MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fndifnfp Structured version   Visualization version   GIF version

Theorem fndifnfp 7048
Description: Express the class of non-fixed points of a function. (Contributed by Stefan O'Rear, 14-Aug-2015.)
Assertion
Ref Expression
fndifnfp (𝐹 Fn 𝐴 → dom (𝐹 ∖ I ) = {𝑥𝐴 ∣ (𝐹𝑥) ≠ 𝑥})
Distinct variable groups:   𝑥,𝐹   𝑥,𝐴

Proof of Theorem fndifnfp
StepHypRef Expression
1 dffn2 6602 . . . . . . . 8 (𝐹 Fn 𝐴𝐹:𝐴⟶V)
2 fssxp 6628 . . . . . . . 8 (𝐹:𝐴⟶V → 𝐹 ⊆ (𝐴 × V))
31, 2sylbi 216 . . . . . . 7 (𝐹 Fn 𝐴𝐹 ⊆ (𝐴 × V))
4 ssdif0 4297 . . . . . . 7 (𝐹 ⊆ (𝐴 × V) ↔ (𝐹 ∖ (𝐴 × V)) = ∅)
53, 4sylib 217 . . . . . 6 (𝐹 Fn 𝐴 → (𝐹 ∖ (𝐴 × V)) = ∅)
65uneq2d 4097 . . . . 5 (𝐹 Fn 𝐴 → ((𝐹 ∖ I ) ∪ (𝐹 ∖ (𝐴 × V))) = ((𝐹 ∖ I ) ∪ ∅))
7 un0 4324 . . . . 5 ((𝐹 ∖ I ) ∪ ∅) = (𝐹 ∖ I )
86, 7eqtr2di 2795 . . . 4 (𝐹 Fn 𝐴 → (𝐹 ∖ I ) = ((𝐹 ∖ I ) ∪ (𝐹 ∖ (𝐴 × V))))
9 df-res 5601 . . . . . 6 ( I ↾ 𝐴) = ( I ∩ (𝐴 × V))
109difeq2i 4054 . . . . 5 (𝐹 ∖ ( I ↾ 𝐴)) = (𝐹 ∖ ( I ∩ (𝐴 × V)))
11 difindi 4215 . . . . 5 (𝐹 ∖ ( I ∩ (𝐴 × V))) = ((𝐹 ∖ I ) ∪ (𝐹 ∖ (𝐴 × V)))
1210, 11eqtri 2766 . . . 4 (𝐹 ∖ ( I ↾ 𝐴)) = ((𝐹 ∖ I ) ∪ (𝐹 ∖ (𝐴 × V)))
138, 12eqtr4di 2796 . . 3 (𝐹 Fn 𝐴 → (𝐹 ∖ I ) = (𝐹 ∖ ( I ↾ 𝐴)))
1413dmeqd 5814 . 2 (𝐹 Fn 𝐴 → dom (𝐹 ∖ I ) = dom (𝐹 ∖ ( I ↾ 𝐴)))
15 fnresi 6561 . . 3 ( I ↾ 𝐴) Fn 𝐴
16 fndmdif 6919 . . 3 ((𝐹 Fn 𝐴 ∧ ( I ↾ 𝐴) Fn 𝐴) → dom (𝐹 ∖ ( I ↾ 𝐴)) = {𝑥𝐴 ∣ (𝐹𝑥) ≠ (( I ↾ 𝐴)‘𝑥)})
1715, 16mpan2 688 . 2 (𝐹 Fn 𝐴 → dom (𝐹 ∖ ( I ↾ 𝐴)) = {𝑥𝐴 ∣ (𝐹𝑥) ≠ (( I ↾ 𝐴)‘𝑥)})
18 fvresi 7045 . . . . 5 (𝑥𝐴 → (( I ↾ 𝐴)‘𝑥) = 𝑥)
1918neeq2d 3004 . . . 4 (𝑥𝐴 → ((𝐹𝑥) ≠ (( I ↾ 𝐴)‘𝑥) ↔ (𝐹𝑥) ≠ 𝑥))
2019rabbiia 3407 . . 3 {𝑥𝐴 ∣ (𝐹𝑥) ≠ (( I ↾ 𝐴)‘𝑥)} = {𝑥𝐴 ∣ (𝐹𝑥) ≠ 𝑥}
2120a1i 11 . 2 (𝐹 Fn 𝐴 → {𝑥𝐴 ∣ (𝐹𝑥) ≠ (( I ↾ 𝐴)‘𝑥)} = {𝑥𝐴 ∣ (𝐹𝑥) ≠ 𝑥})
2214, 17, 213eqtrd 2782 1 (𝐹 Fn 𝐴 → dom (𝐹 ∖ I ) = {𝑥𝐴 ∣ (𝐹𝑥) ≠ 𝑥})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  wne 2943  {crab 3068  Vcvv 3432  cdif 3884  cun 3885  cin 3886  wss 3887  c0 4256   I cid 5488   × cxp 5587  dom cdm 5589  cres 5591   Fn wfn 6428  wf 6429  cfv 6433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441
This theorem is referenced by:  fnelnfp  7049  fnnfpeq0  7050  f1omvdcnv  19052  pmtrmvd  19064  pmtrdifellem4  19087  sygbasnfpfi  19120
  Copyright terms: Public domain W3C validator