Users' Mathboxes Mathbox for Gino Giotto < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ditgeq3i Structured version   Visualization version   GIF version

Theorem ditgeq3i 36253
Description: Equality inference for the directed integral. (Contributed by GG, 1-Sep-2025.)
Hypothesis
Ref Expression
ditgeq3i.1 𝐶 = 𝐷
Assertion
Ref Expression
ditgeq3i ⨜[𝐴𝐵]𝐶 d𝑥 = ⨜[𝐴𝐵]𝐷 d𝑥

Proof of Theorem ditgeq3i
StepHypRef Expression
1 eqid 2731 . 2 𝐴 = 𝐴
2 eqid 2731 . 2 𝐵 = 𝐵
3 ditgeq3i.1 . 2 𝐶 = 𝐷
41, 2, 3ditgeq123i 36251 1 ⨜[𝐴𝐵]𝐶 d𝑥 = ⨜[𝐴𝐵]𝐷 d𝑥
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  cdit 25774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-xp 5620  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-iota 6437  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-neg 11347  df-seq 13909  df-sum 15594  df-itg 25551  df-ditg 25775
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator