Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tfsconcatrev Structured version   Visualization version   GIF version

Theorem tfsconcatrev 43344
Description: If the domain of a transfinite sequence is an ordinal sum, the sequence can be decomposed into two sequences with domains corresponding to the addends. Theorem 2 in Grzegorz Bancerek, "Epsilon Numbers and Cantor Normal Form", Formalized Mathematics, Vol. 17, No. 4, Pages 249–256, 2009. DOI: 10.2478/v10037-009-0032-8 (Contributed by RP, 2-Mar-2025.)
Hypothesis
Ref Expression
tfsconcat.op + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏𝑧)))}))
Assertion
Ref Expression
tfsconcatrev ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ∃𝑢 ∈ (ran 𝐹m 𝐶)∃𝑣 ∈ (ran 𝐹m 𝐷)((𝑢 + 𝑣) = 𝐹 ∧ dom 𝑢 = 𝐶 ∧ dom 𝑣 = 𝐷))
Distinct variable groups:   𝑎,𝑏,𝑢,𝑣,𝑥,𝑦,𝑧,𝐶   𝐷,𝑎,𝑏,𝑢,𝑣,𝑥,𝑦,𝑧   𝐹,𝑎,𝑏,𝑢,𝑣,𝑥,𝑦,𝑧   𝑢, + ,𝑣
Allowed substitution hints:   + (𝑥,𝑦,𝑧,𝑎,𝑏)

Proof of Theorem tfsconcatrev
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 dffn3 6703 . . . . . 6 (𝐹 Fn (𝐶 +o 𝐷) ↔ 𝐹:(𝐶 +o 𝐷)⟶ran 𝐹)
21biimpi 216 . . . . 5 (𝐹 Fn (𝐶 +o 𝐷) → 𝐹:(𝐶 +o 𝐷)⟶ran 𝐹)
32adantr 480 . . . 4 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → 𝐹:(𝐶 +o 𝐷)⟶ran 𝐹)
4 fndm 6624 . . . . . . . 8 (𝐹 Fn (𝐶 +o 𝐷) → dom 𝐹 = (𝐶 +o 𝐷))
54adantr 480 . . . . . . 7 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → dom 𝐹 = (𝐶 +o 𝐷))
6 oacl 8502 . . . . . . . 8 ((𝐶 ∈ On ∧ 𝐷 ∈ On) → (𝐶 +o 𝐷) ∈ On)
76adantl 481 . . . . . . 7 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐶 +o 𝐷) ∈ On)
85, 7eqeltrd 2829 . . . . . 6 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → dom 𝐹 ∈ On)
9 fnfun 6621 . . . . . . 7 (𝐹 Fn (𝐶 +o 𝐷) → Fun 𝐹)
109adantr 480 . . . . . 6 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → Fun 𝐹)
11 funrnex 7935 . . . . . 6 (dom 𝐹 ∈ On → (Fun 𝐹 → ran 𝐹 ∈ V))
128, 10, 11sylc 65 . . . . 5 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ran 𝐹 ∈ V)
1312, 7elmapd 8816 . . . 4 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐹 ∈ (ran 𝐹m (𝐶 +o 𝐷)) ↔ 𝐹:(𝐶 +o 𝐷)⟶ran 𝐹))
143, 13mpbird 257 . . 3 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → 𝐹 ∈ (ran 𝐹m (𝐶 +o 𝐷)))
15 oaword1 8519 . . . 4 ((𝐶 ∈ On ∧ 𝐷 ∈ On) → 𝐶 ⊆ (𝐶 +o 𝐷))
1615adantl 481 . . 3 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → 𝐶 ⊆ (𝐶 +o 𝐷))
17 elmapssres 8843 . . 3 ((𝐹 ∈ (ran 𝐹m (𝐶 +o 𝐷)) ∧ 𝐶 ⊆ (𝐶 +o 𝐷)) → (𝐹𝐶) ∈ (ran 𝐹m 𝐶))
1814, 16, 17syl2anc 584 . 2 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐹𝐶) ∈ (ran 𝐹m 𝐶))
19 simpl 482 . . . . 5 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → 𝐹 Fn (𝐶 +o 𝐷))
20 oaordi 8513 . . . . . . . 8 ((𝐷 ∈ On ∧ 𝐶 ∈ On) → (𝑑𝐷 → (𝐶 +o 𝑑) ∈ (𝐶 +o 𝐷)))
2120ancoms 458 . . . . . . 7 ((𝐶 ∈ On ∧ 𝐷 ∈ On) → (𝑑𝐷 → (𝐶 +o 𝑑) ∈ (𝐶 +o 𝐷)))
2221adantl 481 . . . . . 6 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝑑𝐷 → (𝐶 +o 𝑑) ∈ (𝐶 +o 𝐷)))
