| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dmtposss | Structured version Visualization version GIF version | ||
| Description: The domain of tpos 𝐹 is a subset. (Contributed by Zhi Wang, 6-Oct-2025.) |
| Ref | Expression |
|---|---|
| dmtposss | ⊢ dom tpos 𝐹 ⊆ ((V × V) ∪ {∅}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-tpos 8219 | . . 3 ⊢ tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})) | |
| 2 | 1 | dmeqi 5881 | . 2 ⊢ dom tpos 𝐹 = dom (𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})) |
| 3 | dmcoss 5951 | . . 3 ⊢ dom (𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})) ⊆ dom (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) | |
| 4 | eqid 2734 | . . . . 5 ⊢ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) = (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) | |
| 5 | 4 | dmmptss 6227 | . . . 4 ⊢ dom (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) ⊆ (◡dom 𝐹 ∪ {∅}) |
| 6 | relcnv 6088 | . . . . . 6 ⊢ Rel ◡dom 𝐹 | |
| 7 | df-rel 5658 | . . . . . 6 ⊢ (Rel ◡dom 𝐹 ↔ ◡dom 𝐹 ⊆ (V × V)) | |
| 8 | 6, 7 | mpbi 230 | . . . . 5 ⊢ ◡dom 𝐹 ⊆ (V × V) |
| 9 | unss1 4158 | . . . . 5 ⊢ (◡dom 𝐹 ⊆ (V × V) → (◡dom 𝐹 ∪ {∅}) ⊆ ((V × V) ∪ {∅})) | |
| 10 | 8, 9 | ax-mp 5 | . . . 4 ⊢ (◡dom 𝐹 ∪ {∅}) ⊆ ((V × V) ∪ {∅}) |
| 11 | 5, 10 | sstri 3966 | . . 3 ⊢ dom (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) ⊆ ((V × V) ∪ {∅}) |
| 12 | 3, 11 | sstri 3966 | . 2 ⊢ dom (𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})) ⊆ ((V × V) ∪ {∅}) |
| 13 | 2, 12 | eqsstri 4003 | 1 ⊢ dom tpos 𝐹 ⊆ ((V × V) ∪ {∅}) |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3457 ∪ cun 3922 ⊆ wss 3924 ∅c0 4306 {csn 4599 ∪ cuni 4880 ↦ cmpt 5198 × cxp 5649 ◡ccnv 5650 dom cdm 5651 ∘ ccom 5655 Rel wrel 5656 tpos ctpos 8218 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5263 ax-nul 5273 ax-pr 5399 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-rab 3414 df-v 3459 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-sn 4600 df-pr 4602 df-op 4606 df-br 5117 df-opab 5179 df-mpt 5199 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-tpos 8219 |
| This theorem is referenced by: tposresg 48733 |
| Copyright terms: Public domain | W3C validator |