| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > unelcarsg | Structured version Visualization version GIF version | ||
| Description: The Caratheodory-measurable sets are closed under pairwise unions. (Contributed by Thierry Arnoux, 21-May-2020.) |
| Ref | Expression |
|---|---|
| carsgval.1 | ⊢ (𝜑 → 𝑂 ∈ 𝑉) |
| carsgval.2 | ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) |
| difelcarsg.1 | ⊢ (𝜑 → 𝐴 ∈ (toCaraSiga‘𝑀)) |
| inelcarsg.1 | ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝑂 ∧ 𝑏 ∈ 𝒫 𝑂) → (𝑀‘(𝑎 ∪ 𝑏)) ≤ ((𝑀‘𝑎) +𝑒 (𝑀‘𝑏))) |
| inelcarsg.2 | ⊢ (𝜑 → 𝐵 ∈ (toCaraSiga‘𝑀)) |
| Ref | Expression |
|---|---|
| unelcarsg | ⊢ (𝜑 → (𝐴 ∪ 𝐵) ∈ (toCaraSiga‘𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | carsgval.1 | . . . . 5 ⊢ (𝜑 → 𝑂 ∈ 𝑉) | |
| 2 | carsgval.2 | . . . . 5 ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) | |
| 3 | difelcarsg.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ (toCaraSiga‘𝑀)) | |
| 4 | 1, 2, 3 | elcarsgss 34306 | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ 𝑂) |
| 5 | dfss4 4234 | . . . 4 ⊢ (𝐴 ⊆ 𝑂 ↔ (𝑂 ∖ (𝑂 ∖ 𝐴)) = 𝐴) | |
| 6 | 4, 5 | sylib 218 | . . 3 ⊢ (𝜑 → (𝑂 ∖ (𝑂 ∖ 𝐴)) = 𝐴) |
| 7 | inelcarsg.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ (toCaraSiga‘𝑀)) | |
| 8 | 1, 2, 7 | elcarsgss 34306 | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ 𝑂) |
| 9 | dfss4 4234 | . . . 4 ⊢ (𝐵 ⊆ 𝑂 ↔ (𝑂 ∖ (𝑂 ∖ 𝐵)) = 𝐵) | |
| 10 | 8, 9 | sylib 218 | . . 3 ⊢ (𝜑 → (𝑂 ∖ (𝑂 ∖ 𝐵)) = 𝐵) |
| 11 | 6, 10 | uneq12d 4134 | . 2 ⊢ (𝜑 → ((𝑂 ∖ (𝑂 ∖ 𝐴)) ∪ (𝑂 ∖ (𝑂 ∖ 𝐵))) = (𝐴 ∪ 𝐵)) |
| 12 | difindi 4257 | . . 3 ⊢ (𝑂 ∖ ((𝑂 ∖ 𝐴) ∩ (𝑂 ∖ 𝐵))) = ((𝑂 ∖ (𝑂 ∖ 𝐴)) ∪ (𝑂 ∖ (𝑂 ∖ 𝐵))) | |
| 13 | 1, 2, 3 | difelcarsg 34307 | . . . . 5 ⊢ (𝜑 → (𝑂 ∖ 𝐴) ∈ (toCaraSiga‘𝑀)) |
| 14 | inelcarsg.1 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝑂 ∧ 𝑏 ∈ 𝒫 𝑂) → (𝑀‘(𝑎 ∪ 𝑏)) ≤ ((𝑀‘𝑎) +𝑒 (𝑀‘𝑏))) | |
| 15 | 1, 2, 7 | difelcarsg 34307 | . . . . 5 ⊢ (𝜑 → (𝑂 ∖ 𝐵) ∈ (toCaraSiga‘𝑀)) |
| 16 | 1, 2, 13, 14, 15 | inelcarsg 34308 | . . . 4 ⊢ (𝜑 → ((𝑂 ∖ 𝐴) ∩ (𝑂 ∖ 𝐵)) ∈ (toCaraSiga‘𝑀)) |
| 17 | 1, 2, 16 | difelcarsg 34307 | . . 3 ⊢ (𝜑 → (𝑂 ∖ ((𝑂 ∖ 𝐴) ∩ (𝑂 ∖ 𝐵))) ∈ (toCaraSiga‘𝑀)) |
| 18 | 12, 17 | eqeltrrid 2834 | . 2 ⊢ (𝜑 → ((𝑂 ∖ (𝑂 ∖ 𝐴)) ∪ (𝑂 ∖ (𝑂 ∖ 𝐵))) ∈ (toCaraSiga‘𝑀)) |
| 19 | 11, 18 | eqeltrrd 2830 | 1 ⊢ (𝜑 → (𝐴 ∪ 𝐵) ∈ (toCaraSiga‘𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∖ cdif 3913 ∪ cun 3914 ∩ cin 3915 ⊆ wss 3916 𝒫 cpw 4565 class class class wbr 5109 ⟶wf 6509 ‘cfv 6513 (class class class)co 7389 0cc0 11074 +∞cpnf 11211 ≤ cle 11215 +𝑒 cxad 13076 [,]cicc 13315 toCaraSigaccarsg 34298 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-po 5548 df-so 5549 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-ov 7392 df-oprab 7393 df-mpo 7394 df-1st 7970 df-2nd 7971 df-er 8673 df-en 8921 df-dom 8922 df-sdom 8923 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-xadd 13079 df-icc 13319 df-carsg 34299 |
| This theorem is referenced by: fiunelcarsg 34313 |
| Copyright terms: Public domain | W3C validator |