2322imp 406 . . . . 5 (((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷) → (𝐶 +o 𝑑) ∈ (𝐶 +o 𝐷))
24 fnfvelrn 7055 . . . . 5 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 +o 𝑑) ∈ (𝐶 +o 𝐷)) → (𝐹‘(𝐶 +o 𝑑)) ∈ ran 𝐹)
2519, 23, 24syl2an2r 685 . . . 4 (((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷) → (𝐹‘(𝐶 +o 𝑑)) ∈ ran 𝐹)
2625fmpttd 7090 . . 3 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))):𝐷⟶ran 𝐹)
27 simprr 772 . . . 4 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → 𝐷 ∈ On)
2812, 27elmapd 8816 . . 3 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ((𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))) ∈ (ran 𝐹m 𝐷) ↔ (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))):𝐷⟶ran 𝐹))
2926, 28mpbird 257 . 2 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))) ∈ (ran 𝐹m 𝐷))
3019, 16fnssresd 6645 . . . . 5 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐹𝐶) Fn 𝐶)
31 fvex 6874 . . . . . . 7 (𝐹‘(𝐶 +o 𝑑)) ∈ V
32 eqid 2730 . . . . . . 7 (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))) = (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))
3331, 32fnmpti 6664 . . . . . 6 (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))) Fn 𝐷
3433a1i 11 . . . . 5 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))) Fn 𝐷)
35 simpr 484 . . . . 5 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐶 ∈ On ∧ 𝐷 ∈ On))
36 tfsconcat.op . . . . . 6 + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏𝑧)))}))
3736tfsconcatun 43333 . . . . 5 ((((𝐹𝐶) Fn 𝐶 ∧ (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))) Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ((𝐹𝐶) + (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))) = ((𝐹𝐶) ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = ((𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧)))}))
3830, 34, 35, 37syl21anc 837 . . . 4 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ((𝐹𝐶) + (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))) = ((𝐹𝐶) ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = ((𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧)))}))
39 oveq2 7398 . . . . . . . . . . . . . . . . . 18 (𝑑 = 𝑧 → (𝐶 +o 𝑑) = (𝐶 +o 𝑧))
4039fveq2d 6865 . . . . . . . . . . . . . . . . 17 (𝑑 = 𝑧 → (𝐹‘(𝐶 +o 𝑑)) = (𝐹‘(𝐶 +o 𝑧)))
41 fvex 6874 . . . . . . . . . . . . . . . . 17 (𝐹‘(𝐶 +o 𝑧)) ∈ V
4240, 32, 41fvmpt 6971 . . . . . . . . . . . . . . . 16 (𝑧𝐷 → ((𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧) = (𝐹‘(𝐶 +o 𝑧)))
4342ad2antlr 727 . . . . . . . . . . . . . . 15 (((((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) ∧ 𝑧𝐷) ∧ 𝑥 = (𝐶 +o 𝑧)) → ((𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧) = (𝐹‘(𝐶 +o 𝑧)))
44 fveq2 6861 . . . . . . . . . . . . . . . 16 (𝑥 = (𝐶 +o 𝑧) → (𝐹𝑥) = (𝐹‘(𝐶 +o 𝑧)))
