Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tfsconcatrev Structured version   Visualization version   GIF version

Theorem tfsconcatrev 43338
Description: If the domain of a transfinite sequence is an ordinal sum, the sequence can be decomposed into two sequences with domains corresponding to the addends. Theorem 2 in Grzegorz Bancerek, "Epsilon Numbers and Cantor Normal Form", Formalized Mathematics, Vol. 17, No. 4, Pages 249–256, 2009. DOI: 10.2478/v10037-009-0032-8 (Contributed by RP, 2-Mar-2025.)
Hypothesis
Ref Expression
tfsconcat.op + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏𝑧)))}))
Assertion
Ref Expression
tfsconcatrev ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ∃𝑢 ∈ (ran 𝐹m 𝐶)∃𝑣 ∈ (ran 𝐹m 𝐷)((𝑢 + 𝑣) = 𝐹 ∧ dom 𝑢 = 𝐶 ∧ dom 𝑣 = 𝐷))
Distinct variable groups:   𝑎,𝑏,𝑢,𝑣,𝑥,𝑦,𝑧,𝐶   𝐷,𝑎,𝑏,𝑢,𝑣,𝑥,𝑦,𝑧   𝐹,𝑎,𝑏,𝑢,𝑣,𝑥,𝑦,𝑧   𝑢, + ,𝑣
Allowed substitution hints:   + (𝑥,𝑦,𝑧,𝑎,𝑏)

Proof of Theorem tfsconcatrev
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 dffn3 6728 . . . . . 6 (𝐹 Fn (𝐶 +o 𝐷) ↔ 𝐹:(𝐶 +o 𝐷)⟶ran 𝐹)
21biimpi 216 . . . . 5 (𝐹 Fn (𝐶 +o 𝐷) → 𝐹:(𝐶 +o 𝐷)⟶ran 𝐹)
32adantr 480 . . . 4 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → 𝐹:(𝐶 +o 𝐷)⟶ran 𝐹)
4 fndm 6651 . . . . . . . 8 (𝐹 Fn (𝐶 +o 𝐷) → dom 𝐹 = (𝐶 +o 𝐷))
54adantr 480 . . . . . . 7 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → dom 𝐹 = (𝐶 +o 𝐷))
6 oacl 8555 . . . . . . . 8 ((𝐶 ∈ On ∧ 𝐷 ∈ On) → (𝐶 +o 𝐷) ∈ On)
76adantl 481 . . . . . . 7 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐶 +o 𝐷) ∈ On)
85, 7eqeltrd 2833 . . . . . 6 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → dom 𝐹 ∈ On)
9 fnfun 6648 . . . . . . 7 (𝐹 Fn (𝐶 +o 𝐷) → Fun 𝐹)
109adantr 480 . . . . . 6 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → Fun 𝐹)
11 funrnex 7960 . . . . . 6 (dom 𝐹 ∈ On → (Fun 𝐹 → ran 𝐹 ∈ V))
128, 10, 11sylc 65 . . . . 5 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ran 𝐹 ∈ V)
1312, 7elmapd 8862 . . . 4 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐹 ∈ (ran 𝐹m (𝐶 +o 𝐷)) ↔ 𝐹:(𝐶 +o 𝐷)⟶ran 𝐹))
143, 13mpbird 257 . . 3 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → 𝐹 ∈ (ran 𝐹m (𝐶 +o 𝐷)))
15 oaword1 8572 . . . 4 ((𝐶 ∈ On ∧ 𝐷 ∈ On) → 𝐶 ⊆ (𝐶 +o 𝐷))
1615adantl 481 . . 3 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → 𝐶 ⊆ (𝐶 +o 𝐷))
17 elmapssres 8889 . . 3 ((𝐹 ∈ (ran 𝐹m (𝐶 +o 𝐷)) ∧ 𝐶 ⊆ (𝐶 +o 𝐷)) → (𝐹𝐶) ∈ (ran 𝐹m 𝐶))
1814, 16, 17syl2anc 584 . 2 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐹𝐶) ∈ (ran 𝐹m 𝐶))
19 simpl 482 . . . . 5 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → 𝐹 Fn (𝐶 +o 𝐷))
20 oaordi 8566 . . . . . . . 8 ((𝐷 ∈ On ∧ 𝐶 ∈ On) → (𝑑𝐷 → (𝐶 +o 𝑑) ∈ (𝐶 +o 𝐷)))
2120ancoms 458 . . . . . . 7 ((𝐶 ∈ On ∧ 𝐷 ∈ On) → (𝑑𝐷 → (𝐶 +o 𝑑) ∈ (𝐶 +o 𝐷)))
2221adantl 481 . . . . . 6 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝑑𝐷 → (𝐶 +o 𝑑) ∈ (𝐶 +o 𝐷)))
