Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tfsconcatrev Structured version   Visualization version   GIF version

Theorem tfsconcatrev 43360
Description: If the domain of a transfinite sequence is an ordinal sum, the sequence can be decomposed into two sequences with domains corresponding to the addends. Theorem 2 in Grzegorz Bancerek, "Epsilon Numbers and Cantor Normal Form", Formalized Mathematics, Vol. 17, No. 4, Pages 249–256, 2009. DOI: 10.2478/v10037-009-0032-8 (Contributed by RP, 2-Mar-2025.)
Hypothesis
Ref Expression
tfsconcat.op + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏𝑧)))}))
Assertion
Ref Expression
tfsconcatrev ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ∃𝑢 ∈ (ran 𝐹m 𝐶)∃𝑣 ∈ (ran 𝐹m 𝐷)((𝑢 + 𝑣) = 𝐹 ∧ dom 𝑢 = 𝐶 ∧ dom 𝑣 = 𝐷))
Distinct variable groups:   𝑎,𝑏,𝑢,𝑣,𝑥,𝑦,𝑧,𝐶   𝐷,𝑎,𝑏,𝑢,𝑣,𝑥,𝑦,𝑧   𝐹,𝑎,𝑏,𝑢,𝑣,𝑥,𝑦,𝑧   𝑢, + ,𝑣
Allowed substitution hints:   + (𝑥,𝑦,𝑧,𝑎,𝑏)

Proof of Theorem tfsconcatrev
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 dffn3 6659 . . . . . 6 (𝐹 Fn (𝐶 +o 𝐷) ↔ 𝐹:(𝐶 +o 𝐷)⟶ran 𝐹)
21biimpi 216 . . . . 5 (𝐹 Fn (𝐶 +o 𝐷) → 𝐹:(𝐶 +o 𝐷)⟶ran 𝐹)
32adantr 480 . . . 4 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → 𝐹:(𝐶 +o 𝐷)⟶ran 𝐹)
4 fndm 6580 . . . . . . . 8 (𝐹 Fn (𝐶 +o 𝐷) → dom 𝐹 = (𝐶 +o 𝐷))
54adantr 480 . . . . . . 7 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → dom 𝐹 = (𝐶 +o 𝐷))
6 oacl 8445 . . . . . . . 8 ((𝐶 ∈ On ∧ 𝐷 ∈ On) → (𝐶 +o 𝐷) ∈ On)
76adantl 481 . . . . . . 7 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐶 +o 𝐷) ∈ On)
85, 7eqeltrd 2829 . . . . . 6 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → dom 𝐹 ∈ On)
9 fnfun 6577 . . . . . . 7 (𝐹 Fn (𝐶 +o 𝐷) → Fun 𝐹)
109adantr 480 . . . . . 6 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → Fun 𝐹)
11 funrnex 7881 . . . . . 6 (dom 𝐹 ∈ On → (Fun 𝐹 → ran 𝐹 ∈ V))
128, 10, 11sylc 65 . . . . 5 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ran 𝐹 ∈ V)
1312, 7elmapd 8759 . . . 4 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐹 ∈ (ran 𝐹m (𝐶 +o 𝐷)) ↔ 𝐹:(𝐶 +o 𝐷)⟶ran 𝐹))
143, 13mpbird 257 . . 3 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → 𝐹 ∈ (ran 𝐹m (𝐶 +o 𝐷)))
15 oaword1 8462 . . . 4 ((𝐶 ∈ On ∧ 𝐷 ∈ On) → 𝐶 ⊆ (𝐶 +o 𝐷))
1615adantl 481 . . 3 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → 𝐶 ⊆ (𝐶 +o 𝐷))
17 elmapssres 8786 . . 3 ((𝐹 ∈ (ran 𝐹m (𝐶 +o 𝐷)) ∧ 𝐶 ⊆ (𝐶 +o 𝐷)) → (𝐹𝐶) ∈ (ran 𝐹m 𝐶))
1814, 16, 17syl2anc 584 . 2 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐹𝐶) ∈ (ran 𝐹m 𝐶))
19 simpl 482 . . . . 5 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → 𝐹 Fn (𝐶 +o 𝐷))
20 oaordi 8456 . . . . . . . 8 ((𝐷 ∈ On ∧ 𝐶 ∈ On) → (𝑑𝐷 → (𝐶 +o 𝑑) ∈ (𝐶 +o 𝐷)))
2120ancoms 458 . . . . . . 7 ((𝐶 ∈ On ∧ 𝐷 ∈ On) → (𝑑𝐷 → (𝐶 +o 𝑑) ∈ (𝐶 +o 𝐷)))
2221adantl 481 . . . . . 6 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝑑𝐷 → (𝐶 +o 𝑑) ∈ (𝐶 +o 𝐷)))
