MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fndifnfp Structured version   Visualization version   GIF version

Theorem fndifnfp 6920
Description: Express the class of non-fixed points of a function. (Contributed by Stefan O'Rear, 14-Aug-2015.)
Assertion
Ref Expression
fndifnfp (𝐹 Fn 𝐴 → dom (𝐹 ∖ I ) = {𝑥𝐴 ∣ (𝐹𝑥) ≠ 𝑥})
Distinct variable groups:   𝑥,𝐹   𝑥,𝐴

Proof of Theorem fndifnfp
StepHypRef Expression
1 dffn2 6496 . . . . . . . 8 (𝐹 Fn 𝐴𝐹:𝐴⟶V)
2 fssxp 6515 . . . . . . . 8 (𝐹:𝐴⟶V → 𝐹 ⊆ (𝐴 × V))
31, 2sylbi 220 . . . . . . 7 (𝐹 Fn 𝐴𝐹 ⊆ (𝐴 × V))
4 ssdif0 4295 . . . . . . 7 (𝐹 ⊆ (𝐴 × V) ↔ (𝐹 ∖ (𝐴 × V)) = ∅)
53, 4sylib 221 . . . . . 6 (𝐹 Fn 𝐴 → (𝐹 ∖ (𝐴 × V)) = ∅)
65uneq2d 4114 . . . . 5 (𝐹 Fn 𝐴 → ((𝐹 ∖ I ) ∪ (𝐹 ∖ (𝐴 × V))) = ((𝐹 ∖ I ) ∪ ∅))
7 un0 4316 . . . . 5 ((𝐹 ∖ I ) ∪ ∅) = (𝐹 ∖ I )
86, 7syl6req 2874 . . . 4 (𝐹 Fn 𝐴 → (𝐹 ∖ I ) = ((𝐹 ∖ I ) ∪ (𝐹 ∖ (𝐴 × V))))
9 df-res 5544 . . . . . 6 ( I ↾ 𝐴) = ( I ∩ (𝐴 × V))
109difeq2i 4071 . . . . 5 (𝐹 ∖ ( I ↾ 𝐴)) = (𝐹 ∖ ( I ∩ (𝐴 × V)))
11 difindi 4232 . . . . 5 (𝐹 ∖ ( I ∩ (𝐴 × V))) = ((𝐹 ∖ I ) ∪ (𝐹 ∖ (𝐴 × V)))
1210, 11eqtri 2845 . . . 4 (𝐹 ∖ ( I ↾ 𝐴)) = ((𝐹 ∖ I ) ∪ (𝐹 ∖ (𝐴 × V)))
138, 12eqtr4di 2875 . . 3 (𝐹 Fn 𝐴 → (𝐹 ∖ I ) = (𝐹 ∖ ( I ↾ 𝐴)))
1413dmeqd 5751 . 2 (𝐹 Fn 𝐴 → dom (𝐹 ∖ I ) = dom (𝐹 ∖ ( I ↾ 𝐴)))
15 fnresi 6456 . . 3 ( I ↾ 𝐴) Fn 𝐴
16 fndmdif 6794 . . 3 ((𝐹 Fn 𝐴 ∧ ( I ↾ 𝐴) Fn 𝐴) → dom (𝐹 ∖ ( I ↾ 𝐴)) = {𝑥𝐴 ∣ (𝐹𝑥) ≠ (( I ↾ 𝐴)‘𝑥)})
1715, 16mpan2 690 . 2 (𝐹 Fn 𝐴 → dom (𝐹 ∖ ( I ↾ 𝐴)) = {𝑥𝐴 ∣ (𝐹𝑥) ≠ (( I ↾ 𝐴)‘𝑥)})
18 fvresi 6917 . . . . 5 (𝑥𝐴 → (( I ↾ 𝐴)‘𝑥) = 𝑥)
1918neeq2d 3071 . . . 4 (𝑥𝐴 → ((𝐹𝑥) ≠ (( I ↾ 𝐴)‘𝑥) ↔ (𝐹𝑥) ≠ 𝑥))
2019rabbiia 3447 . . 3 {𝑥𝐴 ∣ (𝐹𝑥) ≠ (( I ↾ 𝐴)‘𝑥)} = {𝑥𝐴 ∣ (𝐹𝑥) ≠ 𝑥}
2120a1i 11 . 2 (𝐹 Fn 𝐴 → {𝑥𝐴 ∣ (𝐹𝑥) ≠ (( I ↾ 𝐴)‘𝑥)} = {𝑥𝐴 ∣ (𝐹𝑥) ≠ 𝑥})
2214, 17, 213eqtrd 2861 1 (𝐹 Fn 𝐴 → dom (𝐹 ∖ I ) = {𝑥𝐴 ∣ (𝐹𝑥) ≠ 𝑥})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2114  wne 3011  {crab 3134  Vcvv 3469  cdif 3905  cun 3906  cin 3907  wss 3908  c0 4265   I cid 5436   × cxp 5530  dom cdm 5532  cres 5534   Fn wfn 6329  wf 6330  cfv 6334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pr 5307
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-ral 3135  df-rex 3136  df-rab 3139  df-v 3471  df-sbc 3748  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4266  df-if 4440  df-sn 4540  df-pr 4542  df-op 4546  df-uni 4814  df-br 5043  df-opab 5105  df-id 5437  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-fv 6342
This theorem is referenced by:  fnelnfp  6921  fnnfpeq0  6922  f1omvdcnv  18563  pmtrmvd  18575  pmtrdifellem4  18598  sygbasnfpfi  18631
  Copyright terms: Public domain W3C validator