Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unelcarsg Structured version   Visualization version   GIF version

Theorem unelcarsg 31578
 Description: The Caratheodory-measurable sets are closed under pairwise unions. (Contributed by Thierry Arnoux, 21-May-2020.)
Hypotheses
Ref Expression
carsgval.1 (𝜑𝑂𝑉)
carsgval.2 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
difelcarsg.1 (𝜑𝐴 ∈ (toCaraSiga‘𝑀))
inelcarsg.1 ((𝜑𝑎 ∈ 𝒫 𝑂𝑏 ∈ 𝒫 𝑂) → (𝑀‘(𝑎𝑏)) ≤ ((𝑀𝑎) +𝑒 (𝑀𝑏)))
inelcarsg.2 (𝜑𝐵 ∈ (toCaraSiga‘𝑀))
Assertion
Ref Expression
unelcarsg (𝜑 → (𝐴𝐵) ∈ (toCaraSiga‘𝑀))
Distinct variable groups:   𝑀,𝑎   𝑂,𝑎   𝜑,𝑎   𝐴,𝑎,𝑏   𝐵,𝑎,𝑏   𝑀,𝑏   𝑂,𝑏   𝜑,𝑏
Allowed substitution hints:   𝑉(𝑎,𝑏)

Proof of Theorem unelcarsg
StepHypRef Expression
1 carsgval.1 . . . . 5 (𝜑𝑂𝑉)
2 carsgval.2 . . . . 5 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
3 difelcarsg.1 . . . . 5 (𝜑𝐴 ∈ (toCaraSiga‘𝑀))
41, 2, 3elcarsgss 31575 . . . 4 (𝜑𝐴𝑂)
5 dfss4 4213 . . . 4 (𝐴𝑂 ↔ (𝑂 ∖ (𝑂𝐴)) = 𝐴)
64, 5sylib 220 . . 3 (𝜑 → (𝑂 ∖ (𝑂𝐴)) = 𝐴)
7 inelcarsg.2 . . . . 5 (𝜑𝐵 ∈ (toCaraSiga‘𝑀))
81, 2, 7elcarsgss 31575 . . . 4 (𝜑𝐵𝑂)
9 dfss4 4213 . . . 4 (𝐵𝑂 ↔ (𝑂 ∖ (𝑂𝐵)) = 𝐵)
108, 9sylib 220 . . 3 (𝜑 → (𝑂 ∖ (𝑂𝐵)) = 𝐵)
116, 10uneq12d 4119 . 2 (𝜑 → ((𝑂 ∖ (𝑂𝐴)) ∪ (𝑂 ∖ (𝑂𝐵))) = (𝐴𝐵))
12 difindi 4236 . . 3 (𝑂 ∖ ((𝑂𝐴) ∩ (𝑂𝐵))) = ((𝑂 ∖ (𝑂𝐴)) ∪ (𝑂 ∖ (𝑂𝐵)))
131, 2, 3difelcarsg 31576 . . . . 5 (𝜑 → (𝑂𝐴) ∈ (toCaraSiga‘𝑀))
14 inelcarsg.1 . . . . 5 ((𝜑𝑎 ∈ 𝒫 𝑂𝑏 ∈ 𝒫 𝑂) → (𝑀‘(𝑎𝑏)) ≤ ((𝑀𝑎) +𝑒 (𝑀𝑏)))
151, 2, 7difelcarsg 31576 . . . . 5 (𝜑 → (𝑂𝐵) ∈ (toCaraSiga‘𝑀))
161, 2, 13, 14, 15inelcarsg 31577 . . . 4 (𝜑 → ((𝑂𝐴) ∩ (𝑂𝐵)) ∈ (toCaraSiga‘𝑀))
171, 2, 16difelcarsg 31576 . . 3 (𝜑 → (𝑂 ∖ ((𝑂𝐴) ∩ (𝑂𝐵))) ∈ (toCaraSiga‘𝑀))
1812, 17eqeltrrid 2916 . 2 (𝜑 → ((𝑂 ∖ (𝑂𝐴)) ∪ (𝑂 ∖ (𝑂𝐵))) ∈ (toCaraSiga‘𝑀))
1911, 18eqeltrrd 2912 1 (𝜑 → (𝐴𝐵) ∈ (toCaraSiga‘𝑀))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ w3a 1083   = wceq 1537   ∈ wcel 2114   ∖ cdif 3910   ∪ cun 3911   ∩ cin 3912   ⊆ wss 3913  𝒫 cpw 4515   class class class wbr 5042  ⟶wf 6327  ‘cfv 6331  (class class class)co 7133  0cc0 10515  +∞cpnf 10650   ≤ cle 10654   +𝑒 cxad 12484  [,]cicc 12720  toCaraSigaccarsg 31567 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5242  ax-pr 5306  ax-un 7439  ax-cnex 10571  ax-resscn 10572  ax-1cn 10573  ax-icn 10574  ax-addcl 10575  ax-addrcl 10576  ax-mulcl 10577  ax-mulrcl 10578  ax-mulcom 10579  ax-addass 10580  ax-mulass 10581  ax-distr 10582  ax-i2m1 10583  ax-1ne0 10584  ax-1rid 10585  ax-rnegex 10586  ax-rrecex 10587  ax-cnre 10588  ax-pre-lttri 10589  ax-pre-lttrn 10590  ax-pre-ltadd 10591 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-nel 3111  df-ral 3130  df-rex 3131  df-reu 3132  df-rab 3134  df-v 3475  df-sbc 3753  df-csb 3861  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-nul 4270  df-if 4444  df-pw 4517  df-sn 4544  df-pr 4546  df-op 4550  df-uni 4815  df-iun 4897  df-br 5043  df-opab 5105  df-mpt 5123  df-id 5436  df-po 5450  df-so 5451  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-res 5543  df-ima 5544  df-iota 6290  df-fun 6333  df-fn 6334  df-f 6335  df-f1 6336  df-fo 6337  df-f1o 6338  df-fv 6339  df-ov 7136  df-oprab 7137  df-mpo 7138  df-1st 7667  df-2nd 7668  df-er 8267  df-en 8488  df-dom 8489  df-sdom 8490  df-pnf 10655  df-mnf 10656  df-xr 10657  df-ltxr 10658  df-le 10659  df-xadd 12487  df-icc 12724  df-carsg 31568 This theorem is referenced by:  fiunelcarsg  31582
 Copyright terms: Public domain W3C validator