![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fndifnfp | Structured version Visualization version GIF version |
Description: Express the class of non-fixed points of a function. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
Ref | Expression |
---|---|
fndifnfp | ⊢ (𝐹 Fn 𝐴 → dom (𝐹 ∖ I ) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ 𝑥}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffn2 6293 | . . . . . . . 8 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟶V) | |
2 | fssxp 6310 | . . . . . . . 8 ⊢ (𝐹:𝐴⟶V → 𝐹 ⊆ (𝐴 × V)) | |
3 | 1, 2 | sylbi 209 | . . . . . . 7 ⊢ (𝐹 Fn 𝐴 → 𝐹 ⊆ (𝐴 × V)) |
4 | ssdif0 4172 | . . . . . . 7 ⊢ (𝐹 ⊆ (𝐴 × V) ↔ (𝐹 ∖ (𝐴 × V)) = ∅) | |
5 | 3, 4 | sylib 210 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → (𝐹 ∖ (𝐴 × V)) = ∅) |
6 | 5 | uneq2d 3990 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → ((𝐹 ∖ I ) ∪ (𝐹 ∖ (𝐴 × V))) = ((𝐹 ∖ I ) ∪ ∅)) |
7 | un0 4193 | . . . . 5 ⊢ ((𝐹 ∖ I ) ∪ ∅) = (𝐹 ∖ I ) | |
8 | 6, 7 | syl6req 2831 | . . . 4 ⊢ (𝐹 Fn 𝐴 → (𝐹 ∖ I ) = ((𝐹 ∖ I ) ∪ (𝐹 ∖ (𝐴 × V)))) |
9 | df-res 5367 | . . . . . 6 ⊢ ( I ↾ 𝐴) = ( I ∩ (𝐴 × V)) | |
10 | 9 | difeq2i 3948 | . . . . 5 ⊢ (𝐹 ∖ ( I ↾ 𝐴)) = (𝐹 ∖ ( I ∩ (𝐴 × V))) |
11 | difindi 4108 | . . . . 5 ⊢ (𝐹 ∖ ( I ∩ (𝐴 × V))) = ((𝐹 ∖ I ) ∪ (𝐹 ∖ (𝐴 × V))) | |
12 | 10, 11 | eqtri 2802 | . . . 4 ⊢ (𝐹 ∖ ( I ↾ 𝐴)) = ((𝐹 ∖ I ) ∪ (𝐹 ∖ (𝐴 × V))) |
13 | 8, 12 | syl6eqr 2832 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝐹 ∖ I ) = (𝐹 ∖ ( I ↾ 𝐴))) |
14 | 13 | dmeqd 5571 | . 2 ⊢ (𝐹 Fn 𝐴 → dom (𝐹 ∖ I ) = dom (𝐹 ∖ ( I ↾ 𝐴))) |
15 | fnresi 6254 | . . 3 ⊢ ( I ↾ 𝐴) Fn 𝐴 | |
16 | fndmdif 6584 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ ( I ↾ 𝐴) Fn 𝐴) → dom (𝐹 ∖ ( I ↾ 𝐴)) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ (( I ↾ 𝐴)‘𝑥)}) | |
17 | 15, 16 | mpan2 681 | . 2 ⊢ (𝐹 Fn 𝐴 → dom (𝐹 ∖ ( I ↾ 𝐴)) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ (( I ↾ 𝐴)‘𝑥)}) |
18 | fvresi 6706 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → (( I ↾ 𝐴)‘𝑥) = 𝑥) | |
19 | 18 | neeq2d 3029 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ((𝐹‘𝑥) ≠ (( I ↾ 𝐴)‘𝑥) ↔ (𝐹‘𝑥) ≠ 𝑥)) |
20 | 19 | rabbiia 3381 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ (( I ↾ 𝐴)‘𝑥)} = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ 𝑥} |
21 | 20 | a1i 11 | . 2 ⊢ (𝐹 Fn 𝐴 → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ (( I ↾ 𝐴)‘𝑥)} = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ 𝑥}) |
22 | 14, 17, 21 | 3eqtrd 2818 | 1 ⊢ (𝐹 Fn 𝐴 → dom (𝐹 ∖ I ) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ 𝑥}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1601 ∈ wcel 2107 ≠ wne 2969 {crab 3094 Vcvv 3398 ∖ cdif 3789 ∪ cun 3790 ∩ cin 3791 ⊆ wss 3792 ∅c0 4141 I cid 5260 × cxp 5353 dom cdm 5355 ↾ cres 5357 Fn wfn 6130 ⟶wf 6131 ‘cfv 6135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pr 5138 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-sbc 3653 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4672 df-br 4887 df-opab 4949 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-fv 6143 |
This theorem is referenced by: fnelnfp 6710 fnnfpeq0 6711 f1omvdcnv 18247 pmtrmvd 18259 pmtrdifellem4 18282 sygbasnfpfi 18316 |
Copyright terms: Public domain | W3C validator |