2322imp 406 . . . . 5 (((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷) → (𝐶 +o 𝑑) ∈ (𝐶 +o 𝐷))
24 fnfvelrn 7008 . . . . 5 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 +o 𝑑) ∈ (𝐶 +o 𝐷)) → (𝐹‘(𝐶 +o 𝑑)) ∈ ran 𝐹)
2519, 23, 24syl2an2r 685 . . . 4 (((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷) → (𝐹‘(𝐶 +o 𝑑)) ∈ ran 𝐹)
2625fmpttd 7043 . . 3 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))):𝐷⟶ran 𝐹)
27 simprr 772 . . . 4 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → 𝐷 ∈ On)
2812, 27elmapd 8759 . . 3 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ((𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))) ∈ (ran 𝐹m 𝐷) ↔ (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))):𝐷⟶ran 𝐹))
2926, 28mpbird 257 . 2 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))) ∈ (ran 𝐹m 𝐷))
3019, 16fnssresd 6601 . . . . 5 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐹𝐶) Fn 𝐶)
31 fvex 6830 . . . . . . 7 (𝐹‘(𝐶 +o 𝑑)) ∈ V
32 eqid 2730 . . . . . . 7 (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))) = (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))
3331, 32fnmpti 6620 . . . . . 6 (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))) Fn 𝐷
3433a1i 11 . . . . 5 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))) Fn 𝐷)
35 simpr 484 . . . . 5 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐶 ∈ On ∧ 𝐷 ∈ On))
36 tfsconcat.op . . . . . 6 + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏𝑧)))}))
3736tfsconcatun 43349 . . . . 5 ((((𝐹𝐶) Fn 𝐶 ∧ (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))) Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ((𝐹𝐶) + (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))) = ((𝐹𝐶) ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = ((𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧)))}))
3830, 34, 35, 37syl21anc 837 . . . 4 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ((𝐹𝐶) + (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))) = ((𝐹𝐶) ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = ((𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧)))}))
39 oveq2 7349 . . . . . . . . . . . . . . . . . 18 (𝑑 = 𝑧 → (𝐶 +o 𝑑) = (𝐶 +o 𝑧))
4039fveq2d 6821 . . . . . . . . . . . . . . . . 17 (𝑑 = 𝑧 → (𝐹‘(𝐶 +o 𝑑)) = (𝐹‘(𝐶 +o 𝑧)))
41 fvex 6830 . . . . . . . . . . . . . . . . 17 (𝐹‘(𝐶 +o 𝑧)) ∈ V
4240, 32, 41fvmpt 6924 . . . . . . . . . . . . . . . 16 (𝑧𝐷 → ((𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧) = (𝐹‘(𝐶 +o 𝑧)))
4342ad2antlr 727 . . . . . . . . . . . . . . 15 (((((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) ∧ 𝑧𝐷) ∧ 𝑥 = (𝐶 +o 𝑧)) → ((𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧) = (𝐹‘(𝐶 +o 𝑧)))
44 fveq2 6817 . . . . . . . . . . . . . . . 16 (𝑥 = (𝐶 +o 𝑧) → (𝐹𝑥) = (𝐹‘(𝐶 +o 𝑧)))
