MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprddisj2 Structured version   Visualization version   GIF version

Theorem dprddisj2 18825
Description: The function 𝑆 is a family of subgroups. (Contributed by Mario Carneiro, 26-Apr-2016.) (Revised by AV, 14-Jul-2019.)
Hypotheses
Ref Expression
dprdcntz2.1 (𝜑𝐺dom DProd 𝑆)
dprdcntz2.2 (𝜑 → dom 𝑆 = 𝐼)
dprdcntz2.c (𝜑𝐶𝐼)
dprdcntz2.d (𝜑𝐷𝐼)
dprdcntz2.i (𝜑 → (𝐶𝐷) = ∅)
dprddisj2.0 0 = (0g𝐺)
Assertion
Ref Expression
dprddisj2 (𝜑 → ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) = { 0 })

Proof of Theorem dprddisj2
Dummy variables 𝑓 𝑖 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss1 4052 . . . . . 6 ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) ⊆ (𝐺 DProd (𝑆𝐶))
2 dprdcntz2.1 . . . . . . . 8 (𝜑𝐺dom DProd 𝑆)
3 dprdcntz2.2 . . . . . . . 8 (𝜑 → dom 𝑆 = 𝐼)
4 dprdcntz2.c . . . . . . . 8 (𝜑𝐶𝐼)
52, 3, 4dprdres 18814 . . . . . . 7 (𝜑 → (𝐺dom DProd (𝑆𝐶) ∧ (𝐺 DProd (𝑆𝐶)) ⊆ (𝐺 DProd 𝑆)))
65simprd 491 . . . . . 6 (𝜑 → (𝐺 DProd (𝑆𝐶)) ⊆ (𝐺 DProd 𝑆))
71, 6syl5ss 3831 . . . . 5 (𝜑 → ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) ⊆ (𝐺 DProd 𝑆))
87sseld 3819 . . . 4 (𝜑 → (𝑥 ∈ ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) → 𝑥 ∈ (𝐺 DProd 𝑆)))
9 dprddisj2.0 . . . . . . . 8 0 = (0g𝐺)
10 eqid 2777 . . . . . . . 8 {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 } = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
119, 10eldprd 18790 . . . . . . 7 (dom 𝑆 = 𝐼 → (𝑥 ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }𝑥 = (𝐺 Σg 𝑓))))
123, 11syl 17 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }𝑥 = (𝐺 Σg 𝑓))))
132ad2antrr 716 . . . . . . . . . . . . . . 15 (((𝜑𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }) ∧ ((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷)))) → 𝐺dom DProd 𝑆)
143ad2antrr 716 . . . . . . . . . . . . . . 15 (((𝜑𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }) ∧ ((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷)))) → dom 𝑆 = 𝐼)
15 simplr 759 . . . . . . . . . . . . . . 15 (((𝜑𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }) ∧ ((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷)))) → 𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 })
16 eqid 2777 . . . . . . . . . . . . . . 15 (Base‘𝐺) = (Base‘𝐺)
1710, 13, 14, 15, 16dprdff 18798 . . . . . . . . . . . . . 14 (((𝜑𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }) ∧ ((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷)))) → 𝑓:𝐼⟶(Base‘𝐺))
1817feqmptd 6509 . . . . . . . . . . . . 13 (((𝜑𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }) ∧ ((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷)))) → 𝑓 = (𝑥𝐼 ↦ (𝑓𝑥)))
19 dprdcntz2.i . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐶𝐷) = ∅)
2019difeq2d 3950 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐼 ∖ (𝐶𝐷)) = (𝐼 ∖ ∅))
21 difindi 4107 . . . . . . . . . . . . . . . . . . . 20 (𝐼 ∖ (𝐶𝐷)) = ((𝐼𝐶) ∪ (𝐼𝐷))
22 dif0 4180 . . . . . . . . . . . . . . . . . . . 20 (𝐼 ∖ ∅) = 𝐼
