MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprddisj2 Structured version   Visualization version   GIF version

Theorem dprddisj2 19911
Description: The function 𝑆 is a family of subgroups. (Contributed by Mario Carneiro, 26-Apr-2016.) (Revised by AV, 14-Jul-2019.)
Hypotheses
Ref Expression
dprdcntz2.1 (𝜑𝐺dom DProd 𝑆)
dprdcntz2.2 (𝜑 → dom 𝑆 = 𝐼)
dprdcntz2.c (𝜑𝐶𝐼)
dprdcntz2.d (𝜑𝐷𝐼)
dprdcntz2.i (𝜑 → (𝐶𝐷) = ∅)
dprddisj2.0 0 = (0g𝐺)
Assertion
Ref Expression
dprddisj2 (𝜑 → ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) = { 0 })

Proof of Theorem dprddisj2
Dummy variables 𝑓 𝑖 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss1 4228 . . . . . 6 ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) ⊆ (𝐺 DProd (𝑆𝐶))
2 dprdcntz2.1 . . . . . . . 8 (𝜑𝐺dom DProd 𝑆)
3 dprdcntz2.2 . . . . . . . 8 (𝜑 → dom 𝑆 = 𝐼)
4 dprdcntz2.c . . . . . . . 8 (𝜑𝐶𝐼)
52, 3, 4dprdres 19900 . . . . . . 7 (𝜑 → (𝐺dom DProd (𝑆𝐶) ∧ (𝐺 DProd (𝑆𝐶)) ⊆ (𝐺 DProd 𝑆)))
65simprd 496 . . . . . 6 (𝜑 → (𝐺 DProd (𝑆𝐶)) ⊆ (𝐺 DProd 𝑆))
71, 6sstrid 3993 . . . . 5 (𝜑 → ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) ⊆ (𝐺 DProd 𝑆))
87sseld 3981 . . . 4 (𝜑 → (𝑥 ∈ ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) → 𝑥 ∈ (𝐺 DProd 𝑆)))
9 dprddisj2.0 . . . . . . . 8 0 = (0g𝐺)
10 eqid 2732 . . . . . . . 8 {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 } = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
119, 10eldprd 19876 . . . . . . 7 (dom 𝑆 = 𝐼 → (𝑥 ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }𝑥 = (𝐺 Σg 𝑓))))
123, 11syl 17 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }𝑥 = (𝐺 Σg 𝑓))))
132ad2antrr 724 . . . . . . . . . . . . . . 15 (((𝜑𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }) ∧ ((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷)))) → 𝐺dom DProd 𝑆)
143ad2antrr 724 . . . . . . . . . . . . . . 15 (((𝜑𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }) ∧ ((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷)))) → dom 𝑆 = 𝐼)
15 simplr 767 . . . . . . . . . . . . . . 15 (((𝜑𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }) ∧ ((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷)))) → 𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 })
16 eqid 2732 . . . . . . . . . . . . . . 15 (Base‘𝐺) = (Base‘𝐺)
1710, 13, 14, 15, 16dprdff 19884 . . . . . . . . . . . . . 14 (((𝜑𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }) ∧ ((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷)))) → 𝑓:𝐼⟶(Base‘𝐺))
1817feqmptd 6960 . . . . . . . . . . . . 13 (((𝜑𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }) ∧ ((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷)))) → 𝑓 = (𝑥𝐼 ↦ (𝑓𝑥)))
19 dprdcntz2.i . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐶𝐷) = ∅)
2019difeq2d 4122 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐼 ∖ (𝐶𝐷)) = (𝐼 ∖ ∅))
21 difindi 4281 . . . . . . . . . . . . . . . . . . . 20 (𝐼 ∖ (𝐶𝐷)) = ((𝐼𝐶) ∪ (𝐼𝐷))
22 dif0 4372 . . . . . . . . . . . . . . . . . . . 20 (𝐼 ∖ ∅) = 𝐼
2320, 21, 223eqtr3g 2795 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝐼𝐶) ∪ (𝐼𝐷)) = 𝐼)
24 eqimss2 4041 . . . . . . . . . . . . . . . . . . 19 (((𝐼𝐶) ∪ (𝐼𝐷)) = 𝐼𝐼 ⊆ ((𝐼𝐶) ∪ (𝐼𝐷)))
2523, 24syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝐼 ⊆ ((𝐼𝐶) ∪ (𝐼𝐷)))
2625ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((𝜑𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }) ∧ ((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷)))) → 𝐼 ⊆ ((𝐼𝐶) ∪ (𝐼𝐷)))
2726sselda 3982 . . . . . . . . . . . . . . . 16 ((((𝜑𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }) ∧ ((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷)))) ∧ 𝑥𝐼) → 𝑥 ∈ ((𝐼𝐶) ∪ (𝐼𝐷)))
28 elun 4148 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ((𝐼𝐶) ∪ (𝐼𝐷)) ↔ (𝑥 ∈ (𝐼𝐶) ∨ 𝑥 ∈ (𝐼𝐷)))