2322imp 406 . . . . 5 (((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷) → (𝐶 +o 𝑑) ∈ (𝐶 +o 𝐷))
24 fnfvelrn 7080 . . . . 5 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 +o 𝑑) ∈ (𝐶 +o 𝐷)) → (𝐹‘(𝐶 +o 𝑑)) ∈ ran 𝐹)
2519, 23, 24syl2an2r 685 . . . 4 (((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷) → (𝐹‘(𝐶 +o 𝑑)) ∈ ran 𝐹)
2625fmpttd 7115 . . 3 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))):𝐷⟶ran 𝐹)
27 simprr 772 . . . 4 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → 𝐷 ∈ On)
2812, 27elmapd 8862 . . 3 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ((𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))) ∈ (ran 𝐹m 𝐷) ↔ (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))):𝐷⟶ran 𝐹))
2926, 28mpbird 257 . 2 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))) ∈ (ran 𝐹m 𝐷))
3019, 16fnssresd 6672 . . . . 5 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐹𝐶) Fn 𝐶)
31 fvex 6899 . . . . . . 7 (𝐹‘(𝐶 +o 𝑑)) ∈ V
32 eqid 2734 . . . . . . 7 (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))) = (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))
3331, 32fnmpti 6691 . . . . . 6 (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))) Fn 𝐷
3433a1i 11 . . . . 5 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))) Fn 𝐷)
35 simpr 484 . . . . 5 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐶 ∈ On ∧ 𝐷 ∈ On))
36 tfsconcat.op . . . . . 6 + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏𝑧)))}))
3736tfsconcatun 43327 . . . . 5 ((((𝐹𝐶) Fn 𝐶 ∧ (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))) Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ((𝐹𝐶) + (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))) = ((𝐹𝐶) ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = ((𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧)))}))
3830, 34, 35, 37syl21anc 837 . . . 4 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ((𝐹𝐶) + (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))) = ((𝐹𝐶) ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = ((𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧)))}))
39 oveq2 7421 . . . . . . . . . . . . . . . . . 18 (𝑑 = 𝑧 → (𝐶 +o 𝑑) = (𝐶 +o 𝑧))
4039fveq2d 6890 . . . . . . . . . . . . . . . . 17 (𝑑 = 𝑧 → (𝐹‘(𝐶 +o 𝑑)) = (𝐹‘(𝐶 +o 𝑧)))
41 fvex 6899 . . . . . . . . . . . . . . . . 17 (𝐹‘(𝐶 +o 𝑧)) ∈ V
4240, 32, 41fvmpt 6996 . . . . . . . . . . . . . . . 16 (𝑧𝐷 → ((𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧) = (𝐹‘(𝐶 +o 𝑧)))
4342ad2antlr 727 . . . . . . . . . . . . . . 15 (((((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) ∧ 𝑧𝐷) ∧ 𝑥 = (𝐶 +o 𝑧)) → ((𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧) = (𝐹‘(𝐶 +o 𝑧)))
44 fveq2 6886 . . . . . . . . . . . . . . . 16 (𝑥 = (𝐶 +o 𝑧) → (𝐹𝑥) = (𝐹‘(𝐶 +o 𝑧)))