4544adantl 481 . . . . . . . . . . . . . . 15 (((((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) ∧ 𝑧𝐷) ∧ 𝑥 = (𝐶 +o 𝑧)) → (𝐹𝑥) = (𝐹‘(𝐶 +o 𝑧)))
4643, 45eqtr4d 2768 . . . . . . . . . . . . . 14 (((((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) ∧ 𝑧𝐷) ∧ 𝑥 = (𝐶 +o 𝑧)) → ((𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧) = (𝐹𝑥))
4746eqeq2d 2741 . . . . . . . . . . . . 13 (((((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) ∧ 𝑧𝐷) ∧ 𝑥 = (𝐶 +o 𝑧)) → (𝑦 = ((𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧) ↔ 𝑦 = (𝐹𝑥)))
4847biimpd 229 . . . . . . . . . . . 12 (((((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) ∧ 𝑧𝐷) ∧ 𝑥 = (𝐶 +o 𝑧)) → (𝑦 = ((𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧) → 𝑦 = (𝐹𝑥)))
4948expimpd 453 . . . . . . . . . . 11 ((((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) ∧ 𝑧𝐷) → ((𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = ((𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧)) → 𝑦 = (𝐹𝑥)))
5049rexlimdva 3131 . . . . . . . . . 10 (((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) → (∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = ((𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧)) → 𝑦 = (𝐹𝑥)))
51 simplr 768 . . . . . . . . . . . . . . 15 (((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) → (𝐶 ∈ On ∧ 𝐷 ∈ On))
52 eloni 6312 . . . . . . . . . . . . . . . . . . . 20 ((𝐶 +o 𝐷) ∈ On → Ord (𝐶 +o 𝐷))
536, 52syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝐶 ∈ On ∧ 𝐷 ∈ On) → Ord (𝐶 +o 𝐷))
54 eloni 6312 . . . . . . . . . . . . . . . . . . . 20 (𝐶 ∈ On → Ord 𝐶)
5554adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝐶 ∈ On ∧ 𝐷 ∈ On) → Ord 𝐶)
56 ordeldif 43270 . . . . . . . . . . . . . . . . . . 19 ((Ord (𝐶 +o 𝐷) ∧ Ord 𝐶) → (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ↔ (𝑥 ∈ (𝐶 +o 𝐷) ∧ 𝐶𝑥)))
5753, 55, 56syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((𝐶 ∈ On ∧ 𝐷 ∈ On) → (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ↔ (𝑥 ∈ (𝐶 +o 𝐷) ∧ 𝐶𝑥)))
5857adantl 481 . . . . . . . . . . . . . . . . 17 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ↔ (𝑥 ∈ (𝐶 +o 𝐷) ∧ 𝐶𝑥)))
5958biimpa 476 . . . . . . . . . . . . . . . 16 (((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) → (𝑥 ∈ (𝐶 +o 𝐷) ∧ 𝐶𝑥))
6059ancomd 461 . . . . . . . . . . . . . . 15 (((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) → (𝐶𝑥𝑥 ∈ (𝐶 +o 𝐷)))
6151, 60jca 511 . . . . . . . . . . . . . 14 (((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) → ((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐶𝑥𝑥 ∈ (𝐶 +o 𝐷))))
6261adantr 480 . . . . . . . . . . . . 13 ((((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) ∧ 𝑦 = (𝐹𝑥)) → ((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐶𝑥𝑥 ∈ (𝐶 +o 𝐷))))
63 oawordex2 43338 . . . . . . . . . . . . 13 (((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐶𝑥𝑥 ∈ (𝐶 +o 𝐷))) → ∃𝑧𝐷 (𝐶 +o 𝑧) = 𝑥)