4544adantl 481 . . . . . . . . . . . . . . 15 (((((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) ∧ 𝑧𝐷) ∧ 𝑥 = (𝐶 +o 𝑧)) → (𝐹𝑥) = (𝐹‘(𝐶 +o 𝑧)))
4643, 45eqtr4d 2768 . . . . . . . . . . . . . 14 (((((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) ∧ 𝑧𝐷) ∧ 𝑥 = (𝐶 +o 𝑧)) → ((𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧) = (𝐹𝑥))
4746eqeq2d 2741 . . . . . . . . . . . . 13 (((((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) ∧ 𝑧𝐷) ∧ 𝑥 = (𝐶 +o 𝑧)) → (𝑦 = ((𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧) ↔ 𝑦 = (𝐹𝑥)))
4847biimpd 229 . . . . . . . . . . . 12 (((((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) ∧ 𝑧𝐷) ∧ 𝑥 = (𝐶 +o 𝑧)) → (𝑦 = ((𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧) → 𝑦 = (𝐹𝑥)))
4948expimpd 453 . . . . . . . . . . 11 ((((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) ∧ 𝑧𝐷) → ((𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = ((𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧)) → 𝑦 = (𝐹𝑥)))
5049rexlimdva 3135 . . . . . . . . . 10 (((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) → (∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = ((𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧)) → 𝑦 = (𝐹𝑥)))
51 simplr 768 . . . . . . . . . . . . . . 15 (((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) → (𝐶 ∈ On ∧ 𝐷 ∈ On))
52 eloni 6345 . . . . . . . . . . . . . . . . . . . 20 ((𝐶 +o 𝐷) ∈ On → Ord (𝐶 +o 𝐷))
536, 52syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝐶 ∈ On ∧ 𝐷 ∈ On) → Ord (𝐶 +o 𝐷))
54 eloni 6345 . . . . . . . . . . . . . . . . . . . 20 (𝐶 ∈ On → Ord 𝐶)
5554adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝐶 ∈ On ∧ 𝐷 ∈ On) → Ord 𝐶)
56 ordeldif 43254 . . . . . . . . . . . . . . . . . . 19 ((Ord (𝐶 +o 𝐷) ∧ Ord 𝐶) → (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ↔ (𝑥 ∈ (𝐶 +o 𝐷) ∧ 𝐶𝑥)))
5753, 55, 56syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((𝐶 ∈ On ∧ 𝐷 ∈ On) → (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ↔ (𝑥 ∈ (𝐶 +o 𝐷) ∧ 𝐶𝑥)))
5857adantl 481 . . . . . . . . . . . . . . . . 17 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ↔ (𝑥 ∈ (𝐶 +o 𝐷) ∧ 𝐶𝑥)))
5958biimpa 476 . . . . . . . . . . . . . . . 16 (((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) → (𝑥 ∈ (𝐶 +o 𝐷) ∧ 𝐶𝑥))
6059ancomd 461 . . . . . . . . . . . . . . 15 (((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) → (𝐶𝑥𝑥 ∈ (𝐶 +o 𝐷)))
6151, 60jca 511 . . . . . . . . . . . . . 14 (((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) → ((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐶𝑥𝑥 ∈ (𝐶 +o 𝐷))))
6261adantr 480 . . . . . . . . . . . . 13 ((((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) ∧ 𝑦 = (𝐹𝑥)) → ((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐶𝑥𝑥 ∈ (𝐶 +o 𝐷))))
63 oawordex2 43322 . . . . . . . . . . . . 13 (((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐶𝑥𝑥 ∈ (𝐶 +o 𝐷))) → ∃𝑧𝐷 (𝐶 +o 𝑧) = 𝑥)