4544adantl 481 . . . . . . . . . . . . . . 15 (((((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) ∧ 𝑧𝐷) ∧ 𝑥 = (𝐶 +o 𝑧)) → (𝐹𝑥) = (𝐹‘(𝐶 +o 𝑧)))
4643, 45eqtr4d 2772 . . . . . . . . . . . . . 14 (((((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) ∧ 𝑧𝐷) ∧ 𝑥 = (𝐶 +o 𝑧)) → ((𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧) = (𝐹𝑥))
4746eqeq2d 2745 . . . . . . . . . . . . 13 (((((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) ∧ 𝑧𝐷) ∧ 𝑥 = (𝐶 +o 𝑧)) → (𝑦 = ((𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧) ↔ 𝑦 = (𝐹𝑥)))
4847biimpd 229 . . . . . . . . . . . 12 (((((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) ∧ 𝑧𝐷) ∧ 𝑥 = (𝐶 +o 𝑧)) → (𝑦 = ((𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧) → 𝑦 = (𝐹𝑥)))
4948expimpd 453 . . . . . . . . . . 11 ((((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) ∧ 𝑧𝐷) → ((𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = ((𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧)) → 𝑦 = (𝐹𝑥)))
5049rexlimdva 3142 . . . . . . . . . 10 (((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) → (∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = ((𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧)) → 𝑦 = (𝐹𝑥)))
51 simplr 768 . . . . . . . . . . . . . . 15 (((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) → (𝐶 ∈ On ∧ 𝐷 ∈ On))
52 eloni 6373 . . . . . . . . . . . . . . . . . . . 20 ((𝐶 +o 𝐷) ∈ On → Ord (𝐶 +o 𝐷))
536, 52syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝐶 ∈ On ∧ 𝐷 ∈ On) → Ord (𝐶 +o 𝐷))
54 eloni 6373 . . . . . . . . . . . . . . . . . . . 20 (𝐶 ∈ On → Ord 𝐶)
5554adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝐶 ∈ On ∧ 𝐷 ∈ On) → Ord 𝐶)
56 ordeldif 43248 . . . . . . . . . . . . . . . . . . 19 ((Ord (𝐶 +o 𝐷) ∧ Ord 𝐶) → (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ↔ (𝑥 ∈ (𝐶 +o 𝐷) ∧ 𝐶𝑥)))
5753, 55, 56syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((𝐶 ∈ On ∧ 𝐷 ∈ On) → (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ↔ (𝑥 ∈ (𝐶 +o 𝐷) ∧ 𝐶𝑥)))
5857adantl 481 . . . . . . . . . . . . . . . . 17 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ↔ (𝑥 ∈ (𝐶 +o 𝐷) ∧ 𝐶𝑥)))
5958biimpa 476 . . . . . . . . . . . . . . . 16 (((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) → (𝑥 ∈ (𝐶 +o 𝐷) ∧ 𝐶𝑥))
6059ancomd 461 . . . . . . . . . . . . . . 15 (((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) → (𝐶𝑥𝑥 ∈ (𝐶 +o 𝐷)))
6151, 60jca 511 . . . . . . . . . . . . . 14 (((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) → ((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐶𝑥𝑥 ∈ (𝐶 +o 𝐷))))
6261adantr 480 . . . . . . . . . . . . 13 ((((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) ∧ 𝑦 = (𝐹𝑥)) → ((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐶𝑥𝑥 ∈ (𝐶 +o 𝐷))))
63 oawordex2 43316 . . . . . . . . . . . . 13 (((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐶𝑥𝑥 ∈ (𝐶 +o 𝐷))) → ∃𝑧𝐷 (𝐶 +o 𝑧) = 𝑥)