6462, 63syl 17 . . . . . . . . . . . 12 ((((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) ∧ 𝑦 = (𝐹𝑥)) → ∃𝑧𝐷 (𝐶 +o 𝑧) = 𝑥)
65 simpr 484 . . . . . . . . . . . . . . . 16 ((((((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) ∧ 𝑦 = (𝐹𝑥)) ∧ 𝑧𝐷) ∧ (𝐶 +o 𝑧) = 𝑥) → (𝐶 +o 𝑧) = 𝑥)
6665eqcomd 2736 . . . . . . . . . . . . . . 15 ((((((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) ∧ 𝑦 = (𝐹𝑥)) ∧ 𝑧𝐷) ∧ (𝐶 +o 𝑧) = 𝑥) → 𝑥 = (𝐶 +o 𝑧))
6765fveq2d 6821 . . . . . . . . . . . . . . . 16 ((((((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) ∧ 𝑦 = (𝐹𝑥)) ∧ 𝑧𝐷) ∧ (𝐶 +o 𝑧) = 𝑥) → (𝐹‘(𝐶 +o 𝑧)) = (𝐹𝑥))
6842ad2antlr 727 . . . . . . . . . . . . . . . 16 ((((((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) ∧ 𝑦 = (𝐹𝑥)) ∧ 𝑧𝐷) ∧ (𝐶 +o 𝑧) = 𝑥) → ((𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧) = (𝐹‘(𝐶 +o 𝑧)))
69 simpllr 775 . . . . . . . . . . . . . . . 16 ((((((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) ∧ 𝑦 = (𝐹𝑥)) ∧ 𝑧𝐷) ∧ (𝐶 +o 𝑧) = 𝑥) → 𝑦 = (𝐹𝑥))
7067, 68, 693eqtr4rd 2776 . . . . . . . . . . . . . . 15 ((((((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) ∧ 𝑦 = (𝐹𝑥)) ∧ 𝑧𝐷) ∧ (𝐶 +o 𝑧) = 𝑥) → 𝑦 = ((𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧))
7166, 70jca 511 . . . . . . . . . . . . . 14 ((((((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) ∧ 𝑦 = (𝐹𝑥)) ∧ 𝑧𝐷) ∧ (𝐶 +o 𝑧) = 𝑥) → (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = ((𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧)))
7271ex 412 . . . . . . . . . . . . 13 (((((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) ∧ 𝑦 = (𝐹𝑥)) ∧ 𝑧𝐷) → ((𝐶 +o 𝑧) = 𝑥 → (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = ((𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧))))
7372reximdva 3143 . . . . . . . . . . . 12 ((((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) ∧ 𝑦 = (𝐹𝑥)) → (∃𝑧𝐷 (𝐶 +o 𝑧) = 𝑥 → ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = ((𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧))))
7464, 73mpd 15 . . . . . . . . . . 11 ((((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) ∧ 𝑦 = (𝐹𝑥)) → ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = ((𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧)))
7574ex 412 . . . . . . . . . 10 (((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) → (𝑦 = (𝐹𝑥) → ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = ((𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧))))
7650, 75impbid 212 . . . . . . . . 9 (((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) → (∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = ((𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧)) ↔ 𝑦 = (𝐹𝑥)))
77 eldifi 4079 . . . . . . . . . 10 (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) → 𝑥 ∈ (𝐶 +o 𝐷))
78 eqcom 2737 . . . . . . . . . . 11 (𝑦 = (𝐹𝑥) ↔ (𝐹𝑥) = 𝑦)
