| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dmtposss | Structured version Visualization version GIF version | ||
| Description: The domain of tpos 𝐹 is a subset. (Contributed by Zhi Wang, 6-Oct-2025.) |
| Ref | Expression |
|---|---|
| dmtposss | ⊢ dom tpos 𝐹 ⊆ ((V × V) ∪ {∅}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-tpos 8151 | . . 3 ⊢ tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})) | |
| 2 | 1 | dmeqi 5839 | . 2 ⊢ dom tpos 𝐹 = dom (𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})) |
| 3 | dmcoss 5909 | . . 3 ⊢ dom (𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})) ⊆ dom (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) | |
| 4 | eqid 2731 | . . . . 5 ⊢ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) = (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) | |
| 5 | 4 | dmmptss 6183 | . . . 4 ⊢ dom (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) ⊆ (◡dom 𝐹 ∪ {∅}) |
| 6 | relcnv 6048 | . . . . . 6 ⊢ Rel ◡dom 𝐹 | |
| 7 | df-rel 5618 | . . . . . 6 ⊢ (Rel ◡dom 𝐹 ↔ ◡dom 𝐹 ⊆ (V × V)) | |
| 8 | 6, 7 | mpbi 230 | . . . . 5 ⊢ ◡dom 𝐹 ⊆ (V × V) |
| 9 | unss1 4130 | . . . . 5 ⊢ (◡dom 𝐹 ⊆ (V × V) → (◡dom 𝐹 ∪ {∅}) ⊆ ((V × V) ∪ {∅})) | |
| 10 | 8, 9 | ax-mp 5 | . . . 4 ⊢ (◡dom 𝐹 ∪ {∅}) ⊆ ((V × V) ∪ {∅}) |
| 11 | 5, 10 | sstri 3939 | . . 3 ⊢ dom (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) ⊆ ((V × V) ∪ {∅}) |
| 12 | 3, 11 | sstri 3939 | . 2 ⊢ dom (𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})) ⊆ ((V × V) ∪ {∅}) |
| 13 | 2, 12 | eqsstri 3976 | 1 ⊢ dom tpos 𝐹 ⊆ ((V × V) ∪ {∅}) |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3436 ∪ cun 3895 ⊆ wss 3897 ∅c0 4278 {csn 4571 ∪ cuni 4854 ↦ cmpt 5167 × cxp 5609 ◡ccnv 5610 dom cdm 5611 ∘ ccom 5615 Rel wrel 5616 tpos ctpos 8150 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-br 5087 df-opab 5149 df-mpt 5168 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-tpos 8151 |
| This theorem is referenced by: tposresg 48909 |
| Copyright terms: Public domain | W3C validator |