6462, 63syl 17 . . . . . . . . . . . 12 ((((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) ∧ 𝑦 = (𝐹𝑥)) → ∃𝑧𝐷 (𝐶 +o 𝑧) = 𝑥)
65 simpr 484 . . . . . . . . . . . . . . . 16 ((((((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) ∧ 𝑦 = (𝐹𝑥)) ∧ 𝑧𝐷) ∧ (𝐶 +o 𝑧) = 𝑥) → (𝐶 +o 𝑧) = 𝑥)
6665eqcomd 2740 . . . . . . . . . . . . . . 15 ((((((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) ∧ 𝑦 = (𝐹𝑥)) ∧ 𝑧𝐷) ∧ (𝐶 +o 𝑧) = 𝑥) → 𝑥 = (𝐶 +o 𝑧))
6765fveq2d 6890 . . . . . . . . . . . . . . . 16 ((((((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) ∧ 𝑦 = (𝐹𝑥)) ∧ 𝑧𝐷) ∧ (𝐶 +o 𝑧) = 𝑥) → (𝐹‘(𝐶 +o 𝑧)) = (𝐹𝑥))
6842ad2antlr 727 . . . . . . . . . . . . . . . 16 ((((((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) ∧ 𝑦 = (𝐹𝑥)) ∧ 𝑧𝐷) ∧ (𝐶 +o 𝑧) = 𝑥) → ((𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧) = (𝐹‘(𝐶 +o 𝑧)))
69 simpllr 775 . . . . . . . . . . . . . . . 16 ((((((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) ∧ 𝑦 = (𝐹𝑥)) ∧ 𝑧𝐷) ∧ (𝐶 +o 𝑧) = 𝑥) → 𝑦 = (𝐹𝑥))
7067, 68, 693eqtr4rd 2780 . . . . . . . . . . . . . . 15 ((((((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) ∧ 𝑦 = (𝐹𝑥)) ∧ 𝑧𝐷) ∧ (𝐶 +o 𝑧) = 𝑥) → 𝑦 = ((𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧))
7166, 70jca 511 . . . . . . . . . . . . . 14 ((((((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) ∧ 𝑦 = (𝐹𝑥)) ∧ 𝑧𝐷) ∧ (𝐶 +o 𝑧) = 𝑥) → (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = ((𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧)))
7271ex 412 . . . . . . . . . . . . 13 (((((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) ∧ 𝑦 = (𝐹𝑥)) ∧ 𝑧𝐷) → ((𝐶 +o 𝑧) = 𝑥 → (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = ((𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧))))
7372reximdva 3155 . . . . . . . . . . . 12 ((((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) ∧ 𝑦 = (𝐹𝑥)) → (∃𝑧𝐷 (𝐶 +o 𝑧) = 𝑥 → ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = ((𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧))))
7464, 73mpd 15 . . . . . . . . . . 11 ((((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) ∧ 𝑦 = (𝐹𝑥)) → ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = ((𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧)))
7574ex 412 . . . . . . . . . 10 (((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) → (𝑦 = (𝐹𝑥) → ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = ((𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧))))
7650, 75impbid 212 . . . . . . . . 9 (((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) → (∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = ((𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧)) ↔ 𝑦 = (𝐹𝑥)))
77 eldifi 4111 . . . . . . . . . 10 (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) → 𝑥 ∈ (𝐶 +o 𝐷))
78 eqcom 2741 . . . . . . . . . . 11 (𝑦 = (𝐹𝑥) ↔ (𝐹𝑥) = 𝑦)