79 fnbrfvb 6867 . . . . . . . . . . 11 ((𝐹 Fn (𝐶 +o 𝐷) ∧ 𝑥 ∈ (𝐶 +o 𝐷)) → ((𝐹𝑥) = 𝑦𝑥𝐹𝑦))
8078, 79bitrid 283 . . . . . . . . . 10 ((𝐹 Fn (𝐶 +o 𝐷) ∧ 𝑥 ∈ (𝐶 +o 𝐷)) → (𝑦 = (𝐹𝑥) ↔ 𝑥𝐹𝑦))
8119, 77, 80syl2an 596 . . . . . . . . 9 (((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) → (𝑦 = (𝐹𝑥) ↔ 𝑥𝐹𝑦))
8276, 81bitrd 279 . . . . . . . 8 (((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) → (∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = ((𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧)) ↔ 𝑥𝐹𝑦))
8382pm5.32da 579 . . . . . . 7 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ((𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = ((𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧))) ↔ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ 𝑥𝐹𝑦)))
8483opabbidv 5155 . . . . . 6 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = ((𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧)))} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ 𝑥𝐹𝑦)})
85 dfres2 5987 . . . . . 6 (𝐹 ↾ ((𝐶 +o 𝐷) ∖ 𝐶)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ 𝑥𝐹𝑦)}
8684, 85eqtr4di 2783 . . . . 5 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = ((𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧)))} = (𝐹 ↾ ((𝐶 +o 𝐷) ∖ 𝐶)))
8786uneq2d 4116 . . . 4 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ((𝐹𝐶) ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = ((𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧)))}) = ((𝐹𝐶) ∪ (𝐹 ↾ ((𝐶 +o 𝐷) ∖ 𝐶))))
8838, 87eqtrd 2765 . . 3 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ((𝐹𝐶) + (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))) = ((𝐹𝐶) ∪ (𝐹 ↾ ((𝐶 +o 𝐷) ∖ 𝐶))))
89 resundi 5939 . . . 4 (𝐹 ↾ (𝐶 ∪ ((𝐶 +o 𝐷) ∖ 𝐶))) = ((𝐹𝐶) ∪ (𝐹 ↾ ((𝐶 +o 𝐷) ∖ 𝐶)))
9089a1i 11 . . 3 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐹 ↾ (𝐶 ∪ ((𝐶 +o 𝐷) ∖ 𝐶))) = ((𝐹𝐶) ∪ (𝐹 ↾ ((𝐶 +o 𝐷) ∖ 𝐶))))
91 undif 4430 . . . . . . 7 (𝐶 ⊆ (𝐶 +o 𝐷) ↔ (𝐶 ∪ ((𝐶 +o 𝐷) ∖ 𝐶)) = (𝐶 +o 𝐷))
9215, 91sylib 218 . . . . . 6 ((𝐶 ∈ On ∧ 𝐷 ∈ On) → (𝐶 ∪ ((𝐶 +o 𝐷) ∖ 𝐶)) = (𝐶 +o 𝐷))
9392adantl 481 . . . . 5 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐶 ∪ ((𝐶 +o 𝐷) ∖ 𝐶)) = (𝐶 +o 𝐷))
9493reseq2d 5925 . . . 4 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐹 ↾ (𝐶 ∪ ((𝐶 +o 𝐷) ∖ 𝐶))) = (𝐹 ↾ (𝐶 +o 𝐷)))
95 fnresdm 6596 . . . . 5 (𝐹 Fn (𝐶 +o 𝐷) → (𝐹 ↾ (𝐶 +o 𝐷)) = 𝐹)
9695adantr 480 . . . 4 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐹 ↾ (𝐶 +o 𝐷)) = 𝐹)
9794, 96eqtrd 2765 . . 3 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐹 ↾ (𝐶 ∪ ((𝐶 +o 𝐷) ∖ 𝐶))) = 𝐹)
9888, 90, 973eqtr2d 2771 . 2 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ((𝐹𝐶) + (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))) = 𝐹)
99 dmres 5958 . . 3 dom (𝐹𝐶) = (𝐶 ∩ dom 𝐹)
10016, 5sseqtrrd 3970 . . . 4 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → 𝐶 ⊆ dom 𝐹)