6462, 63syl 17 . . . . . . . . . . . 12 ((((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) ∧ 𝑦 = (𝐹𝑥)) → ∃𝑧𝐷 (𝐶 +o 𝑧) = 𝑥)
65 simpr 484 . . . . . . . . . . . . . . . 16 ((((((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) ∧ 𝑦 = (𝐹𝑥)) ∧ 𝑧𝐷) ∧ (𝐶 +o 𝑧) = 𝑥) → (𝐶 +o 𝑧) = 𝑥)
6665eqcomd 2736 . . . . . . . . . . . . . . 15 ((((((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) ∧ 𝑦 = (𝐹𝑥)) ∧ 𝑧𝐷) ∧ (𝐶 +o 𝑧) = 𝑥) → 𝑥 = (𝐶 +o 𝑧))
6765fveq2d 6865 . . . . . . . . . . . . . . . 16 ((((((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) ∧ 𝑦 = (𝐹𝑥)) ∧ 𝑧𝐷) ∧ (𝐶 +o 𝑧) = 𝑥) → (𝐹‘(𝐶 +o 𝑧)) = (𝐹𝑥))
6842ad2antlr 727 . . . . . . . . . . . . . . . 16 ((((((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) ∧ 𝑦 = (𝐹𝑥)) ∧ 𝑧𝐷) ∧ (𝐶 +o 𝑧) = 𝑥) → ((𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧) = (𝐹‘(𝐶 +o 𝑧)))
69 simpllr 775 . . . . . . . . . . . . . . . 16 ((((((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) ∧ 𝑦 = (𝐹𝑥)) ∧ 𝑧𝐷) ∧ (𝐶 +o 𝑧) = 𝑥) → 𝑦 = (𝐹𝑥))
7067, 68, 693eqtr4rd 2776 . . . . . . . . . . . . . . 15 ((((((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) ∧ 𝑦 = (𝐹𝑥)) ∧ 𝑧𝐷) ∧ (𝐶 +o 𝑧) = 𝑥) → 𝑦 = ((𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧))
7166, 70jca 511 . . . . . . . . . . . . . 14 ((((((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) ∧ 𝑦 = (𝐹𝑥)) ∧ 𝑧𝐷) ∧ (𝐶 +o 𝑧) = 𝑥) → (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = ((𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧)))
7271ex 412 . . . . . . . . . . . . 13 (((((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) ∧ 𝑦 = (𝐹𝑥)) ∧ 𝑧𝐷) → ((𝐶 +o 𝑧) = 𝑥 → (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = ((𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧))))
7372reximdva 3147 . . . . . . . . . . . 12 ((((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) ∧ 𝑦 = (𝐹𝑥)) → (∃𝑧𝐷 (𝐶 +o 𝑧) = 𝑥 → ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = ((𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧))))
7464, 73mpd 15 . . . . . . . . . . 11 ((((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) ∧ 𝑦 = (𝐹𝑥)) → ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = ((𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧)))
7574ex 412 . . . . . . . . . 10 (((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) → (𝑦 = (𝐹𝑥) → ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = ((𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧))))
7650, 75impbid 212 . . . . . . . . 9 (((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) → (∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = ((𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧)) ↔ 𝑦 = (𝐹𝑥)))
77 eldifi 4097 . . . . . . . . . 10 (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) → 𝑥 ∈ (𝐶 +o 𝐷))
78 eqcom 2737 . . . . . . . . . . 11 (𝑦 = (𝐹𝑥) ↔ (𝐹𝑥) = 𝑦)
79 fnbrfvb 6914 . . . . . . . . . . 11 ((𝐹 Fn (𝐶 +o 𝐷) ∧ 𝑥 ∈ (𝐶 +o 𝐷)) → ((𝐹𝑥) = 𝑦𝑥𝐹𝑦))
8078, 79bitrid 283 . . . . . . . . . 10 ((𝐹 Fn (𝐶 +o 𝐷) ∧ 𝑥 ∈ (𝐶 +o 𝐷)) → (𝑦 = (𝐹𝑥) ↔ 𝑥𝐹𝑦))
8119, 77, 80syl2an 596 . . . . . . . . 9 (((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) → (𝑦 = (𝐹𝑥) ↔ 𝑥𝐹𝑦))
8276, 81bitrd 279 . . . . . . . 8 (((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) → (∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = ((𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧)) ↔ 𝑥𝐹𝑦))
8382pm5.32da 579 . . . . . . 7 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ((𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = ((𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧))) ↔ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ 𝑥𝐹𝑦)))
8483opabbidv 5176 . . . . . 6 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = ((𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧)))} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ 𝑥𝐹𝑦)})
85 dfres2 6015 . . . . . 6 (𝐹 ↾ ((𝐶 +o 𝐷) ∖ 𝐶)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ 𝑥𝐹𝑦)}
8684, 85eqtr4di 2783 . . . . 5 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = ((𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧)))} = (𝐹 ↾ ((𝐶 +o 𝐷) ∖ 𝐶)))
8786uneq2d 4134 . . . 4 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ((𝐹𝐶) ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = ((𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))‘𝑧)))}) = ((𝐹𝐶) ∪ (𝐹 ↾ ((𝐶 +o 𝐷) ∖ 𝐶))))
8838, 87eqtrd 2765 . . 3 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ((𝐹𝐶) + (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))) = ((𝐹𝐶) ∪ (𝐹 ↾ ((𝐶 +o 𝐷) ∖ 𝐶))))
89 resundi 5967 . . . 4 (𝐹 ↾ (𝐶 ∪ ((𝐶 +o 𝐷) ∖ 𝐶))) = ((𝐹𝐶) ∪ (𝐹 ↾ ((𝐶 +o 𝐷) ∖ 𝐶)))
9089a1i 11 . . 3 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐹 ↾ (𝐶 ∪ ((𝐶 +o 𝐷) ∖ 𝐶))) = ((𝐹𝐶) ∪ (𝐹 ↾ ((𝐶 +o 𝐷) ∖ 𝐶))))
91 undif 4448 . . . . . . 7 (𝐶 ⊆ (𝐶 +o 𝐷) ↔ (𝐶 ∪ ((𝐶 +o 𝐷) ∖ 𝐶)) = (𝐶 +o 𝐷))
9215, 91sylib 218 . . . . . 6 ((𝐶 ∈ On ∧ 𝐷 ∈ On) → (𝐶 ∪ ((𝐶 +o 𝐷) ∖ 𝐶)) = (𝐶 +o 𝐷))
9392adantl 481 . . . . 5 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐶 ∪ ((𝐶 +o 𝐷) ∖ 𝐶)) = (𝐶 +o 𝐷))
9493reseq2d 5953 . . . 4 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐹 ↾ (𝐶 ∪ ((𝐶 +o 𝐷) ∖ 𝐶))) = (𝐹 ↾ (𝐶 +o 𝐷)))
95 fnresdm 6640 . . . . 5 (𝐹 Fn (𝐶 +o 𝐷) → (𝐹 ↾ (𝐶 +o 𝐷)) = 𝐹)
9695adantr 480 . . . 4 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐹 ↾ (𝐶 +o 𝐷)) = 𝐹)
9794, 96eqtrd 2765 . . 3 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐹 ↾ (𝐶 ∪ ((𝐶 +o 𝐷) ∖ 𝐶))) = 𝐹)
9888, 90, 973eqtr2d 2771 . 2 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ((𝐹𝐶) + (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))) = 𝐹)
99 dmres 5986 . . 3 dom (𝐹𝐶) = (𝐶 ∩ dom 𝐹)
10016, 5sseqtrrd 3987 . . . 4 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → 𝐶 ⊆ dom 𝐹)
