![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fndifnfp | Structured version Visualization version GIF version |
Description: Express the class of non-fixed points of a function. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
Ref | Expression |
---|---|
fndifnfp | ⊢ (𝐹 Fn 𝐴 → dom (𝐹 ∖ I ) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ 𝑥}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffn2 6739 | . . . . . . . 8 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟶V) | |
2 | fssxp 6764 | . . . . . . . 8 ⊢ (𝐹:𝐴⟶V → 𝐹 ⊆ (𝐴 × V)) | |
3 | 1, 2 | sylbi 217 | . . . . . . 7 ⊢ (𝐹 Fn 𝐴 → 𝐹 ⊆ (𝐴 × V)) |
4 | ssdif0 4372 | . . . . . . 7 ⊢ (𝐹 ⊆ (𝐴 × V) ↔ (𝐹 ∖ (𝐴 × V)) = ∅) | |
5 | 3, 4 | sylib 218 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → (𝐹 ∖ (𝐴 × V)) = ∅) |
6 | 5 | uneq2d 4178 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → ((𝐹 ∖ I ) ∪ (𝐹 ∖ (𝐴 × V))) = ((𝐹 ∖ I ) ∪ ∅)) |
7 | un0 4400 | . . . . 5 ⊢ ((𝐹 ∖ I ) ∪ ∅) = (𝐹 ∖ I ) | |
8 | 6, 7 | eqtr2di 2792 | . . . 4 ⊢ (𝐹 Fn 𝐴 → (𝐹 ∖ I ) = ((𝐹 ∖ I ) ∪ (𝐹 ∖ (𝐴 × V)))) |
9 | df-res 5701 | . . . . . 6 ⊢ ( I ↾ 𝐴) = ( I ∩ (𝐴 × V)) | |
10 | 9 | difeq2i 4133 | . . . . 5 ⊢ (𝐹 ∖ ( I ↾ 𝐴)) = (𝐹 ∖ ( I ∩ (𝐴 × V))) |
11 | difindi 4298 | . . . . 5 ⊢ (𝐹 ∖ ( I ∩ (𝐴 × V))) = ((𝐹 ∖ I ) ∪ (𝐹 ∖ (𝐴 × V))) | |
12 | 10, 11 | eqtri 2763 | . . . 4 ⊢ (𝐹 ∖ ( I ↾ 𝐴)) = ((𝐹 ∖ I ) ∪ (𝐹 ∖ (𝐴 × V))) |
13 | 8, 12 | eqtr4di 2793 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝐹 ∖ I ) = (𝐹 ∖ ( I ↾ 𝐴))) |
14 | 13 | dmeqd 5919 | . 2 ⊢ (𝐹 Fn 𝐴 → dom (𝐹 ∖ I ) = dom (𝐹 ∖ ( I ↾ 𝐴))) |
15 | fnresi 6698 | . . 3 ⊢ ( I ↾ 𝐴) Fn 𝐴 | |
16 | fndmdif 7062 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ ( I ↾ 𝐴) Fn 𝐴) → dom (𝐹 ∖ ( I ↾ 𝐴)) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ (( I ↾ 𝐴)‘𝑥)}) | |
17 | 15, 16 | mpan2 691 | . 2 ⊢ (𝐹 Fn 𝐴 → dom (𝐹 ∖ ( I ↾ 𝐴)) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ (( I ↾ 𝐴)‘𝑥)}) |
18 | fvresi 7193 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → (( I ↾ 𝐴)‘𝑥) = 𝑥) | |
19 | 18 | neeq2d 2999 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ((𝐹‘𝑥) ≠ (( I ↾ 𝐴)‘𝑥) ↔ (𝐹‘𝑥) ≠ 𝑥)) |
20 | 19 | rabbiia 3437 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ (( I ↾ 𝐴)‘𝑥)} = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ 𝑥} |
21 | 20 | a1i 11 | . 2 ⊢ (𝐹 Fn 𝐴 → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ (( I ↾ 𝐴)‘𝑥)} = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ 𝑥}) |
22 | 14, 17, 21 | 3eqtrd 2779 | 1 ⊢ (𝐹 Fn 𝐴 → dom (𝐹 ∖ I ) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ 𝑥}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 {crab 3433 Vcvv 3478 ∖ cdif 3960 ∪ cun 3961 ∩ cin 3962 ⊆ wss 3963 ∅c0 4339 I cid 5582 × cxp 5687 dom cdm 5689 ↾ cres 5691 Fn wfn 6558 ⟶wf 6559 ‘cfv 6563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fv 6571 |
This theorem is referenced by: fnelnfp 7197 fnnfpeq0 7198 f1omvdcnv 19477 pmtrmvd 19489 pmtrdifellem4 19512 sygbasnfpfi 19545 |
Copyright terms: Public domain | W3C validator |