2320, 21, 223eqtr3g 2836 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝐼𝐶) ∪ (𝐼𝐷)) = 𝐼)
24 eqimss2 3876 . . . . . . . . . . . . . . . . . . 19 (((𝐼𝐶) ∪ (𝐼𝐷)) = 𝐼𝐼 ⊆ ((𝐼𝐶) ∪ (𝐼𝐷)))
2523, 24syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝐼 ⊆ ((𝐼𝐶) ∪ (𝐼𝐷)))
2625ad2antrr 716 . . . . . . . . . . . . . . . . 17 (((𝜑𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }) ∧ ((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷)))) → 𝐼 ⊆ ((𝐼𝐶) ∪ (𝐼𝐷)))
2726sselda 3820 . . . . . . . . . . . . . . . 16 ((((𝜑𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }) ∧ ((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷)))) ∧ 𝑥𝐼) → 𝑥 ∈ ((𝐼𝐶) ∪ (𝐼𝐷)))
28 elun 3975 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ((𝐼𝐶) ∪ (𝐼𝐷)) ↔ (𝑥 ∈ (𝐼𝐶) ∨ 𝑥 ∈ (𝐼𝐷)))
2927, 28sylib 210 . . . . . . . . . . . . . . 15 ((((𝜑𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }) ∧ ((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷)))) ∧ 𝑥𝐼) → (𝑥 ∈ (𝐼𝐶) ∨ 𝑥 ∈ (𝐼𝐷)))
304ad2antrr 716 . . . . . . . . . . . . . . . . 17 (((𝜑𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }) ∧ ((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷)))) → 𝐶𝐼)
31 simprl 761 . . . . . . . . . . . . . . . . 17 (((𝜑𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }) ∧ ((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷)))) → (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)))
329, 10, 13, 14, 30, 15, 31dmdprdsplitlem 18823 . . . . . . . . . . . . . . . 16 ((((𝜑𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }) ∧ ((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷)))) ∧ 𝑥 ∈ (𝐼𝐶)) → (𝑓𝑥) = 0 )
33 dprdcntz2.d . . . . . . . . . . . . . . . . . 18 (𝜑𝐷𝐼)
3433ad2antrr 716 . . . . . . . . . . . . . . . . 17 (((𝜑𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }) ∧ ((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷)))) → 𝐷𝐼)
35 simprr 763 . . . . . . . . . . . . . . . . 17 (((𝜑𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }) ∧ ((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷)))) → (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷)))
369, 10, 13, 14, 34, 15, 35dmdprdsplitlem 18823 . . . . . . . . . . . . . . . 16 ((((𝜑𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }) ∧ ((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷)))) ∧ 𝑥 ∈ (𝐼𝐷)) → (𝑓𝑥) = 0 )
3732, 36jaodan 943 . . . . . . . . . . . . . . 15 ((((𝜑𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }) ∧ ((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷)))) ∧ (𝑥 ∈ (𝐼𝐶) ∨ 𝑥 ∈ (𝐼𝐷))) → (𝑓𝑥) = 0 )
3829, 37syldan 585 . . . . . . . . . . . . . 14 ((((𝜑𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }) ∧ ((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷)))) ∧ 𝑥𝐼) → (𝑓𝑥) = 0 )
3938mpteq2dva 4979 . . . . . . . . . . . . 13 (((𝜑𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }) ∧ ((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷)))) → (𝑥𝐼 ↦ (𝑓𝑥)) = (𝑥𝐼0 ))
