![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > unelcarsg | Structured version Visualization version GIF version |
Description: The Caratheodory-measurable sets are closed under pairwise unions. (Contributed by Thierry Arnoux, 21-May-2020.) |
Ref | Expression |
---|---|
carsgval.1 | ⊢ (𝜑 → 𝑂 ∈ 𝑉) |
carsgval.2 | ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) |
difelcarsg.1 | ⊢ (𝜑 → 𝐴 ∈ (toCaraSiga‘𝑀)) |
inelcarsg.1 | ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝑂 ∧ 𝑏 ∈ 𝒫 𝑂) → (𝑀‘(𝑎 ∪ 𝑏)) ≤ ((𝑀‘𝑎) +𝑒 (𝑀‘𝑏))) |
inelcarsg.2 | ⊢ (𝜑 → 𝐵 ∈ (toCaraSiga‘𝑀)) |
Ref | Expression |
---|---|
unelcarsg | ⊢ (𝜑 → (𝐴 ∪ 𝐵) ∈ (toCaraSiga‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | carsgval.1 | . . . . 5 ⊢ (𝜑 → 𝑂 ∈ 𝑉) | |
2 | carsgval.2 | . . . . 5 ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) | |
3 | difelcarsg.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ (toCaraSiga‘𝑀)) | |
4 | 1, 2, 3 | elcarsgss 30887 | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ 𝑂) |
5 | dfss4 4059 | . . . 4 ⊢ (𝐴 ⊆ 𝑂 ↔ (𝑂 ∖ (𝑂 ∖ 𝐴)) = 𝐴) | |
6 | 4, 5 | sylib 210 | . . 3 ⊢ (𝜑 → (𝑂 ∖ (𝑂 ∖ 𝐴)) = 𝐴) |
7 | inelcarsg.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ (toCaraSiga‘𝑀)) | |
8 | 1, 2, 7 | elcarsgss 30887 | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ 𝑂) |
9 | dfss4 4059 | . . . 4 ⊢ (𝐵 ⊆ 𝑂 ↔ (𝑂 ∖ (𝑂 ∖ 𝐵)) = 𝐵) | |
10 | 8, 9 | sylib 210 | . . 3 ⊢ (𝜑 → (𝑂 ∖ (𝑂 ∖ 𝐵)) = 𝐵) |
11 | 6, 10 | uneq12d 3966 | . 2 ⊢ (𝜑 → ((𝑂 ∖ (𝑂 ∖ 𝐴)) ∪ (𝑂 ∖ (𝑂 ∖ 𝐵))) = (𝐴 ∪ 𝐵)) |
12 | difindi 4082 | . . 3 ⊢ (𝑂 ∖ ((𝑂 ∖ 𝐴) ∩ (𝑂 ∖ 𝐵))) = ((𝑂 ∖ (𝑂 ∖ 𝐴)) ∪ (𝑂 ∖ (𝑂 ∖ 𝐵))) | |
13 | 1, 2, 3 | difelcarsg 30888 | . . . . 5 ⊢ (𝜑 → (𝑂 ∖ 𝐴) ∈ (toCaraSiga‘𝑀)) |
14 | inelcarsg.1 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝑂 ∧ 𝑏 ∈ 𝒫 𝑂) → (𝑀‘(𝑎 ∪ 𝑏)) ≤ ((𝑀‘𝑎) +𝑒 (𝑀‘𝑏))) | |
15 | 1, 2, 7 | difelcarsg 30888 | . . . . 5 ⊢ (𝜑 → (𝑂 ∖ 𝐵) ∈ (toCaraSiga‘𝑀)) |
16 | 1, 2, 13, 14, 15 | inelcarsg 30889 | . . . 4 ⊢ (𝜑 → ((𝑂 ∖ 𝐴) ∩ (𝑂 ∖ 𝐵)) ∈ (toCaraSiga‘𝑀)) |
17 | 1, 2, 16 | difelcarsg 30888 | . . 3 ⊢ (𝜑 → (𝑂 ∖ ((𝑂 ∖ 𝐴) ∩ (𝑂 ∖ 𝐵))) ∈ (toCaraSiga‘𝑀)) |
18 | 12, 17 | syl5eqelr 2883 | . 2 ⊢ (𝜑 → ((𝑂 ∖ (𝑂 ∖ 𝐴)) ∪ (𝑂 ∖ (𝑂 ∖ 𝐵))) ∈ (toCaraSiga‘𝑀)) |
19 | 11, 18 | eqeltrrd 2879 | 1 ⊢ (𝜑 → (𝐴 ∪ 𝐵) ∈ (toCaraSiga‘𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 ∖ cdif 3766 ∪ cun 3767 ∩ cin 3768 ⊆ wss 3769 𝒫 cpw 4349 class class class wbr 4843 ⟶wf 6097 ‘cfv 6101 (class class class)co 6878 0cc0 10224 +∞cpnf 10360 ≤ cle 10364 +𝑒 cxad 12191 [,]cicc 12427 toCaraSigaccarsg 30879 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-cnex 10280 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-po 5233 df-so 5234 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-1st 7401 df-2nd 7402 df-er 7982 df-en 8196 df-dom 8197 df-sdom 8198 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-xadd 12194 df-icc 12431 df-carsg 30880 |
This theorem is referenced by: fiunelcarsg 30894 |
Copyright terms: Public domain | W3C validator |