2927, 28sylib 217 . . . . . . . . . . . . . . 15 ((((𝜑𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }) ∧ ((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷)))) ∧ 𝑥𝐼) → (𝑥 ∈ (𝐼𝐶) ∨ 𝑥 ∈ (𝐼𝐷)))
304ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((𝜑𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }) ∧ ((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷)))) → 𝐶𝐼)
31 simprl 769 . . . . . . . . . . . . . . . . 17 (((𝜑𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }) ∧ ((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷)))) → (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)))
329, 10, 13, 14, 30, 15, 31dmdprdsplitlem 19909 . . . . . . . . . . . . . . . 16 ((((𝜑𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }) ∧ ((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷)))) ∧ 𝑥 ∈ (𝐼𝐶)) → (𝑓𝑥) = 0 )
33 dprdcntz2.d . . . . . . . . . . . . . . . . . 18 (𝜑𝐷𝐼)
3433ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((𝜑𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }) ∧ ((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷)))) → 𝐷𝐼)
35 simprr 771 . . . . . . . . . . . . . . . . 17 (((𝜑𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }) ∧ ((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷)))) → (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷)))
369, 10, 13, 14, 34, 15, 35dmdprdsplitlem 19909 . . . . . . . . . . . . . . . 16 ((((𝜑𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }) ∧ ((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷)))) ∧ 𝑥 ∈ (𝐼𝐷)) → (𝑓𝑥) = 0 )
3732, 36jaodan 956 . . . . . . . . . . . . . . 15 ((((𝜑𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }) ∧ ((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷)))) ∧ (𝑥 ∈ (𝐼𝐶) ∨ 𝑥 ∈ (𝐼𝐷))) → (𝑓𝑥) = 0 )
3829, 37syldan 591 . . . . . . . . . . . . . 14 ((((𝜑𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }) ∧ ((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷)))) ∧ 𝑥𝐼) → (𝑓𝑥) = 0 )
3938mpteq2dva 5248 . . . . . . . . . . . . 13 (((𝜑𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }) ∧ ((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷)))) → (𝑥𝐼 ↦ (𝑓𝑥)) = (𝑥𝐼0 ))
4018, 39eqtrd 2772 . . . . . . . . . . . 12 (((𝜑𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }) ∧ ((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷)))) → 𝑓 = (𝑥𝐼0 ))
4140oveq2d 7427 . . . . . . . . . . 11 (((𝜑𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }) ∧ ((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷)))) → (𝐺 Σg 𝑓) = (𝐺 Σg (𝑥𝐼0 )))
42 dprdgrp 19877 . . . . . . . . . . . . . 14 (𝐺dom DProd 𝑆𝐺 ∈ Grp)
43 grpmnd 18828 . . . . . . . . . . . . . 14 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
442, 42, 433syl 18 . . . . . . . . . . . . 13 (𝜑𝐺 ∈ Mnd)
452, 3dprddomcld 19873 . . . . . . . . . . . . 13 (𝜑𝐼 ∈ V)
469gsumz 18719 . . . . . . . . . . . . 13 ((𝐺 ∈ Mnd ∧ 𝐼 ∈ V) → (𝐺 Σg (𝑥𝐼0 )) = 0 )
4744, 45, 46syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (𝐺 Σg (𝑥𝐼0 )) = 0 )
4847ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }) ∧ ((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷)))) → (𝐺 Σg (𝑥𝐼0 )) = 0 )
4941, 48eqtrd 2772 . . . . . . . . . 10 (((𝜑𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }) ∧ ((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷)))) → (𝐺 Σg 𝑓) = 0 )
5049ex 413 . . . . . . . . 9 ((𝜑𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }) → (((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷))) → (𝐺 Σg 𝑓) = 0 ))
51 eleq1 2821 . . . . . . . . . . 11 (𝑥 = (𝐺 Σg 𝑓) → (𝑥 ∈ ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) ↔ (𝐺 Σg 𝑓) ∈ ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷)))))
52 elin 3964 . . . . . . . . . . 11 ((𝐺 Σg 𝑓) ∈ ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) ↔ ((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷))))
5351, 52bitrdi 286 . . . . . . . . . 10 (𝑥 = (𝐺 Σg 𝑓) → (𝑥 ∈ ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) ↔ ((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷)))))