4018, 39eqtrd 2813 . . . . . . . . . . . 12 (((𝜑𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }) ∧ ((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷)))) → 𝑓 = (𝑥𝐼0 ))
4140oveq2d 6938 . . . . . . . . . . 11 (((𝜑𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }) ∧ ((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷)))) → (𝐺 Σg 𝑓) = (𝐺 Σg (𝑥𝐼0 )))
42 dprdgrp 18791 . . . . . . . . . . . . . 14 (𝐺dom DProd 𝑆𝐺 ∈ Grp)
43 grpmnd 17816 . . . . . . . . . . . . . 14 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
442, 42, 433syl 18 . . . . . . . . . . . . 13 (𝜑𝐺 ∈ Mnd)
452, 3dprddomcld 18787 . . . . . . . . . . . . 13 (𝜑𝐼 ∈ V)
469gsumz 17760 . . . . . . . . . . . . 13 ((𝐺 ∈ Mnd ∧ 𝐼 ∈ V) → (𝐺 Σg (𝑥𝐼0 )) = 0 )
4744, 45, 46syl2anc 579 . . . . . . . . . . . 12 (𝜑 → (𝐺 Σg (𝑥𝐼0 )) = 0 )
4847ad2antrr 716 . . . . . . . . . . 11 (((𝜑𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }) ∧ ((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷)))) → (𝐺 Σg (𝑥𝐼0 )) = 0 )
4941, 48eqtrd 2813 . . . . . . . . . 10 (((𝜑𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }) ∧ ((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷)))) → (𝐺 Σg 𝑓) = 0 )
5049ex 403 . . . . . . . . 9 ((𝜑𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }) → (((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷))) → (𝐺 Σg 𝑓) = 0 ))
51 eleq1 2846 . . . . . . . . . . 11 (𝑥 = (𝐺 Σg 𝑓) → (𝑥 ∈ ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) ↔ (𝐺 Σg 𝑓) ∈ ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷)))))
52 elin 4018 . . . . . . . . . . 11 ((𝐺 Σg 𝑓) ∈ ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) ↔ ((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷))))
5351, 52syl6bb 279 . . . . . . . . . 10 (𝑥 = (𝐺 Σg 𝑓) → (𝑥 ∈ ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) ↔ ((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷)))))
54 velsn 4413 . . . . . . . . . . 11 (𝑥 ∈ { 0 } ↔ 𝑥 = 0 )
55 eqeq1 2781 . . . . . . . . . . 11 (𝑥 = (𝐺 Σg 𝑓) → (𝑥 = 0 ↔ (𝐺 Σg 𝑓) = 0 ))
5654, 55syl5bb 275 . . . . . . . . . 10 (𝑥 = (𝐺 Σg 𝑓) → (𝑥 ∈ { 0 } ↔ (𝐺 Σg 𝑓) = 0 ))
5753, 56imbi12d 336 . . . . . . . . 9 (𝑥 = (𝐺 Σg 𝑓) → ((𝑥 ∈ ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) → 𝑥 ∈ { 0 }) ↔ (((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷))) → (𝐺 Σg 𝑓) = 0 )))
5850, 57syl5ibrcom 239 . . . . . . . 8 ((𝜑𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }) → (𝑥 = (𝐺 Σg 𝑓) → (𝑥 ∈ ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) → 𝑥 ∈ { 0 })))
5958rexlimdva 3212 . . . . . . 7 (𝜑 → (∃𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }𝑥 = (𝐺 Σg 𝑓) → (𝑥 ∈ ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) → 𝑥 ∈ { 0 })))
6059adantld 486 . . . . . 6 (𝜑 → ((𝐺dom DProd 𝑆 ∧ ∃𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }𝑥 = (𝐺 Σg 𝑓)) → (𝑥 ∈ ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) → 𝑥 ∈ { 0 })))
6112, 60sylbid 232 . . . . 5 (𝜑 → (𝑥 ∈ (𝐺 DProd 𝑆) → (𝑥 ∈ ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) → 𝑥 ∈ { 0 })))
6261com23 86 . . . 4 (𝜑 → (𝑥 ∈ ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) → (𝑥 ∈ (𝐺 DProd 𝑆) → 𝑥 ∈ { 0 })))
638, 62mpdd 43 . . 3 (𝜑 → (𝑥 ∈ ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) → 𝑥 ∈ { 0 }))
6463ssrdv 3826 . 2 (𝜑 → ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) ⊆ { 0 })
655simpld 490 . . . . 5 (𝜑𝐺dom DProd (𝑆𝐶))
66 dprdsubg 18810 . . . . 5 (𝐺dom DProd (𝑆𝐶) → (𝐺 DProd (𝑆𝐶)) ∈ (SubGrp‘𝐺))
679subg0cl 17986 . . . . 5 ((𝐺 DProd (𝑆𝐶)) ∈ (SubGrp‘𝐺) → 0 ∈ (𝐺 DProd (𝑆𝐶)))
6865, 66, 673syl 18 . . . 4 (𝜑0 ∈ (𝐺 DProd (𝑆𝐶)))
692, 3, 33dprdres 18814 . . . . . 6 (𝜑 → (𝐺dom DProd (𝑆𝐷) ∧ (𝐺 DProd (𝑆𝐷)) ⊆ (𝐺 DProd 𝑆)))
7069simpld 490 . . . . 5 (𝜑𝐺dom DProd (𝑆𝐷))
71 dprdsubg 18810 . . . . 5 (𝐺dom DProd (𝑆𝐷) → (𝐺 DProd (𝑆𝐷)) ∈ (SubGrp‘𝐺))
729subg0cl 17986 . . . . 5 ((𝐺 DProd (𝑆𝐷)) ∈ (SubGrp‘𝐺) → 0 ∈ (𝐺 DProd (𝑆𝐷)))
7370, 71, 723syl 18 . . . 4 (𝜑0 ∈ (𝐺 DProd (𝑆𝐷)))
7468, 73elind 4020 . . 3 (𝜑0 ∈ ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))))
7574snssd 4571 . 2 (𝜑 → { 0 } ⊆ ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))))
7664, 75eqssd 3837 1 (𝜑 → ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) = { 0 })
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  wo 836   = wceq 1601  wcel 2106  wrex 3090  {crab 3093  Vcvv 3397  cdif 3788  cun 3789  cin 3790  wss 3791  c0 4140  {csn 4397   class class class wbr 4886  cmpt 4965  dom cdm 5355  cres 5357  cfv 6135  (class class class)co 6922  Xcixp 8194   finSupp cfsupp 8563  Basecbs 16255  0gc0g 16486   Σg cgsu 16487  Mndcmnd 17680  Grpcgrp 17809  SubGrpcsubg 17972   DProd cdprd 18779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-inf2 8835  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-pss 3807  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4672  df-int 4711  df-iun 4755  df-iin 4756  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-se 5315  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-isom 6144  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-of 7174  df-om 7344  df-1st 7445  df-2nd 7446  df-supp 7577  df-tpos 7634  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-oadd 7847  df-er 8026  df-map 8142  df-ixp 8195  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-fsupp 8564  df-oi 8704  df-card 9098  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-nn 11375  df-2 11438  df-n0 11643  df-z 11729  df-uz 11993  df-fz 12644  df-fzo 12785  df-seq 13120  df-hash 13436  df-ndx 16258  df-slot 16259  df-base 16261  df-sets 16262  df-ress 16263  df-plusg 16351  df-0g 16488  df-gsum 16489  df-mre 16632  df-mrc 16633  df-acs 16635  df-mgm 17628  df-sgrp 17670  df-mnd 17681  df-mhm 17721  df-submnd 17722  df-grp 17812  df-minusg 17813  df-sbg 17814  df-mulg 17928  df-subg 17975  df-ghm 18042  df-gim 18085  df-cntz 18133  df-oppg 18159  df-cmn 18581  df-dprd 18781
This theorem is referenced by:  dmdprdsplit  18833  ablfac1eulem  18858  ablfac1eu  18859
  Copyright terms: Public domain W3C validator