MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fndifnfp Structured version   Visualization version   GIF version

Theorem fndifnfp 7153
Description: Express the class of non-fixed points of a function. (Contributed by Stefan O'Rear, 14-Aug-2015.)
Assertion
Ref Expression
fndifnfp (𝐹 Fn 𝐴 → dom (𝐹 ∖ I ) = {𝑥𝐴 ∣ (𝐹𝑥) ≠ 𝑥})
Distinct variable groups:   𝑥,𝐹   𝑥,𝐴

Proof of Theorem fndifnfp
StepHypRef Expression
1 dffn2 6693 . . . . . . . 8 (𝐹 Fn 𝐴𝐹:𝐴⟶V)
2 fssxp 6718 . . . . . . . 8 (𝐹:𝐴⟶V → 𝐹 ⊆ (𝐴 × V))
31, 2sylbi 217 . . . . . . 7 (𝐹 Fn 𝐴𝐹 ⊆ (𝐴 × V))
4 ssdif0 4332 . . . . . . 7 (𝐹 ⊆ (𝐴 × V) ↔ (𝐹 ∖ (𝐴 × V)) = ∅)
53, 4sylib 218 . . . . . 6 (𝐹 Fn 𝐴 → (𝐹 ∖ (𝐴 × V)) = ∅)
65uneq2d 4134 . . . . 5 (𝐹 Fn 𝐴 → ((𝐹 ∖ I ) ∪ (𝐹 ∖ (𝐴 × V))) = ((𝐹 ∖ I ) ∪ ∅))
7 un0 4360 . . . . 5 ((𝐹 ∖ I ) ∪ ∅) = (𝐹 ∖ I )
86, 7eqtr2di 2782 . . . 4 (𝐹 Fn 𝐴 → (𝐹 ∖ I ) = ((𝐹 ∖ I ) ∪ (𝐹 ∖ (𝐴 × V))))
9 df-res 5653 . . . . . 6 ( I ↾ 𝐴) = ( I ∩ (𝐴 × V))
109difeq2i 4089 . . . . 5 (𝐹 ∖ ( I ↾ 𝐴)) = (𝐹 ∖ ( I ∩ (𝐴 × V)))
11 difindi 4258 . . . . 5 (𝐹 ∖ ( I ∩ (𝐴 × V))) = ((𝐹 ∖ I ) ∪ (𝐹 ∖ (𝐴 × V)))
1210, 11eqtri 2753 . . . 4 (𝐹 ∖ ( I ↾ 𝐴)) = ((𝐹 ∖ I ) ∪ (𝐹 ∖ (𝐴 × V)))
138, 12eqtr4di 2783 . . 3 (𝐹 Fn 𝐴 → (𝐹 ∖ I ) = (𝐹 ∖ ( I ↾ 𝐴)))
1413dmeqd 5872 . 2 (𝐹 Fn 𝐴 → dom (𝐹 ∖ I ) = dom (𝐹 ∖ ( I ↾ 𝐴)))
15 fnresi 6650 . . 3 ( I ↾ 𝐴) Fn 𝐴
16 fndmdif 7017 . . 3 ((𝐹 Fn 𝐴 ∧ ( I ↾ 𝐴) Fn 𝐴) → dom (𝐹 ∖ ( I ↾ 𝐴)) = {𝑥𝐴 ∣ (𝐹𝑥) ≠ (( I ↾ 𝐴)‘𝑥)})
1715, 16mpan2 691 . 2 (𝐹 Fn 𝐴 → dom (𝐹 ∖ ( I ↾ 𝐴)) = {𝑥𝐴 ∣ (𝐹𝑥) ≠ (( I ↾ 𝐴)‘𝑥)})
18 fvresi 7150 . . . . 5 (𝑥𝐴 → (( I ↾ 𝐴)‘𝑥) = 𝑥)
1918neeq2d 2986 . . . 4 (𝑥𝐴 → ((𝐹𝑥) ≠ (( I ↾ 𝐴)‘𝑥) ↔ (𝐹𝑥) ≠ 𝑥))
2019rabbiia 3412 . . 3 {𝑥𝐴 ∣ (𝐹𝑥) ≠ (( I ↾ 𝐴)‘𝑥)} = {𝑥𝐴 ∣ (𝐹𝑥) ≠ 𝑥}
2120a1i 11 . 2 (𝐹 Fn 𝐴 → {𝑥𝐴 ∣ (𝐹𝑥) ≠ (( I ↾ 𝐴)‘𝑥)} = {𝑥𝐴 ∣ (𝐹𝑥) ≠ 𝑥})
2214, 17, 213eqtrd 2769 1 (𝐹 Fn 𝐴 → dom (𝐹 ∖ I ) = {𝑥𝐴 ∣ (𝐹𝑥) ≠ 𝑥})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wne 2926  {crab 3408  Vcvv 3450  cdif 3914  cun 3915  cin 3916  wss 3917  c0 4299   I cid 5535   × cxp 5639  dom cdm 5641  cres 5643   Fn wfn 6509  wf 6510  cfv 6514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522
This theorem is referenced by:  fnelnfp  7154  fnnfpeq0  7155  f1omvdcnv  19381  pmtrmvd  19393  pmtrdifellem4  19416  sygbasnfpfi  19449
  Copyright terms: Public domain W3C validator