79 fnbrfvb 6939 . . . . . . . . . . 11 ((𝐹 Fn (𝐶 +o 𝐷) ∧ 𝑥 ∈ (𝐶 +o 𝐷)) → ((𝐹𝑥) = 𝑦𝑥𝐹𝑦))
8078, 79bitrid 283 . . . . . . . . . 10 ((𝐹 Fn (𝐶 +o 𝐷) ∧ 𝑥 ∈ (𝐶 +o 𝐷)) → (𝑦 = (𝐹𝑥) ↔ 𝑥𝐹𝑦))
8119, 77, 80syl2an 596 . . . . . . . . 9 (((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) → (𝑦 = (𝐹𝑥) ↔ 𝑥𝐹𝑦))
8276, 81bitrd 279 . . . . . . . 8 (((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) → (∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = ((𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧)) ↔ 𝑥𝐹𝑦))
8382pm5.32da 579 . . . . . . 7 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ((𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = ((𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧))) ↔ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ 𝑥𝐹𝑦)))
8483opabbidv 5189 . . . . . 6 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = ((𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧)))} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ 𝑥𝐹𝑦)})
85 dfres2 6039 . . . . . 6 (𝐹 ↾ ((𝐶 +o 𝐷) ∖ 𝐶)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ 𝑥𝐹𝑦)}
8684, 85eqtr4di 2787 . . . . 5 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = ((𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧)))} = (𝐹 ↾ ((𝐶 +o 𝐷) ∖ 𝐶)))
8786uneq2d 4148 . . . 4 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ((𝐹𝐶) ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = ((𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧)))}) = ((𝐹𝐶) ∪ (𝐹 ↾ ((𝐶 +o 𝐷) ∖ 𝐶))))
8838, 87eqtrd 2769 . . 3 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ((𝐹𝐶) + (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))) = ((𝐹𝐶) ∪ (𝐹 ↾ ((𝐶 +o 𝐷) ∖ 𝐶))))
89 resundi 5991 . . . 4 (𝐹 ↾ (𝐶 ∪ ((𝐶 +o 𝐷) ∖ 𝐶))) = ((𝐹𝐶) ∪ (𝐹 ↾ ((𝐶 +o 𝐷) ∖ 𝐶)))
9089a1i 11 . . 3 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐹 ↾ (𝐶 ∪ ((𝐶 +o 𝐷) ∖ 𝐶))) = ((𝐹𝐶) ∪ (𝐹 ↾ ((𝐶 +o 𝐷) ∖ 𝐶))))
91 undif 4462 . . . . . . 7 (𝐶 ⊆ (𝐶 +o 𝐷) ↔ (𝐶 ∪ ((𝐶 +o 𝐷) ∖ 𝐶)) = (𝐶 +o 𝐷))
9215, 91sylib 218 . . . . . 6 ((𝐶 ∈ On ∧ 𝐷 ∈ On) → (𝐶 ∪ ((𝐶 +o 𝐷) ∖ 𝐶)) = (𝐶 +o 𝐷))
9392adantl 481 . . . . 5 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐶 ∪ ((𝐶 +o 𝐷) ∖ 𝐶)) = (𝐶 +o 𝐷))
9493reseq2d 5977 . . . 4 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐹 ↾ (𝐶 ∪ ((𝐶 +o 𝐷) ∖ 𝐶))) = (𝐹 ↾ (𝐶 +o 𝐷)))
95 fnresdm 6667 . . . . 5 (𝐹 Fn (𝐶 +o 𝐷) → (𝐹 ↾ (𝐶 +o 𝐷)) = 𝐹)
9695adantr 480 . . . 4 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐹 ↾ (𝐶 +o 𝐷)) = 𝐹)
9794, 96eqtrd 2769 . . 3 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐹 ↾ (𝐶 ∪ ((𝐶 +o 𝐷) ∖ 𝐶))) = 𝐹)
9888, 90, 973eqtr2d 2775 . 2 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ((𝐹𝐶) + (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))) = 𝐹)
99 dmres 6010 . . 3 dom (𝐹𝐶) = (𝐶 ∩ dom 𝐹)
10016, 5sseqtrrd 4001 . . . 4 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → 𝐶 ⊆ dom 𝐹)
