MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprddisj2 Structured version   Visualization version   GIF version

Theorem dprddisj2 19155
Description: The function 𝑆 is a family of subgroups. (Contributed by Mario Carneiro, 26-Apr-2016.) (Revised by AV, 14-Jul-2019.)
Hypotheses
Ref Expression
dprdcntz2.1 (𝜑𝐺dom DProd 𝑆)
dprdcntz2.2 (𝜑 → dom 𝑆 = 𝐼)
dprdcntz2.c (𝜑𝐶𝐼)
dprdcntz2.d (𝜑𝐷𝐼)
dprdcntz2.i (𝜑 → (𝐶𝐷) = ∅)
dprddisj2.0 0 = (0g𝐺)
Assertion
Ref Expression
dprddisj2 (𝜑 → ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) = { 0 })

Proof of Theorem dprddisj2
Dummy variables 𝑓 𝑖 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss1 4205 . . . . . 6 ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) ⊆ (𝐺 DProd (𝑆𝐶))
2 dprdcntz2.1 . . . . . . . 8 (𝜑𝐺dom DProd 𝑆)
3 dprdcntz2.2 . . . . . . . 8 (𝜑 → dom 𝑆 = 𝐼)
4 dprdcntz2.c . . . . . . . 8 (𝜑𝐶𝐼)
52, 3, 4dprdres 19144 . . . . . . 7 (𝜑 → (𝐺dom DProd (𝑆𝐶) ∧ (𝐺 DProd (𝑆𝐶)) ⊆ (𝐺 DProd 𝑆)))
65simprd 498 . . . . . 6 (𝜑 → (𝐺 DProd (𝑆𝐶)) ⊆ (𝐺 DProd 𝑆))
71, 6sstrid 3978 . . . . 5 (𝜑 → ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) ⊆ (𝐺 DProd 𝑆))
87sseld 3966 . . . 4 (𝜑 → (𝑥 ∈ ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) → 𝑥 ∈ (𝐺 DProd 𝑆)))
9 dprddisj2.0 . . . . . . . 8 0 = (0g𝐺)
10 eqid 2821 . . . . . . . 8 {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 } = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
119, 10eldprd 19120 . . . . . . 7 (dom 𝑆 = 𝐼 → (𝑥 ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }𝑥 = (𝐺 Σg 𝑓))))
123, 11syl 17 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }𝑥 = (𝐺 Σg 𝑓))))
132ad2antrr 724 . . . . . . . . . . . . . . 15 (((𝜑𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }) ∧ ((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷)))) → 𝐺dom DProd 𝑆)
143ad2antrr 724 . . . . . . . . . . . . . . 15 (((𝜑𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }) ∧ ((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷)))) → dom 𝑆 = 𝐼)
15 simplr 767 . . . . . . . . . . . . . . 15 (((𝜑𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }) ∧ ((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷)))) → 𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 })
16 eqid 2821 . . . . . . . . . . . . . . 15 (Base‘𝐺) = (Base‘𝐺)
1710, 13, 14, 15, 16dprdff 19128 . . . . . . . . . . . . . 14 (((𝜑𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }) ∧ ((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷)))) → 𝑓:𝐼⟶(Base‘𝐺))
1817feqmptd 6728 . . . . . . . . . . . . 13 (((𝜑𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }) ∧ ((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷)))) → 𝑓 = (𝑥𝐼 ↦ (𝑓𝑥)))
19 dprdcntz2.i . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐶𝐷) = ∅)
2019difeq2d 4099 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐼 ∖ (𝐶𝐷)) = (𝐼 ∖ ∅))
21 difindi 4258 . . . . . . . . . . . . . . . . . . . 20 (𝐼 ∖ (𝐶𝐷)) = ((𝐼𝐶) ∪ (𝐼𝐷))
22 dif0 4332 . . . . . . . . . . . . . . . . . . . 20 (𝐼 ∖ ∅) = 𝐼
2320, 21, 223eqtr3g 2879 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝐼𝐶) ∪ (𝐼𝐷)) = 𝐼)
24 eqimss2 4024 . . . . . . . . . . . . . . . . . . 19 (((𝐼𝐶) ∪ (𝐼𝐷)) = 𝐼𝐼 ⊆ ((𝐼𝐶) ∪ (𝐼𝐷)))
2523, 24syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝐼 ⊆ ((𝐼𝐶) ∪ (𝐼𝐷)))
2625ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((𝜑𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }) ∧ ((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷)))) → 𝐼 ⊆ ((𝐼𝐶) ∪ (𝐼𝐷)))
2726sselda 3967 . . . . . . . . . . . . . . . 16 ((((𝜑𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }) ∧ ((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷)))) ∧ 𝑥𝐼) → 𝑥 ∈ ((𝐼𝐶) ∪ (𝐼𝐷)))
28 elun 4125 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ((𝐼𝐶) ∪ (𝐼𝐷)) ↔ (𝑥 ∈ (𝐼𝐶) ∨ 𝑥 ∈ (𝐼𝐷)))
