Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unelcarsg Structured version   Visualization version   GIF version

Theorem unelcarsg 32275
Description: The Caratheodory-measurable sets are closed under pairwise unions. (Contributed by Thierry Arnoux, 21-May-2020.)
Hypotheses
Ref Expression
carsgval.1 (𝜑𝑂𝑉)
carsgval.2 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
difelcarsg.1 (𝜑𝐴 ∈ (toCaraSiga‘𝑀))
inelcarsg.1 ((𝜑𝑎 ∈ 𝒫 𝑂𝑏 ∈ 𝒫 𝑂) → (𝑀‘(𝑎𝑏)) ≤ ((𝑀𝑎) +𝑒 (𝑀𝑏)))
inelcarsg.2 (𝜑𝐵 ∈ (toCaraSiga‘𝑀))
Assertion
Ref Expression
unelcarsg (𝜑 → (𝐴𝐵) ∈ (toCaraSiga‘𝑀))
Distinct variable groups:   𝑀,𝑎   𝑂,𝑎   𝜑,𝑎   𝐴,𝑎,𝑏   𝐵,𝑎,𝑏   𝑀,𝑏   𝑂,𝑏   𝜑,𝑏
Allowed substitution hints:   𝑉(𝑎,𝑏)

Proof of Theorem unelcarsg
StepHypRef Expression
1 carsgval.1 . . . . 5 (𝜑𝑂𝑉)
2 carsgval.2 . . . . 5 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
3 difelcarsg.1 . . . . 5 (𝜑𝐴 ∈ (toCaraSiga‘𝑀))
41, 2, 3elcarsgss 32272 . . . 4 (𝜑𝐴𝑂)
5 dfss4 4198 . . . 4 (𝐴𝑂 ↔ (𝑂 ∖ (𝑂𝐴)) = 𝐴)
64, 5sylib 217 . . 3 (𝜑 → (𝑂 ∖ (𝑂𝐴)) = 𝐴)
7 inelcarsg.2 . . . . 5 (𝜑𝐵 ∈ (toCaraSiga‘𝑀))
81, 2, 7elcarsgss 32272 . . . 4 (𝜑𝐵𝑂)
9 dfss4 4198 . . . 4 (𝐵𝑂 ↔ (𝑂 ∖ (𝑂𝐵)) = 𝐵)
108, 9sylib 217 . . 3 (𝜑 → (𝑂 ∖ (𝑂𝐵)) = 𝐵)
116, 10uneq12d 4103 . 2 (𝜑 → ((𝑂 ∖ (𝑂𝐴)) ∪ (𝑂 ∖ (𝑂𝐵))) = (𝐴𝐵))
12 difindi 4221 . . 3 (𝑂 ∖ ((𝑂𝐴) ∩ (𝑂𝐵))) = ((𝑂 ∖ (𝑂𝐴)) ∪ (𝑂 ∖ (𝑂𝐵)))
131, 2, 3difelcarsg 32273 . . . . 5 (𝜑 → (𝑂𝐴) ∈ (toCaraSiga‘𝑀))
14 inelcarsg.1 . . . . 5 ((𝜑𝑎 ∈ 𝒫 𝑂𝑏 ∈ 𝒫 𝑂) → (𝑀‘(𝑎𝑏)) ≤ ((𝑀𝑎) +𝑒 (𝑀𝑏)))
151, 2, 7difelcarsg 32273 . . . . 5 (𝜑 → (𝑂𝐵) ∈ (toCaraSiga‘𝑀))
161, 2, 13, 14, 15inelcarsg 32274 . . . 4 (𝜑 → ((𝑂𝐴) ∩ (𝑂𝐵)) ∈ (toCaraSiga‘𝑀))
171, 2, 16difelcarsg 32273 . . 3 (𝜑 → (𝑂 ∖ ((𝑂𝐴) ∩ (𝑂𝐵))) ∈ (toCaraSiga‘𝑀))
1812, 17eqeltrrid 2846 . 2 (𝜑 → ((𝑂 ∖ (𝑂𝐴)) ∪ (𝑂 ∖ (𝑂𝐵))) ∈ (toCaraSiga‘𝑀))
1911, 18eqeltrrd 2842 1 (𝜑 → (𝐴𝐵) ∈ (toCaraSiga‘𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1542  wcel 2110  cdif 3889  cun 3890  cin 3891  wss 3892  𝒫 cpw 4539   class class class wbr 5079  wf 6428  cfv 6432  (class class class)co 7271  0cc0 10872  +∞cpnf 11007  cle 11011   +𝑒 cxad 12845  [,]cicc 13081  toCaraSigaccarsg 32264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5490  df-po 5504  df-so 5505  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-ov 7274  df-oprab 7275  df-mpo 7276  df-1st 7824  df-2nd 7825  df-er 8481  df-en 8717  df-dom 8718  df-sdom 8719  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-xadd 12848  df-icc 13085  df-carsg 32265
This theorem is referenced by:  fiunelcarsg  32279
  Copyright terms: Public domain W3C validator