101 dfss2 3949 . . . 4 (𝐶 ⊆ dom 𝐹 ↔ (𝐶 ∩ dom 𝐹) = 𝐶)
102100, 101sylib 218 . . 3 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐶 ∩ dom 𝐹) = 𝐶)
10399, 102eqtrid 2781 . 2 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → dom (𝐹𝐶) = 𝐶)
10431, 32dmmpti 6692 . . 3 dom (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))) = 𝐷
105104a1i 11 . 2 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → dom (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))) = 𝐷)
106 oveq1 7420 . . . . 5 (𝑢 = (𝐹𝐶) → (𝑢 + 𝑣) = ((𝐹𝐶) + 𝑣))
107106eqeq1d 2736 . . . 4 (𝑢 = (𝐹𝐶) → ((𝑢 + 𝑣) = 𝐹 ↔ ((𝐹𝐶) + 𝑣) = 𝐹))
108 dmeq 5894 . . . . 5 (𝑢 = (𝐹𝐶) → dom 𝑢 = dom (𝐹𝐶))
109108eqeq1d 2736 . . . 4 (𝑢 = (𝐹𝐶) → (dom 𝑢 = 𝐶 ↔ dom (𝐹𝐶) = 𝐶))
110107, 1093anbi12d 1438 . . 3 (𝑢 = (𝐹𝐶) → (((𝑢 + 𝑣) = 𝐹 ∧ dom 𝑢 = 𝐶 ∧ dom 𝑣 = 𝐷) ↔ (((𝐹𝐶) + 𝑣) = 𝐹 ∧ dom (𝐹𝐶) = 𝐶 ∧ dom 𝑣 = 𝐷)))
111 oveq2 7421 . . . . 5 (𝑣 = (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))) → ((𝐹𝐶) + 𝑣) = ((𝐹𝐶) + (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))))
112111eqeq1d 2736 . . . 4 (𝑣 = (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))) → (((𝐹𝐶) + 𝑣) = 𝐹 ↔ ((𝐹𝐶) + (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))) = 𝐹))
113 dmeq 5894 . . . . 5 (𝑣 = (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))) → dom 𝑣 = dom (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))))
114113eqeq1d 2736 . . . 4 (𝑣 = (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))) → (dom 𝑣 = 𝐷 ↔ dom (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))) = 𝐷))
115112, 1143anbi13d 1439 . . 3 (𝑣 = (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))) → ((((𝐹𝐶) + 𝑣) = 𝐹 ∧ dom (𝐹𝐶) = 𝐶 ∧ dom 𝑣 = 𝐷) ↔ (((𝐹𝐶) + (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))) = 𝐹 ∧ dom (𝐹𝐶) = 𝐶 ∧ dom (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))) = 𝐷)))
116110, 115rspc2ev 3618 . 2 (((𝐹𝐶) ∈ (ran 𝐹m 𝐶) ∧ (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))) ∈ (ran 𝐹m 𝐷) ∧ (((𝐹𝐶) + (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))) = 𝐹 ∧ dom (𝐹𝐶) = 𝐶 ∧ dom (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))) = 𝐷)) → ∃𝑢 ∈ (ran 𝐹m 𝐶)∃𝑣 ∈ (ran 𝐹m 𝐷)((𝑢 + 𝑣) = 𝐹 ∧ dom 𝑢 = 𝐶 ∧ dom 𝑣 = 𝐷))
11718, 29, 98, 103, 105, 116syl113anc 1383 1 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ∃𝑢 ∈ (ran 𝐹m 𝐶)∃𝑣 ∈ (ran 𝐹m 𝐷)((𝑢 + 𝑣) = 𝐹 ∧ dom 𝑢 = 𝐶 ∧ dom 𝑣 = 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wrex 3059  Vcvv 3463  cdif 3928  cun 3929  cin 3930  wss 3931   class class class wbr 5123  {copab 5185  cmpt 5205  dom cdm 5665  ran crn 5666  cres 5667  Ord word 6362  Oncon0 6363  Fun wfun 6535   Fn wfn 6536  wf 6537  cfv 6541  (class class class)co 7413  cmpo 7415   +o coa 8485  m cmap 8848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-oadd 8492  df-map 8850
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator