Step | Hyp | Ref
| Expression |
1 | | inss1 4167 |
. . . . . 6
⊢ ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) ⊆ (𝐺 DProd (𝑆 ↾ 𝐶)) |
2 | | dprdcntz2.1 |
. . . . . . . 8
⊢ (𝜑 → 𝐺dom DProd 𝑆) |
3 | | dprdcntz2.2 |
. . . . . . . 8
⊢ (𝜑 → dom 𝑆 = 𝐼) |
4 | | dprdcntz2.c |
. . . . . . . 8
⊢ (𝜑 → 𝐶 ⊆ 𝐼) |
5 | 2, 3, 4 | dprdres 19612 |
. . . . . . 7
⊢ (𝜑 → (𝐺dom DProd (𝑆 ↾ 𝐶) ∧ (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ (𝐺 DProd 𝑆))) |
6 | 5 | simprd 495 |
. . . . . 6
⊢ (𝜑 → (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ (𝐺 DProd 𝑆)) |
7 | 1, 6 | sstrid 3936 |
. . . . 5
⊢ (𝜑 → ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) ⊆ (𝐺 DProd 𝑆)) |
8 | 7 | sseld 3924 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) → 𝑥 ∈ (𝐺 DProd 𝑆))) |
9 | | dprddisj2.0 |
. . . . . . . 8
⊢ 0 =
(0g‘𝐺) |
10 | | eqid 2739 |
. . . . . . . 8
⊢ {ℎ ∈ X𝑖 ∈
𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } |
11 | 9, 10 | eldprd 19588 |
. . . . . . 7
⊢ (dom
𝑆 = 𝐼 → (𝑥 ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 }𝑥 = (𝐺 Σg 𝑓)))) |
12 | 3, 11 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 }𝑥 = (𝐺 Σg 𝑓)))) |
13 | 2 | ad2antrr 722 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 }) ∧ ((𝐺 Σg
𝑓) ∈ (𝐺 DProd (𝑆 ↾ 𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆 ↾ 𝐷)))) → 𝐺dom DProd 𝑆) |
14 | 3 | ad2antrr 722 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 }) ∧ ((𝐺 Σg
𝑓) ∈ (𝐺 DProd (𝑆 ↾ 𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆 ↾ 𝐷)))) → dom 𝑆 = 𝐼) |
15 | | simplr 765 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 }) ∧ ((𝐺 Σg
𝑓) ∈ (𝐺 DProd (𝑆 ↾ 𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆 ↾ 𝐷)))) → 𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 }) |
16 | | eqid 2739 |
. . . . . . . . . . . . . . 15
⊢
(Base‘𝐺) =
(Base‘𝐺) |
17 | 10, 13, 14, 15, 16 | dprdff 19596 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 }) ∧ ((𝐺 Σg
𝑓) ∈ (𝐺 DProd (𝑆 ↾ 𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆 ↾ 𝐷)))) → 𝑓:𝐼⟶(Base‘𝐺)) |
18 | 17 | feqmptd 6831 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 }) ∧ ((𝐺 Σg
𝑓) ∈ (𝐺 DProd (𝑆 ↾ 𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆 ↾ 𝐷)))) → 𝑓 = (𝑥 ∈ 𝐼 ↦ (𝑓‘𝑥))) |
19 | | dprdcntz2.i |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝐶 ∩ 𝐷) = ∅) |
20 | 19 | difeq2d 4061 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝐼 ∖ (𝐶 ∩ 𝐷)) = (𝐼 ∖ ∅)) |
21 | | difindi 4220 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐼 ∖ (𝐶 ∩ 𝐷)) = ((𝐼 ∖ 𝐶) ∪ (𝐼 ∖ 𝐷)) |
22 | | dif0 4311 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐼 ∖ ∅) = 𝐼 |
23 | 20, 21, 22 | 3eqtr3g 2802 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ((𝐼 ∖ 𝐶) ∪ (𝐼 ∖ 𝐷)) = 𝐼) |
24 | | eqimss2 3982 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐼 ∖ 𝐶) ∪ (𝐼 ∖ 𝐷)) = 𝐼 → 𝐼 ⊆ ((𝐼 ∖ 𝐶) ∪ (𝐼 ∖ 𝐷))) |
25 | 23, 24 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐼 ⊆ ((𝐼 ∖ 𝐶) ∪ (𝐼 ∖ 𝐷))) |
26 | 25 | ad2antrr 722 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 }) ∧ ((𝐺 Σg
𝑓) ∈ (𝐺 DProd (𝑆 ↾ 𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆 ↾ 𝐷)))) → 𝐼 ⊆ ((𝐼 ∖ 𝐶) ∪ (𝐼 ∖ 𝐷))) |
27 | 26 | sselda 3925 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 }) ∧ ((𝐺 Σg
𝑓) ∈ (𝐺 DProd (𝑆 ↾ 𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆 ↾ 𝐷)))) ∧ 𝑥 ∈ 𝐼) → 𝑥 ∈ ((𝐼 ∖ 𝐶) ∪ (𝐼 ∖ 𝐷))) |
28 | | elun 4087 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ ((𝐼 ∖ 𝐶) ∪ (𝐼 ∖ 𝐷)) ↔ (𝑥 ∈ (𝐼 ∖ 𝐶) ∨ 𝑥 ∈ (𝐼 ∖ 𝐷))) |
29 | 27, 28 | sylib 217 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 }) ∧ ((𝐺 Σg
𝑓) ∈ (𝐺 DProd (𝑆 ↾ 𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆 ↾ 𝐷)))) ∧ 𝑥 ∈ 𝐼) → (𝑥 ∈ (𝐼 ∖ 𝐶) ∨ 𝑥 ∈ (𝐼 ∖ 𝐷))) |
30 | 4 | ad2antrr 722 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 }) ∧ ((𝐺 Σg
𝑓) ∈ (𝐺 DProd (𝑆 ↾ 𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆 ↾ 𝐷)))) → 𝐶 ⊆ 𝐼) |
31 | | simprl 767 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 }) ∧ ((𝐺 Σg
𝑓) ∈ (𝐺 DProd (𝑆 ↾ 𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆 ↾ 𝐷)))) → (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆 ↾ 𝐶))) |
32 | 9, 10, 13, 14, 30, 15, 31 | dmdprdsplitlem 19621 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 }) ∧ ((𝐺 Σg
𝑓) ∈ (𝐺 DProd (𝑆 ↾ 𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆 ↾ 𝐷)))) ∧ 𝑥 ∈ (𝐼 ∖ 𝐶)) → (𝑓‘𝑥) = 0 ) |
33 | | dprdcntz2.d |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐷 ⊆ 𝐼) |
34 | 33 | ad2antrr 722 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 }) ∧ ((𝐺 Σg
𝑓) ∈ (𝐺 DProd (𝑆 ↾ 𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆 ↾ 𝐷)))) → 𝐷 ⊆ 𝐼) |
35 | | simprr 769 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 }) ∧ ((𝐺 Σg
𝑓) ∈ (𝐺 DProd (𝑆 ↾ 𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆 ↾ 𝐷)))) → (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆 ↾ 𝐷))) |
36 | 9, 10, 13, 14, 34, 15, 35 | dmdprdsplitlem 19621 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 }) ∧ ((𝐺 Σg
𝑓) ∈ (𝐺 DProd (𝑆 ↾ 𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆 ↾ 𝐷)))) ∧ 𝑥 ∈ (𝐼 ∖ 𝐷)) → (𝑓‘𝑥) = 0 ) |
37 | 32, 36 | jaodan 954 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 }) ∧ ((𝐺 Σg
𝑓) ∈ (𝐺 DProd (𝑆 ↾ 𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆 ↾ 𝐷)))) ∧ (𝑥 ∈ (𝐼 ∖ 𝐶) ∨ 𝑥 ∈ (𝐼 ∖ 𝐷))) → (𝑓‘𝑥) = 0 ) |
38 | 29, 37 | syldan 590 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 }) ∧ ((𝐺 Σg
𝑓) ∈ (𝐺 DProd (𝑆 ↾ 𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆 ↾ 𝐷)))) ∧ 𝑥 ∈ 𝐼) → (𝑓‘𝑥) = 0 ) |
39 | 38 | mpteq2dva 5178 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 }) ∧ ((𝐺 Σg
𝑓) ∈ (𝐺 DProd (𝑆 ↾ 𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆 ↾ 𝐷)))) → (𝑥 ∈ 𝐼 ↦ (𝑓‘𝑥)) = (𝑥 ∈ 𝐼 ↦ 0 )) |
40 | 18, 39 | eqtrd 2779 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 }) ∧ ((𝐺 Σg
𝑓) ∈ (𝐺 DProd (𝑆 ↾ 𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆 ↾ 𝐷)))) → 𝑓 = (𝑥 ∈ 𝐼 ↦ 0 )) |
41 | 40 | oveq2d 7284 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 }) ∧ ((𝐺 Σg
𝑓) ∈ (𝐺 DProd (𝑆 ↾ 𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆 ↾ 𝐷)))) → (𝐺 Σg 𝑓) = (𝐺 Σg (𝑥 ∈ 𝐼 ↦ 0 ))) |
42 | | dprdgrp 19589 |
. . . . . . . . . . . . . 14
⊢ (𝐺dom DProd 𝑆 → 𝐺 ∈ Grp) |
43 | | grpmnd 18565 |
. . . . . . . . . . . . . 14
⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) |
44 | 2, 42, 43 | 3syl 18 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐺 ∈ Mnd) |
45 | 2, 3 | dprddomcld 19585 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐼 ∈ V) |
46 | 9 | gsumz 18455 |
. . . . . . . . . . . . 13
⊢ ((𝐺 ∈ Mnd ∧ 𝐼 ∈ V) → (𝐺 Σg
(𝑥 ∈ 𝐼 ↦ 0 )) = 0 ) |
47 | 44, 45, 46 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ 𝐼 ↦ 0 )) = 0 ) |
48 | 47 | ad2antrr 722 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 }) ∧ ((𝐺 Σg
𝑓) ∈ (𝐺 DProd (𝑆 ↾ 𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆 ↾ 𝐷)))) → (𝐺 Σg (𝑥 ∈ 𝐼 ↦ 0 )) = 0 ) |
49 | 41, 48 | eqtrd 2779 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 }) ∧ ((𝐺 Σg
𝑓) ∈ (𝐺 DProd (𝑆 ↾ 𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆 ↾ 𝐷)))) → (𝐺 Σg 𝑓) = 0 ) |
50 | 49 | ex 412 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 }) → (((𝐺 Σg
𝑓) ∈ (𝐺 DProd (𝑆 ↾ 𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆 ↾ 𝐷))) → (𝐺 Σg 𝑓) = 0 )) |
51 | | eleq1 2827 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝐺 Σg 𝑓) → (𝑥 ∈ ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) ↔ (𝐺 Σg 𝑓) ∈ ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))))) |
52 | | elin 3907 |
. . . . . . . . . . 11
⊢ ((𝐺 Σg
𝑓) ∈ ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) ↔ ((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆 ↾ 𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆 ↾ 𝐷)))) |
53 | 51, 52 | bitrdi 286 |
. . . . . . . . . 10
⊢ (𝑥 = (𝐺 Σg 𝑓) → (𝑥 ∈ ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) ↔ ((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆 ↾ 𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆 ↾ 𝐷))))) |