2927, 28sylib 220 . . . . . . . . . . . . . . 15 ((((𝜑𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }) ∧ ((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷)))) ∧ 𝑥𝐼) → (𝑥 ∈ (𝐼𝐶) ∨ 𝑥 ∈ (𝐼𝐷)))
304ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((𝜑𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }) ∧ ((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷)))) → 𝐶𝐼)
31 simprl 769 . . . . . . . . . . . . . . . . 17 (((𝜑𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }) ∧ ((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷)))) → (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)))
329, 10, 13, 14, 30, 15, 31dmdprdsplitlem 19153 . . . . . . . . . . . . . . . 16 ((((𝜑𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }) ∧ ((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷)))) ∧ 𝑥 ∈ (𝐼𝐶)) → (𝑓𝑥) = 0 )
33 dprdcntz2.d . . . . . . . . . . . . . . . . . 18 (𝜑𝐷𝐼)
3433ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((𝜑𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }) ∧ ((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷)))) → 𝐷𝐼)
35 simprr 771 . . . . . . . . . . . . . . . . 17 (((𝜑𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }) ∧ ((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷)))) → (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷)))
369, 10, 13, 14, 34, 15, 35dmdprdsplitlem 19153 . . . . . . . . . . . . . . . 16 ((((𝜑𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }) ∧ ((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷)))) ∧ 𝑥 ∈ (𝐼𝐷)) → (𝑓𝑥) = 0 )
3732, 36jaodan 954 . . . . . . . . . . . . . . 15 ((((𝜑𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }) ∧ ((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷)))) ∧ (𝑥 ∈ (𝐼𝐶) ∨ 𝑥 ∈ (𝐼𝐷))) → (𝑓𝑥) = 0 )
3829, 37syldan 593 . . . . . . . . . . . . . 14 ((((𝜑𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }) ∧ ((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷)))) ∧ 𝑥𝐼) → (𝑓𝑥) = 0 )
3938mpteq2dva 5154 . . . . . . . . . . . . 13 (((𝜑𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }) ∧ ((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷)))) → (𝑥𝐼 ↦ (𝑓𝑥)) = (𝑥𝐼0 ))
4018, 39eqtrd 2856 . . . . . . . . . . . 12 (((𝜑𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }) ∧ ((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷)))) → 𝑓 = (𝑥𝐼0 ))
4140oveq2d 7166 . . . . . . . . . . 11 (((𝜑𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }) ∧ ((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷)))) → (𝐺 Σg 𝑓) = (𝐺 Σg (𝑥𝐼0 )))
42 dprdgrp 19121 . . . . . . . . . . . . . 14 (𝐺dom DProd 𝑆𝐺 ∈ Grp)
43 grpmnd 18104 . . . . . . . . . . . . . 14 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
442, 42, 433syl 18 . . . . . . . . . . . . 13 (𝜑𝐺 ∈ Mnd)
452, 3dprddomcld 19117 . . . . . . . . . . . . 13 (𝜑𝐼 ∈ V)
469gsumz 17994 . . . . . . . . . . . . 13 ((𝐺 ∈ Mnd ∧ 𝐼 ∈ V) → (𝐺 Σg (𝑥𝐼0 )) = 0 )
4744, 45, 46syl2anc 586 . . . . . . . . . . . 12 (𝜑 → (𝐺 Σg (𝑥𝐼0 )) = 0 )
4847ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }) ∧ ((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷)))) → (𝐺 Σg (𝑥𝐼0 )) = 0 )
4941, 48eqtrd 2856 . . . . . . . . . 10 (((𝜑𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }) ∧ ((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷)))) → (𝐺 Σg 𝑓) = 0 )
5049ex 415 . . . . . . . . 9 ((𝜑𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }) → (((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷))) → (𝐺 Σg 𝑓) = 0 ))
51 eleq1 2900 . . . . . . . . . . 11 (𝑥 = (𝐺 Σg 𝑓) → (𝑥 ∈ ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) ↔ (𝐺 Σg 𝑓) ∈ ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷)))))
52 elin 4169 . . . . . . . . . . 11 ((𝐺 Σg 𝑓) ∈ ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) ↔ ((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷))))
