Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmtposss Structured version   Visualization version   GIF version

Theorem dmtposss 48852
Description: The domain of tpos 𝐹 is a subset. (Contributed by Zhi Wang, 6-Oct-2025.)
Assertion
Ref Expression
dmtposss dom tpos 𝐹 ⊆ ((V × V) ∪ {∅})

Proof of Theorem dmtposss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-tpos 8207 . . 3 tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}))
21dmeqi 5870 . 2 dom tpos 𝐹 = dom (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}))
3 dmcoss 5940 . . 3 dom (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})) ⊆ dom (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})
4 eqid 2730 . . . . 5 (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) = (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})
54dmmptss 6216 . . . 4 dom (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) ⊆ (dom 𝐹 ∪ {∅})
6 relcnv 6077 . . . . . 6 Rel dom 𝐹
7 df-rel 5647 . . . . . 6 (Rel dom 𝐹dom 𝐹 ⊆ (V × V))
86, 7mpbi 230 . . . . 5 dom 𝐹 ⊆ (V × V)
9 unss1 4150 . . . . 5 (dom 𝐹 ⊆ (V × V) → (dom 𝐹 ∪ {∅}) ⊆ ((V × V) ∪ {∅}))
108, 9ax-mp 5 . . . 4 (dom 𝐹 ∪ {∅}) ⊆ ((V × V) ∪ {∅})
115, 10sstri 3958 . . 3 dom (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) ⊆ ((V × V) ∪ {∅})
123, 11sstri 3958 . 2 dom (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})) ⊆ ((V × V) ∪ {∅})
132, 12eqsstri 3995 1 dom tpos 𝐹 ⊆ ((V × V) ∪ {∅})
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3450  cun 3914  wss 3916  c0 4298  {csn 4591   cuni 4873  cmpt 5190   × cxp 5638  ccnv 5639  dom cdm 5640  ccom 5644  Rel wrel 5645  tpos ctpos 8206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-br 5110  df-opab 5172  df-mpt 5191  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-tpos 8207
This theorem is referenced by:  tposresg  48854
  Copyright terms: Public domain W3C validator