101 dfss2 3935 . . . 4 (𝐶 ⊆ dom 𝐹 ↔ (𝐶 ∩ dom 𝐹) = 𝐶)
102100, 101sylib 218 . . 3 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐶 ∩ dom 𝐹) = 𝐶)
10399, 102eqtrid 2777 . 2 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → dom (𝐹𝐶) = 𝐶)
10431, 32dmmpti 6665 . . 3 dom (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))) = 𝐷
105104a1i 11 . 2 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → dom (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))) = 𝐷)
106 oveq1 7397 . . . . 5 (𝑢 = (𝐹𝐶) → (𝑢 + 𝑣) = ((𝐹𝐶) + 𝑣))
107106eqeq1d 2732 . . . 4 (𝑢 = (𝐹𝐶) → ((𝑢 + 𝑣) = 𝐹 ↔ ((𝐹𝐶) + 𝑣) = 𝐹))
108 dmeq 5870 . . . . 5 (𝑢 = (𝐹𝐶) → dom 𝑢 = dom (𝐹𝐶))
109108eqeq1d 2732 . . . 4 (𝑢 = (𝐹𝐶) → (dom 𝑢 = 𝐶 ↔ dom (𝐹𝐶) = 𝐶))
110107, 1093anbi12d 1439 . . 3 (𝑢 = (𝐹𝐶) → (((𝑢 + 𝑣) = 𝐹 ∧ dom 𝑢 = 𝐶 ∧ dom 𝑣 = 𝐷) ↔ (((𝐹𝐶) + 𝑣) = 𝐹 ∧ dom (𝐹𝐶) = 𝐶 ∧ dom 𝑣 = 𝐷)))
111 oveq2 7398 . . . . 5 (𝑣 = (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))) → ((𝐹𝐶) + 𝑣) = ((𝐹𝐶) + (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))))
112111eqeq1d 2732 . . . 4 (𝑣 = (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))) → (((𝐹𝐶) + 𝑣) = 𝐹 ↔ ((𝐹𝐶) + (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))) = 𝐹))
113 dmeq 5870 . . . . 5 (𝑣 = (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))) → dom 𝑣 = dom (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))))
114113eqeq1d 2732 . . . 4 (𝑣 = (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))) → (dom 𝑣 = 𝐷 ↔ dom (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))) = 𝐷))
115112, 1143anbi13d 1440 . . 3 (𝑣 = (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))) → ((((𝐹𝐶) + 𝑣) = 𝐹 ∧ dom (𝐹𝐶) = 𝐶 ∧ dom 𝑣 = 𝐷) ↔ (((𝐹𝐶) + (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))) = 𝐹 ∧ dom (𝐹𝐶) = 𝐶 ∧ dom (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))) = 𝐷)))
116110, 115rspc2ev 3604 . 2 (((𝐹𝐶) ∈ (ran 𝐹m 𝐶) ∧ (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))) ∈ (ran 𝐹m 𝐷) ∧ (((𝐹𝐶) + (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑)))) = 𝐹 ∧ dom (𝐹𝐶) = 𝐶 ∧ dom (𝑑𝐷 ↦ (𝐹‘(𝐶 +o 𝑑))) = 𝐷)) → ∃𝑢 ∈ (ran 𝐹m 𝐶)∃𝑣 ∈ (ran 𝐹m 𝐷)((𝑢 + 𝑣) = 𝐹 ∧ dom 𝑢 = 𝐶 ∧ dom 𝑣 = 𝐷))
11718, 29, 98, 103, 105, 116syl113anc 1384 1 ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ∃𝑢 ∈ (ran 𝐹m 𝐶)∃𝑣 ∈ (ran 𝐹m 𝐷)((𝑢 + 𝑣) = 𝐹 ∧ dom 𝑢 = 𝐶 ∧ dom 𝑣 = 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3054  Vcvv 3450  cdif 3914  cun 3915  cin 3916  wss 3917   class class class wbr 5110  {copab 5172  cmpt 5191  dom cdm 5641  ran crn 5642  cres 5643  Ord word 6334  Oncon0 6335  Fun wfun 6508   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  cmpo 7392   +o coa 8434  m cmap 8802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-oadd 8441  df-map 8804
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator