| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fndifnfp | Structured version Visualization version GIF version | ||
| Description: Express the class of non-fixed points of a function. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
| Ref | Expression |
|---|---|
| fndifnfp | ⊢ (𝐹 Fn 𝐴 → dom (𝐹 ∖ I ) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ 𝑥}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffn2 6690 | . . . . . . . 8 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟶V) | |
| 2 | fssxp 6715 | . . . . . . . 8 ⊢ (𝐹:𝐴⟶V → 𝐹 ⊆ (𝐴 × V)) | |
| 3 | 1, 2 | sylbi 217 | . . . . . . 7 ⊢ (𝐹 Fn 𝐴 → 𝐹 ⊆ (𝐴 × V)) |
| 4 | ssdif0 4329 | . . . . . . 7 ⊢ (𝐹 ⊆ (𝐴 × V) ↔ (𝐹 ∖ (𝐴 × V)) = ∅) | |
| 5 | 3, 4 | sylib 218 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → (𝐹 ∖ (𝐴 × V)) = ∅) |
| 6 | 5 | uneq2d 4131 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → ((𝐹 ∖ I ) ∪ (𝐹 ∖ (𝐴 × V))) = ((𝐹 ∖ I ) ∪ ∅)) |
| 7 | un0 4357 | . . . . 5 ⊢ ((𝐹 ∖ I ) ∪ ∅) = (𝐹 ∖ I ) | |
| 8 | 6, 7 | eqtr2di 2781 | . . . 4 ⊢ (𝐹 Fn 𝐴 → (𝐹 ∖ I ) = ((𝐹 ∖ I ) ∪ (𝐹 ∖ (𝐴 × V)))) |
| 9 | df-res 5650 | . . . . . 6 ⊢ ( I ↾ 𝐴) = ( I ∩ (𝐴 × V)) | |
| 10 | 9 | difeq2i 4086 | . . . . 5 ⊢ (𝐹 ∖ ( I ↾ 𝐴)) = (𝐹 ∖ ( I ∩ (𝐴 × V))) |
| 11 | difindi 4255 | . . . . 5 ⊢ (𝐹 ∖ ( I ∩ (𝐴 × V))) = ((𝐹 ∖ I ) ∪ (𝐹 ∖ (𝐴 × V))) | |
| 12 | 10, 11 | eqtri 2752 | . . . 4 ⊢ (𝐹 ∖ ( I ↾ 𝐴)) = ((𝐹 ∖ I ) ∪ (𝐹 ∖ (𝐴 × V))) |
| 13 | 8, 12 | eqtr4di 2782 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝐹 ∖ I ) = (𝐹 ∖ ( I ↾ 𝐴))) |
| 14 | 13 | dmeqd 5869 | . 2 ⊢ (𝐹 Fn 𝐴 → dom (𝐹 ∖ I ) = dom (𝐹 ∖ ( I ↾ 𝐴))) |
| 15 | fnresi 6647 | . . 3 ⊢ ( I ↾ 𝐴) Fn 𝐴 | |
| 16 | fndmdif 7014 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ ( I ↾ 𝐴) Fn 𝐴) → dom (𝐹 ∖ ( I ↾ 𝐴)) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ (( I ↾ 𝐴)‘𝑥)}) | |
| 17 | 15, 16 | mpan2 691 | . 2 ⊢ (𝐹 Fn 𝐴 → dom (𝐹 ∖ ( I ↾ 𝐴)) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ (( I ↾ 𝐴)‘𝑥)}) |
| 18 | fvresi 7147 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → (( I ↾ 𝐴)‘𝑥) = 𝑥) | |
| 19 | 18 | neeq2d 2985 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ((𝐹‘𝑥) ≠ (( I ↾ 𝐴)‘𝑥) ↔ (𝐹‘𝑥) ≠ 𝑥)) |
| 20 | 19 | rabbiia 3409 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ (( I ↾ 𝐴)‘𝑥)} = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ 𝑥} |
| 21 | 20 | a1i 11 | . 2 ⊢ (𝐹 Fn 𝐴 → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ (( I ↾ 𝐴)‘𝑥)} = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ 𝑥}) |
| 22 | 14, 17, 21 | 3eqtrd 2768 | 1 ⊢ (𝐹 Fn 𝐴 → dom (𝐹 ∖ I ) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ 𝑥}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 {crab 3405 Vcvv 3447 ∖ cdif 3911 ∪ cun 3912 ∩ cin 3913 ⊆ wss 3914 ∅c0 4296 I cid 5532 × cxp 5636 dom cdm 5638 ↾ cres 5640 Fn wfn 6506 ⟶wf 6507 ‘cfv 6511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 |
| This theorem is referenced by: fnelnfp 7151 fnnfpeq0 7152 f1omvdcnv 19374 pmtrmvd 19386 pmtrdifellem4 19409 sygbasnfpfi 19442 |
| Copyright terms: Public domain | W3C validator |