101 dfss2 3918 . . . 4 (𝐶 ⊆ dom 𝐹 ↔ (𝐶 ∩ dom 𝐹) = 𝐶)
102100, 101sylib 218 . . 3 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐶 ∩ dom 𝐹) = 𝐶)
10399, 102eqtrid 2777 . 2 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → dom (𝐹𝐶) = 𝐶)
10431, 32dmmpti 6621 . . 3 dom (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))) = 𝐷
105104a1i 11 . 2 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → dom (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))) = 𝐷)
106 oveq1 7348 . . . . 5 (𝑢 = (𝐹𝐶) → (𝑢 + 𝑣) = ((𝐹𝐶) + 𝑣))
107106eqeq1d 2732 . . . 4 (𝑢 = (𝐹𝐶) → ((𝑢 + 𝑣) = 𝐹 ↔ ((𝐹𝐶) + 𝑣) = 𝐹))
108 dmeq 5841 . . . . 5 (𝑢 = (𝐹𝐶) → dom 𝑢 = dom (𝐹𝐶))
109108eqeq1d 2732 . . . 4 (𝑢 = (𝐹𝐶) → (dom 𝑢 = 𝐶 ↔ dom (𝐹𝐶) = 𝐶))
110107, 1093anbi12d 1439 . . 3 (𝑢 = (𝐹𝐶) → (((𝑢 + 𝑣) = 𝐹 ∧ dom 𝑢 = 𝐶 ∧ dom 𝑣 = 𝐷) ↔ (((𝐹𝐶) + 𝑣) = 𝐹 ∧ dom (𝐹𝐶) = 𝐶 ∧ dom 𝑣 = 𝐷)))
111 oveq2 7349 . . . . 5 (𝑣 = (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))) → ((𝐹𝐶) + 𝑣) = ((𝐹𝐶) + (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))))
112111eqeq1d 2732 . . . 4 (𝑣 = (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))) → (((𝐹𝐶) + 𝑣) = 𝐹 ↔ ((𝐹𝐶) + (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))) = 𝐹))
113 dmeq 5841 . . . . 5 (𝑣 = (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))) → dom 𝑣 = dom (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))))
114113eqeq1d 2732 . . . 4 (𝑣 = (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))) → (dom 𝑣 = 𝐷 ↔ dom (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))) = 𝐷))
115112, 1143anbi13d 1440 . . 3 (𝑣 = (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))) → ((((𝐹𝐶) + 𝑣) = 𝐹 ∧ dom (𝐹𝐶) = 𝐶 ∧ dom 𝑣 = 𝐷) ↔ (((𝐹𝐶) + (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))) = 𝐹 ∧ dom (𝐹𝐶) = 𝐶 ∧ dom (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))) = 𝐷)))
116110, 115rspc2ev 3588 . 2 (((𝐹𝐶) ∈ (ran 𝐹m 𝐶) ∧ (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))) ∈ (ran 𝐹m 𝐷) ∧ (((𝐹𝐶) + (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))) = 𝐹 ∧ dom (𝐹𝐶) = 𝐶 ∧ dom (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))) = 𝐷)) → ∃𝑢 ∈ (ran 𝐹m 𝐶)∃𝑣 ∈ (ran 𝐹m 𝐷)((𝑢 + 𝑣) = 𝐹 ∧ dom 𝑢 = 𝐶 ∧ dom 𝑣 = 𝐷))
11718, 29, 98, 103, 105, 116syl113anc 1384 1 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ∃𝑢 ∈ (ran 𝐹m 𝐶)∃𝑣 ∈ (ran 𝐹m 𝐷)((𝑢 + 𝑣) = 𝐹 ∧ dom 𝑢 = 𝐶 ∧ dom 𝑣 = 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2110  wrex 3054  Vcvv 3434  cdif 3897  cun 3898  cin 3899  wss 3900   class class class wbr 5089  {copab 5151  cmpt 5170  dom cdm 5614  ran crn 5615  cres 5616  Ord word 6301  Oncon0 6302  Fun wfun 6471   Fn wfn 6472  wf 6473  cfv 6477  (class class class)co 7341  cmpo 7343   +o coa 8377  m cmap 8745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-oadd 8384  df-map 8747
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator