 𝑢 = dom (𝐹𝐶))
109108eqeq1d 2731 . . . 4 (𝑢 = (𝐹𝐶) → (dom 𝑢 = 𝐶 ↔ dom (𝐹𝐶) = 𝐶))
110107, 1093anbi12d 1439 . . 3 (𝑢 = (𝐹𝐶) → (((𝑢 + 𝑣) = 𝐹 ∧ dom 𝑢 = 𝐶 ∧ dom 𝑣 = 𝐷) ↔ (((𝐹𝐶) + 𝑣) = 𝐹 ∧ dom (𝐹𝐶) = 𝐶 ∧ dom 𝑣 = 𝐷)))
111 oveq2 7361 . . . . 5 (𝑣 = (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))) → ((𝐹𝐶) + 𝑣) = ((𝐹𝐶) + (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))))
112111eqeq1d 2731 . . . 4 (𝑣 = (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))) → (((𝐹𝐶) + 𝑣) = 𝐹 ↔ ((𝐹𝐶) + (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))) = 𝐹))
113 dmeq 5850 . . . . 5 (𝑣 = (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))) → dom 𝑣 = dom (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))))
114113eqeq1d 2731 . . . 4 (𝑣 = (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))) → (dom 𝑣 = 𝐷 ↔ dom (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))) = 𝐷))
115112, 1143anbi13d 1440 . . 3 (𝑣 = (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))) → ((((𝐹𝐶) + 𝑣) = 𝐹 ∧ dom (𝐹𝐶) = 𝐶 ∧ dom 𝑣 = 𝐷) ↔ (((𝐹𝐶) + (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))) = 𝐹 ∧ dom (𝐹𝐶) = 𝐶 ∧ dom (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))) = 𝐷)))
116110, 115rspc2ev 3592 . 2 (((𝐹𝐶) ∈ (ran 𝐹m 𝐶) ∧ (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))) ∈ (ran 𝐹m 𝐷) ∧ (((𝐹𝐶) + (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))) = 𝐹 ∧ dom (𝐹𝐶) = 𝐶 ∧ dom (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))) = 𝐷)) → ∃𝑢 ∈ (ran 𝐹m 𝐶)∃𝑣 ∈ (ran 𝐹m 𝐷)((𝑢 + 𝑣) = 𝐹 ∧ dom 𝑢 = 𝐶 ∧ dom 𝑣 = 𝐷))
11718, 29, 98, 103, 105, 116syl113anc 1384 1 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ∃𝑢 ∈ (ran 𝐹m 𝐶)∃𝑣 ∈ (ran 𝐹m 𝐷)((𝑢 + 𝑣) = 𝐹 ∧ dom 𝑢 = 𝐶 ∧ dom 𝑣 = 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3053  Vcvv 3438  cdif 3902  cun 3903  cin 3904  wss 3905   class class class wbr 5095  {copab 5157  cmpt 5176  dom cdm 5623  ran crn 5624  cres 5625  Ord word 6310  Oncon0 6311  Fun wfun 6480   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7353  cmpo 7355   +o coa 8392  m cmap 8760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-oadd 8399  df-map 8762
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator