![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > unelcarsg | Structured version Visualization version GIF version |
Description: The Caratheodory-measurable sets are closed under pairwise unions. (Contributed by Thierry Arnoux, 21-May-2020.) |
Ref | Expression |
---|---|
carsgval.1 | ⊢ (𝜑 → 𝑂 ∈ 𝑉) |
carsgval.2 | ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) |
difelcarsg.1 | ⊢ (𝜑 → 𝐴 ∈ (toCaraSiga‘𝑀)) |
inelcarsg.1 | ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝑂 ∧ 𝑏 ∈ 𝒫 𝑂) → (𝑀‘(𝑎 ∪ 𝑏)) ≤ ((𝑀‘𝑎) +𝑒 (𝑀‘𝑏))) |
inelcarsg.2 | ⊢ (𝜑 → 𝐵 ∈ (toCaraSiga‘𝑀)) |
Ref | Expression |
---|---|
unelcarsg | ⊢ (𝜑 → (𝐴 ∪ 𝐵) ∈ (toCaraSiga‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | carsgval.1 | . . . . 5 ⊢ (𝜑 → 𝑂 ∈ 𝑉) | |
2 | carsgval.2 | . . . . 5 ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) | |
3 | difelcarsg.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ (toCaraSiga‘𝑀)) | |
4 | 1, 2, 3 | elcarsgss 34305 | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ 𝑂) |
5 | dfss4 4278 | . . . 4 ⊢ (𝐴 ⊆ 𝑂 ↔ (𝑂 ∖ (𝑂 ∖ 𝐴)) = 𝐴) | |
6 | 4, 5 | sylib 218 | . . 3 ⊢ (𝜑 → (𝑂 ∖ (𝑂 ∖ 𝐴)) = 𝐴) |
7 | inelcarsg.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ (toCaraSiga‘𝑀)) | |
8 | 1, 2, 7 | elcarsgss 34305 | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ 𝑂) |
9 | dfss4 4278 | . . . 4 ⊢ (𝐵 ⊆ 𝑂 ↔ (𝑂 ∖ (𝑂 ∖ 𝐵)) = 𝐵) | |
10 | 8, 9 | sylib 218 | . . 3 ⊢ (𝜑 → (𝑂 ∖ (𝑂 ∖ 𝐵)) = 𝐵) |
11 | 6, 10 | uneq12d 4182 | . 2 ⊢ (𝜑 → ((𝑂 ∖ (𝑂 ∖ 𝐴)) ∪ (𝑂 ∖ (𝑂 ∖ 𝐵))) = (𝐴 ∪ 𝐵)) |
12 | difindi 4301 | . . 3 ⊢ (𝑂 ∖ ((𝑂 ∖ 𝐴) ∩ (𝑂 ∖ 𝐵))) = ((𝑂 ∖ (𝑂 ∖ 𝐴)) ∪ (𝑂 ∖ (𝑂 ∖ 𝐵))) | |
13 | 1, 2, 3 | difelcarsg 34306 | . . . . 5 ⊢ (𝜑 → (𝑂 ∖ 𝐴) ∈ (toCaraSiga‘𝑀)) |
14 | inelcarsg.1 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝑂 ∧ 𝑏 ∈ 𝒫 𝑂) → (𝑀‘(𝑎 ∪ 𝑏)) ≤ ((𝑀‘𝑎) +𝑒 (𝑀‘𝑏))) | |
15 | 1, 2, 7 | difelcarsg 34306 | . . . . 5 ⊢ (𝜑 → (𝑂 ∖ 𝐵) ∈ (toCaraSiga‘𝑀)) |
16 | 1, 2, 13, 14, 15 | inelcarsg 34307 | . . . 4 ⊢ (𝜑 → ((𝑂 ∖ 𝐴) ∩ (𝑂 ∖ 𝐵)) ∈ (toCaraSiga‘𝑀)) |
17 | 1, 2, 16 | difelcarsg 34306 | . . 3 ⊢ (𝜑 → (𝑂 ∖ ((𝑂 ∖ 𝐴) ∩ (𝑂 ∖ 𝐵))) ∈ (toCaraSiga‘𝑀)) |
18 | 12, 17 | eqeltrrid 2846 | . 2 ⊢ (𝜑 → ((𝑂 ∖ (𝑂 ∖ 𝐴)) ∪ (𝑂 ∖ (𝑂 ∖ 𝐵))) ∈ (toCaraSiga‘𝑀)) |
19 | 11, 18 | eqeltrrd 2842 | 1 ⊢ (𝜑 → (𝐴 ∪ 𝐵) ∈ (toCaraSiga‘𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1539 ∈ wcel 2108 ∖ cdif 3963 ∪ cun 3964 ∩ cin 3965 ⊆ wss 3966 𝒫 cpw 4608 class class class wbr 5151 ⟶wf 6565 ‘cfv 6569 (class class class)co 7438 0cc0 11162 +∞cpnf 11299 ≤ cle 11303 +𝑒 cxad 13159 [,]cicc 13396 toCaraSigaccarsg 34297 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-cnex 11218 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-po 5601 df-so 5602 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-ov 7441 df-oprab 7442 df-mpo 7443 df-1st 8022 df-2nd 8023 df-er 8753 df-en 8994 df-dom 8995 df-sdom 8996 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-xadd 13162 df-icc 13400 df-carsg 34298 |
This theorem is referenced by: fiunelcarsg 34312 |
Copyright terms: Public domain | W3C validator |