| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fndifnfp | Structured version Visualization version GIF version | ||
| Description: Express the class of non-fixed points of a function. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
| Ref | Expression |
|---|---|
| fndifnfp | ⊢ (𝐹 Fn 𝐴 → dom (𝐹 ∖ I ) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ 𝑥}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffn2 6708 | . . . . . . . 8 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟶V) | |
| 2 | fssxp 6733 | . . . . . . . 8 ⊢ (𝐹:𝐴⟶V → 𝐹 ⊆ (𝐴 × V)) | |
| 3 | 1, 2 | sylbi 217 | . . . . . . 7 ⊢ (𝐹 Fn 𝐴 → 𝐹 ⊆ (𝐴 × V)) |
| 4 | ssdif0 4341 | . . . . . . 7 ⊢ (𝐹 ⊆ (𝐴 × V) ↔ (𝐹 ∖ (𝐴 × V)) = ∅) | |
| 5 | 3, 4 | sylib 218 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → (𝐹 ∖ (𝐴 × V)) = ∅) |
| 6 | 5 | uneq2d 4143 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → ((𝐹 ∖ I ) ∪ (𝐹 ∖ (𝐴 × V))) = ((𝐹 ∖ I ) ∪ ∅)) |
| 7 | un0 4369 | . . . . 5 ⊢ ((𝐹 ∖ I ) ∪ ∅) = (𝐹 ∖ I ) | |
| 8 | 6, 7 | eqtr2di 2787 | . . . 4 ⊢ (𝐹 Fn 𝐴 → (𝐹 ∖ I ) = ((𝐹 ∖ I ) ∪ (𝐹 ∖ (𝐴 × V)))) |
| 9 | df-res 5666 | . . . . . 6 ⊢ ( I ↾ 𝐴) = ( I ∩ (𝐴 × V)) | |
| 10 | 9 | difeq2i 4098 | . . . . 5 ⊢ (𝐹 ∖ ( I ↾ 𝐴)) = (𝐹 ∖ ( I ∩ (𝐴 × V))) |
| 11 | difindi 4267 | . . . . 5 ⊢ (𝐹 ∖ ( I ∩ (𝐴 × V))) = ((𝐹 ∖ I ) ∪ (𝐹 ∖ (𝐴 × V))) | |
| 12 | 10, 11 | eqtri 2758 | . . . 4 ⊢ (𝐹 ∖ ( I ↾ 𝐴)) = ((𝐹 ∖ I ) ∪ (𝐹 ∖ (𝐴 × V))) |
| 13 | 8, 12 | eqtr4di 2788 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝐹 ∖ I ) = (𝐹 ∖ ( I ↾ 𝐴))) |
| 14 | 13 | dmeqd 5885 | . 2 ⊢ (𝐹 Fn 𝐴 → dom (𝐹 ∖ I ) = dom (𝐹 ∖ ( I ↾ 𝐴))) |
| 15 | fnresi 6667 | . . 3 ⊢ ( I ↾ 𝐴) Fn 𝐴 | |
| 16 | fndmdif 7032 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ ( I ↾ 𝐴) Fn 𝐴) → dom (𝐹 ∖ ( I ↾ 𝐴)) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ (( I ↾ 𝐴)‘𝑥)}) | |
| 17 | 15, 16 | mpan2 691 | . 2 ⊢ (𝐹 Fn 𝐴 → dom (𝐹 ∖ ( I ↾ 𝐴)) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ (( I ↾ 𝐴)‘𝑥)}) |
| 18 | fvresi 7165 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → (( I ↾ 𝐴)‘𝑥) = 𝑥) | |
| 19 | 18 | neeq2d 2992 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ((𝐹‘𝑥) ≠ (( I ↾ 𝐴)‘𝑥) ↔ (𝐹‘𝑥) ≠ 𝑥)) |
| 20 | 19 | rabbiia 3419 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ (( I ↾ 𝐴)‘𝑥)} = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ 𝑥} |
| 21 | 20 | a1i 11 | . 2 ⊢ (𝐹 Fn 𝐴 → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ (( I ↾ 𝐴)‘𝑥)} = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ 𝑥}) |
| 22 | 14, 17, 21 | 3eqtrd 2774 | 1 ⊢ (𝐹 Fn 𝐴 → dom (𝐹 ∖ I ) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ 𝑥}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 {crab 3415 Vcvv 3459 ∖ cdif 3923 ∪ cun 3924 ∩ cin 3925 ⊆ wss 3926 ∅c0 4308 I cid 5547 × cxp 5652 dom cdm 5654 ↾ cres 5656 Fn wfn 6526 ⟶wf 6527 ‘cfv 6531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fv 6539 |
| This theorem is referenced by: fnelnfp 7169 fnnfpeq0 7170 f1omvdcnv 19425 pmtrmvd 19437 pmtrdifellem4 19460 sygbasnfpfi 19493 |
| Copyright terms: Public domain | W3C validator |