54 | | velsn 4582 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ { 0 } ↔ 𝑥 = 0 ) |
55 | | eqeq1 2743 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝐺 Σg 𝑓) → (𝑥 = 0 ↔ (𝐺 Σg 𝑓) = 0 )) |
56 | 54, 55 | syl5bb 282 |
. . . . . . . . . 10
⊢ (𝑥 = (𝐺 Σg 𝑓) → (𝑥 ∈ { 0 } ↔ (𝐺 Σg
𝑓) = 0 )) |
57 | 53, 56 | imbi12d 344 |
. . . . . . . . 9
⊢ (𝑥 = (𝐺 Σg 𝑓) → ((𝑥 ∈ ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) → 𝑥 ∈ { 0 }) ↔ (((𝐺 Σg
𝑓) ∈ (𝐺 DProd (𝑆 ↾ 𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆 ↾ 𝐷))) → (𝐺 Σg 𝑓) = 0 ))) |
58 | 50, 57 | syl5ibrcom 246 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 }) → (𝑥 = (𝐺 Σg 𝑓) → (𝑥 ∈ ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) → 𝑥 ∈ { 0 }))) |
59 | 58 | rexlimdva 3214 |
. . . . . . 7
⊢ (𝜑 → (∃𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 }𝑥 = (𝐺 Σg 𝑓) → (𝑥 ∈ ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) → 𝑥 ∈ { 0 }))) |
60 | 59 | adantld 490 |
. . . . . 6
⊢ (𝜑 → ((𝐺dom DProd 𝑆 ∧ ∃𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 }𝑥 = (𝐺 Σg 𝑓)) → (𝑥 ∈ ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) → 𝑥 ∈ { 0 }))) |
61 | 12, 60 | sylbid 239 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ (𝐺 DProd 𝑆) → (𝑥 ∈ ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) → 𝑥 ∈ { 0 }))) |
62 | 61 | com23 86 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) → (𝑥 ∈ (𝐺 DProd 𝑆) → 𝑥 ∈ { 0 }))) |
63 | 8, 62 | mpdd 43 |
. . 3
⊢ (𝜑 → (𝑥 ∈ ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) → 𝑥 ∈ { 0 })) |
64 | 63 | ssrdv 3931 |
. 2
⊢ (𝜑 → ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) ⊆ { 0 }) |
65 | 5 | simpld 494 |
. . . . 5
⊢ (𝜑 → 𝐺dom DProd (𝑆 ↾ 𝐶)) |
66 | | dprdsubg 19608 |
. . . . 5
⊢ (𝐺dom DProd (𝑆 ↾ 𝐶) → (𝐺 DProd (𝑆 ↾ 𝐶)) ∈ (SubGrp‘𝐺)) |
67 | 9 | subg0cl 18744 |
. . . . 5
⊢ ((𝐺 DProd (𝑆 ↾ 𝐶)) ∈ (SubGrp‘𝐺) → 0 ∈ (𝐺 DProd (𝑆 ↾ 𝐶))) |
68 | 65, 66, 67 | 3syl 18 |
. . . 4
⊢ (𝜑 → 0 ∈ (𝐺 DProd (𝑆 ↾ 𝐶))) |
69 | 2, 3, 33 | dprdres 19612 |
. . . . . 6
⊢ (𝜑 → (𝐺dom DProd (𝑆 ↾ 𝐷) ∧ (𝐺 DProd (𝑆 ↾ 𝐷)) ⊆ (𝐺 DProd 𝑆))) |
70 | 69 | simpld 494 |
. . . . 5
⊢ (𝜑 → 𝐺dom DProd (𝑆 ↾ 𝐷)) |
71 | | dprdsubg 19608 |
. . . . 5
⊢ (𝐺dom DProd (𝑆 ↾ 𝐷) → (𝐺 DProd (𝑆 ↾ 𝐷)) ∈ (SubGrp‘𝐺)) |
72 | 9 | subg0cl 18744 |
. . . . 5
⊢ ((𝐺 DProd (𝑆 ↾ 𝐷)) ∈ (SubGrp‘𝐺) → 0 ∈ (𝐺 DProd (𝑆 ↾ 𝐷))) |
73 | 70, 71, 72 | 3syl 18 |
. . . 4
⊢ (𝜑 → 0 ∈ (𝐺 DProd (𝑆 ↾ 𝐷))) |
74 | 68, 73 | elind 4132 |
. . 3
⊢ (𝜑 → 0 ∈ ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷)))) |
75 | 74 | snssd 4747 |
. 2
⊢ (𝜑 → { 0 } ⊆ ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷)))) |
76 | 64, 75 | eqssd 3942 |
1
⊢ (𝜑 → ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) = { 0 }) |