5351, 52syl6bb 289 . . . . . . . . . 10 (𝑥 = (𝐺 Σg 𝑓) → (𝑥 ∈ ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) ↔ ((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷)))))
54 velsn 4577 . . . . . . . . . . 11 (𝑥 ∈ { 0 } ↔ 𝑥 = 0 )
55 eqeq1 2825 . . . . . . . . . . 11 (𝑥 = (𝐺 Σg 𝑓) → (𝑥 = 0 ↔ (𝐺 Σg 𝑓) = 0 ))
5654, 55syl5bb 285 . . . . . . . . . 10 (𝑥 = (𝐺 Σg 𝑓) → (𝑥 ∈ { 0 } ↔ (𝐺 Σg 𝑓) = 0 ))
5753, 56imbi12d 347 . . . . . . . . 9 (𝑥 = (𝐺 Σg 𝑓) → ((𝑥 ∈ ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) → 𝑥 ∈ { 0 }) ↔ (((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷))) → (𝐺 Σg 𝑓) = 0 )))
5850, 57syl5ibrcom 249 . . . . . . . 8 ((𝜑𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }) → (𝑥 = (𝐺 Σg 𝑓) → (𝑥 ∈ ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) → 𝑥 ∈ { 0 })))
5958rexlimdva 3284 . . . . . . 7 (𝜑 → (∃𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }𝑥 = (𝐺 Σg 𝑓) → (𝑥 ∈ ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) → 𝑥 ∈ { 0 })))
6059adantld 493 . . . . . 6 (𝜑 → ((𝐺dom DProd 𝑆 ∧ ∃𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }𝑥 = (𝐺 Σg 𝑓)) → (𝑥 ∈ ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) → 𝑥 ∈ { 0 })))
6112, 60sylbid 242 . . . . 5 (𝜑 → (𝑥 ∈ (𝐺 DProd 𝑆) → (𝑥 ∈ ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) → 𝑥 ∈ { 0 })))
6261com23 86 . . . 4 (𝜑 → (𝑥 ∈ ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) → (𝑥 ∈ (𝐺 DProd 𝑆) → 𝑥 ∈ { 0 })))
638, 62mpdd 43 . . 3 (𝜑 → (𝑥 ∈ ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) → 𝑥 ∈ { 0 }))
6463ssrdv 3973 . 2 (𝜑 → ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) ⊆ { 0 })
655simpld 497 . . . . 5 (𝜑𝐺dom DProd (𝑆𝐶))
66 dprdsubg 19140 . . . . 5 (𝐺dom DProd (𝑆𝐶) → (𝐺 DProd (𝑆𝐶)) ∈ (SubGrp‘𝐺))
679subg0cl 18281 . . . . 5 ((𝐺 DProd (𝑆𝐶)) ∈ (SubGrp‘𝐺) → 0 ∈ (𝐺 DProd (𝑆𝐶)))
6865, 66, 673syl 18 . . . 4 (𝜑0 ∈ (𝐺 DProd (𝑆𝐶)))
692, 3, 33dprdres 19144 . . . . . 6 (𝜑 → (𝐺dom DProd (𝑆𝐷) ∧ (𝐺 DProd (𝑆𝐷)) ⊆ (𝐺 DProd 𝑆)))
7069simpld 497 . . . . 5 (𝜑𝐺dom DProd (𝑆𝐷))
71 dprdsubg 19140 . . . . 5 (𝐺dom DProd (𝑆𝐷) → (𝐺 DProd (𝑆𝐷)) ∈ (SubGrp‘𝐺))
729subg0cl 18281 . . . . 5 ((𝐺 DProd (𝑆𝐷)) ∈ (SubGrp‘𝐺) → 0 ∈ (𝐺 DProd (𝑆𝐷)))
7370, 71, 723syl 18 . . . 4 (𝜑0 ∈ (𝐺 DProd (𝑆𝐷)))
7468, 73elind 4171 . . 3 (𝜑0 ∈ ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))))
7574snssd 4736 . 2 (𝜑 → { 0 } ⊆ ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))))
7664, 75eqssd 3984 1 (𝜑 → ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) = { 0 })
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843   = wceq 1533  wcel 2110  wrex 3139  {crab 3142  Vcvv 3495  cdif 3933  cun 3934  cin 3935  wss 3936  c0 4291  {csn 4561   class class class wbr 5059  cmpt 5139  dom cdm 5550  cres 5552  cfv 6350  (class class class)co 7150  Xcixp 8455   finSupp cfsupp 8827  Basecbs 16477  0gc0g 16707   Σg cgsu 16708  Mndcmnd 17905  Grpcgrp 18097  SubGrpcsubg 18267   DProd cdprd 19109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-iin 4915  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-se 5510  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-isom 6359  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7575  df-1st 7683  df-2nd 7684  df-supp 7825  df-tpos 7886  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-map 8402  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12887  df-fzo 13028  df-seq 13364  df-hash 13685  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-0g 16709  df-gsum 16710  df-mre 16851  df-mrc 16852  df-acs 16854  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-mhm 17950  df-submnd 17951  df-grp 18100  df-minusg 18101  df-sbg 18102  df-mulg 18219  df-subg 18270  df-ghm 18350  df-gim 18393  df-cntz 18441  df-oppg 18468  df-cmn 18902  df-dprd 19111
This theorem is referenced by:  dmdprdsplit  19163  ablfac1eulem  19188  ablfac1eu  19189
  Copyright terms: Public domain W3C validator