54 velsn 4644 . . . . . . . . . . 11 (𝑥 ∈ { 0 } ↔ 𝑥 = 0 )
55 eqeq1 2736 . . . . . . . . . . 11 (𝑥 = (𝐺 Σg 𝑓) → (𝑥 = 0 ↔ (𝐺 Σg 𝑓) = 0 ))
5654, 55bitrid 282 . . . . . . . . . 10 (𝑥 = (𝐺 Σg 𝑓) → (𝑥 ∈ { 0 } ↔ (𝐺 Σg 𝑓) = 0 ))
5753, 56imbi12d 344 . . . . . . . . 9 (𝑥 = (𝐺 Σg 𝑓) → ((𝑥 ∈ ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) → 𝑥 ∈ { 0 }) ↔ (((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷))) → (𝐺 Σg 𝑓) = 0 )))
5850, 57syl5ibrcom 246 . . . . . . . 8 ((𝜑𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }) → (𝑥 = (𝐺 Σg 𝑓) → (𝑥 ∈ ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) → 𝑥 ∈ { 0 })))
5958rexlimdva 3155 . . . . . . 7 (𝜑 → (∃𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }𝑥 = (𝐺 Σg 𝑓) → (𝑥 ∈ ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) → 𝑥 ∈ { 0 })))
6059adantld 491 . . . . . 6 (𝜑 → ((𝐺dom DProd 𝑆 ∧ ∃𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }𝑥 = (𝐺 Σg 𝑓)) → (𝑥 ∈ ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) → 𝑥 ∈ { 0 })))
6112, 60sylbid 239 . . . . 5 (𝜑 → (𝑥 ∈ (𝐺 DProd 𝑆) → (𝑥 ∈ ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) → 𝑥 ∈ { 0 })))
6261com23 86 . . . 4 (𝜑 → (𝑥 ∈ ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) → (𝑥 ∈ (𝐺 DProd 𝑆) → 𝑥 ∈ { 0 })))
638, 62mpdd 43 . . 3 (𝜑 → (𝑥 ∈ ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) → 𝑥 ∈ { 0 }))
6463ssrdv 3988 . 2 (𝜑 → ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) ⊆ { 0 })
655simpld 495 . . . . 5 (𝜑𝐺dom DProd (𝑆𝐶))
66 dprdsubg 19896 . . . . 5 (𝐺dom DProd (𝑆𝐶) → (𝐺 DProd (𝑆𝐶)) ∈ (SubGrp‘𝐺))
679subg0cl 19016 . . . . 5 ((𝐺 DProd (𝑆𝐶)) ∈ (SubGrp‘𝐺) → 0 ∈ (𝐺 DProd (𝑆𝐶)))
6865, 66, 673syl 18 . . . 4 (𝜑0 ∈ (𝐺 DProd (𝑆𝐶)))
692, 3, 33dprdres 19900 . . . . . 6 (𝜑 → (𝐺dom DProd (𝑆𝐷) ∧ (𝐺 DProd (𝑆𝐷)) ⊆ (𝐺 DProd 𝑆)))
7069simpld 495 . . . . 5 (𝜑𝐺dom DProd (𝑆𝐷))
71 dprdsubg 19896 . . . . 5 (𝐺dom DProd (𝑆𝐷) → (𝐺 DProd (𝑆𝐷)) ∈ (SubGrp‘𝐺))
729subg0cl 19016 . . . . 5 ((𝐺 DProd (𝑆𝐷)) ∈ (SubGrp‘𝐺) → 0 ∈ (𝐺 DProd (𝑆𝐷)))
7370, 71, 723syl 18 . . . 4 (𝜑0 ∈ (𝐺 DProd (𝑆𝐷)))
7468, 73elind 4194 . . 3 (𝜑0 ∈ ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))))
7574snssd 4812 . 2 (𝜑 → { 0 } ⊆ ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))))
7664, 75eqssd 3999 1 (𝜑 → ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) = { 0 })
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 845   = wceq 1541  wcel 2106  wrex 3070  {crab 3432  Vcvv 3474  cdif 3945  cun 3946  cin 3947  wss 3948  c0 4322  {csn 4628   class class class wbr 5148  cmpt 5231  dom cdm 5676  cres 5678  cfv 6543  (class class class)co 7411  Xcixp 8893   finSupp cfsupp 9363  Basecbs 17146  0gc0g 17387   Σg cgsu 17388  Mndcmnd 18627  Grpcgrp 18821  SubGrpcsubg 19002   DProd cdprd 19865
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-of 7672  df-om 7858  df-1st 7977  df-2nd 7978  df-supp 8149  df-tpos 8213  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-er 8705  df-map 8824  df-ixp 8894  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-fsupp 9364  df-oi 9507  df-card 9936  df-pnf 11252  df-mnf 11253  df-xr 11254  df-ltxr 11255  df-le 11256  df-sub 11448  df-neg 11449  df-nn 12215  df-2 12277  df-n0 12475  df-z 12561  df-uz 12825  df-fz 13487  df-fzo 13630  df-seq 13969  df-hash 14293  df-sets 17099  df-slot 17117  df-ndx 17129  df-base 17147  df-ress 17176  df-plusg 17212  df-0g 17389  df-gsum 17390  df-mre 17532  df-mrc 17533  df-acs 17535  df-mgm 18563  df-sgrp 18612  df-mnd 18628  df-mhm 18673  df-submnd 18674  df-grp 18824  df-minusg 18825  df-sbg 18826  df-mulg 18953  df-subg 19005  df-ghm 19092  df-gim 19135  df-cntz 19183  df-oppg 19212  df-cmn 19652  df-dprd 19867
This theorem is referenced by:  dmdprdsplit  19919  ablfac1eulem  19944  ablfac1eu  19945
  Copyright terms: Public domain W3C validator