Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fndifnfp | Structured version Visualization version GIF version |
Description: Express the class of non-fixed points of a function. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
Ref | Expression |
---|---|
fndifnfp | ⊢ (𝐹 Fn 𝐴 → dom (𝐹 ∖ I ) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ 𝑥}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffn2 6595 | . . . . . . . 8 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟶V) | |
2 | fssxp 6621 | . . . . . . . 8 ⊢ (𝐹:𝐴⟶V → 𝐹 ⊆ (𝐴 × V)) | |
3 | 1, 2 | sylbi 216 | . . . . . . 7 ⊢ (𝐹 Fn 𝐴 → 𝐹 ⊆ (𝐴 × V)) |
4 | ssdif0 4298 | . . . . . . 7 ⊢ (𝐹 ⊆ (𝐴 × V) ↔ (𝐹 ∖ (𝐴 × V)) = ∅) | |
5 | 3, 4 | sylib 217 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → (𝐹 ∖ (𝐴 × V)) = ∅) |
6 | 5 | uneq2d 4097 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → ((𝐹 ∖ I ) ∪ (𝐹 ∖ (𝐴 × V))) = ((𝐹 ∖ I ) ∪ ∅)) |
7 | un0 4325 | . . . . 5 ⊢ ((𝐹 ∖ I ) ∪ ∅) = (𝐹 ∖ I ) | |
8 | 6, 7 | eqtr2di 2795 | . . . 4 ⊢ (𝐹 Fn 𝐴 → (𝐹 ∖ I ) = ((𝐹 ∖ I ) ∪ (𝐹 ∖ (𝐴 × V)))) |
9 | df-res 5597 | . . . . . 6 ⊢ ( I ↾ 𝐴) = ( I ∩ (𝐴 × V)) | |
10 | 9 | difeq2i 4054 | . . . . 5 ⊢ (𝐹 ∖ ( I ↾ 𝐴)) = (𝐹 ∖ ( I ∩ (𝐴 × V))) |
11 | difindi 4216 | . . . . 5 ⊢ (𝐹 ∖ ( I ∩ (𝐴 × V))) = ((𝐹 ∖ I ) ∪ (𝐹 ∖ (𝐴 × V))) | |
12 | 10, 11 | eqtri 2766 | . . . 4 ⊢ (𝐹 ∖ ( I ↾ 𝐴)) = ((𝐹 ∖ I ) ∪ (𝐹 ∖ (𝐴 × V))) |
13 | 8, 12 | eqtr4di 2796 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝐹 ∖ I ) = (𝐹 ∖ ( I ↾ 𝐴))) |
14 | 13 | dmeqd 5808 | . 2 ⊢ (𝐹 Fn 𝐴 → dom (𝐹 ∖ I ) = dom (𝐹 ∖ ( I ↾ 𝐴))) |
15 | fnresi 6554 | . . 3 ⊢ ( I ↾ 𝐴) Fn 𝐴 | |
16 | fndmdif 6912 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ ( I ↾ 𝐴) Fn 𝐴) → dom (𝐹 ∖ ( I ↾ 𝐴)) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ (( I ↾ 𝐴)‘𝑥)}) | |
17 | 15, 16 | mpan2 688 | . 2 ⊢ (𝐹 Fn 𝐴 → dom (𝐹 ∖ ( I ↾ 𝐴)) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ (( I ↾ 𝐴)‘𝑥)}) |
18 | fvresi 7038 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → (( I ↾ 𝐴)‘𝑥) = 𝑥) | |
19 | 18 | neeq2d 3004 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ((𝐹‘𝑥) ≠ (( I ↾ 𝐴)‘𝑥) ↔ (𝐹‘𝑥) ≠ 𝑥)) |
20 | 19 | rabbiia 3405 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ (( I ↾ 𝐴)‘𝑥)} = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ 𝑥} |
21 | 20 | a1i 11 | . 2 ⊢ (𝐹 Fn 𝐴 → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ (( I ↾ 𝐴)‘𝑥)} = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ 𝑥}) |
22 | 14, 17, 21 | 3eqtrd 2782 | 1 ⊢ (𝐹 Fn 𝐴 → dom (𝐹 ∖ I ) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ 𝑥}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 {crab 3068 Vcvv 3430 ∖ cdif 3884 ∪ cun 3885 ∩ cin 3886 ⊆ wss 3887 ∅c0 4257 I cid 5484 × cxp 5583 dom cdm 5585 ↾ cres 5587 Fn wfn 6422 ⟶wf 6423 ‘cfv 6427 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5222 ax-nul 5229 ax-pr 5351 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3432 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4258 df-if 4461 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-br 5075 df-opab 5137 df-id 5485 df-xp 5591 df-rel 5592 df-cnv 5593 df-co 5594 df-dm 5595 df-rn 5596 df-res 5597 df-iota 6385 df-fun 6429 df-fn 6430 df-f 6431 df-fv 6435 |
This theorem is referenced by: fnelnfp 7042 fnnfpeq0 7043 f1omvdcnv 19040 pmtrmvd 19052 pmtrdifellem4 19075 sygbasnfpfi 19108 |
Copyright terms: Public domain | W3C validator |