MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fndifnfp Structured version   Visualization version   GIF version

Theorem fndifnfp 7123
Description: Express the class of non-fixed points of a function. (Contributed by Stefan O'Rear, 14-Aug-2015.)
Assertion
Ref Expression
fndifnfp (𝐹 Fn 𝐴 → dom (𝐹 ∖ I ) = {𝑥𝐴 ∣ (𝐹𝑥) ≠ 𝑥})
Distinct variable groups:   𝑥,𝐹   𝑥,𝐴

Proof of Theorem fndifnfp
StepHypRef Expression
1 dffn2 6671 . . . . . . . 8 (𝐹 Fn 𝐴𝐹:𝐴⟶V)
2 fssxp 6697 . . . . . . . 8 (𝐹:𝐴⟶V → 𝐹 ⊆ (𝐴 × V))
31, 2sylbi 216 . . . . . . 7 (𝐹 Fn 𝐴𝐹 ⊆ (𝐴 × V))
4 ssdif0 4324 . . . . . . 7 (𝐹 ⊆ (𝐴 × V) ↔ (𝐹 ∖ (𝐴 × V)) = ∅)
53, 4sylib 217 . . . . . 6 (𝐹 Fn 𝐴 → (𝐹 ∖ (𝐴 × V)) = ∅)
65uneq2d 4124 . . . . 5 (𝐹 Fn 𝐴 → ((𝐹 ∖ I ) ∪ (𝐹 ∖ (𝐴 × V))) = ((𝐹 ∖ I ) ∪ ∅))
7 un0 4351 . . . . 5 ((𝐹 ∖ I ) ∪ ∅) = (𝐹 ∖ I )
86, 7eqtr2di 2790 . . . 4 (𝐹 Fn 𝐴 → (𝐹 ∖ I ) = ((𝐹 ∖ I ) ∪ (𝐹 ∖ (𝐴 × V))))
9 df-res 5646 . . . . . 6 ( I ↾ 𝐴) = ( I ∩ (𝐴 × V))
109difeq2i 4080 . . . . 5 (𝐹 ∖ ( I ↾ 𝐴)) = (𝐹 ∖ ( I ∩ (𝐴 × V)))
11 difindi 4242 . . . . 5 (𝐹 ∖ ( I ∩ (𝐴 × V))) = ((𝐹 ∖ I ) ∪ (𝐹 ∖ (𝐴 × V)))
1210, 11eqtri 2761 . . . 4 (𝐹 ∖ ( I ↾ 𝐴)) = ((𝐹 ∖ I ) ∪ (𝐹 ∖ (𝐴 × V)))
138, 12eqtr4di 2791 . . 3 (𝐹 Fn 𝐴 → (𝐹 ∖ I ) = (𝐹 ∖ ( I ↾ 𝐴)))
1413dmeqd 5862 . 2 (𝐹 Fn 𝐴 → dom (𝐹 ∖ I ) = dom (𝐹 ∖ ( I ↾ 𝐴)))
15 fnresi 6631 . . 3 ( I ↾ 𝐴) Fn 𝐴
16 fndmdif 6993 . . 3 ((𝐹 Fn 𝐴 ∧ ( I ↾ 𝐴) Fn 𝐴) → dom (𝐹 ∖ ( I ↾ 𝐴)) = {𝑥𝐴 ∣ (𝐹𝑥) ≠ (( I ↾ 𝐴)‘𝑥)})
1715, 16mpan2 690 . 2 (𝐹 Fn 𝐴 → dom (𝐹 ∖ ( I ↾ 𝐴)) = {𝑥𝐴 ∣ (𝐹𝑥) ≠ (( I ↾ 𝐴)‘𝑥)})
18 fvresi 7120 . . . . 5 (𝑥𝐴 → (( I ↾ 𝐴)‘𝑥) = 𝑥)
1918neeq2d 3001 . . . 4 (𝑥𝐴 → ((𝐹𝑥) ≠ (( I ↾ 𝐴)‘𝑥) ↔ (𝐹𝑥) ≠ 𝑥))
2019rabbiia 3410 . . 3 {𝑥𝐴 ∣ (𝐹𝑥) ≠ (( I ↾ 𝐴)‘𝑥)} = {𝑥𝐴 ∣ (𝐹𝑥) ≠ 𝑥}
2120a1i 11 . 2 (𝐹 Fn 𝐴 → {𝑥𝐴 ∣ (𝐹𝑥) ≠ (( I ↾ 𝐴)‘𝑥)} = {𝑥𝐴 ∣ (𝐹𝑥) ≠ 𝑥})
2214, 17, 213eqtrd 2777 1 (𝐹 Fn 𝐴 → dom (𝐹 ∖ I ) = {𝑥𝐴 ∣ (𝐹𝑥) ≠ 𝑥})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2107  wne 2940  {crab 3406  Vcvv 3444  cdif 3908  cun 3909  cin 3910  wss 3911  c0 4283   I cid 5531   × cxp 5632  dom cdm 5634  cres 5636   Fn wfn 6492  wf 6493  cfv 6497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-12 2172  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pr 5385
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-br 5107  df-opab 5169  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-fv 6505
This theorem is referenced by:  fnelnfp  7124  fnnfpeq0  7125  f1omvdcnv  19231  pmtrmvd  19243  pmtrdifellem4  19266  sygbasnfpfi  19299
  Copyright terms: Public domain W3C validator