Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmtposss Structured version   Visualization version   GIF version

Theorem dmtposss 48731
Description: The domain of tpos 𝐹 is a subset. (Contributed by Zhi Wang, 6-Oct-2025.)
Assertion
Ref Expression
dmtposss dom tpos 𝐹 ⊆ ((V × V) ∪ {∅})

Proof of Theorem dmtposss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-tpos 8219 . . 3 tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}))
21dmeqi 5881 . 2 dom tpos 𝐹 = dom (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}))
3 dmcoss 5951 . . 3 dom (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})) ⊆ dom (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})
4 eqid 2734 . . . . 5 (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) = (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})
54dmmptss 6227 . . . 4 dom (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) ⊆ (dom 𝐹 ∪ {∅})
6 relcnv 6088 . . . . . 6 Rel dom 𝐹
7 df-rel 5658 . . . . . 6 (Rel dom 𝐹dom 𝐹 ⊆ (V × V))
86, 7mpbi 230 . . . . 5 dom 𝐹 ⊆ (V × V)
9 unss1 4158 . . . . 5 (dom 𝐹 ⊆ (V × V) → (dom 𝐹 ∪ {∅}) ⊆ ((V × V) ∪ {∅}))
108, 9ax-mp 5 . . . 4 (dom 𝐹 ∪ {∅}) ⊆ ((V × V) ∪ {∅})
115, 10sstri 3966 . . 3 dom (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) ⊆ ((V × V) ∪ {∅})
123, 11sstri 3966 . 2 dom (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})) ⊆ ((V × V) ∪ {∅})
132, 12eqsstri 4003 1 dom tpos 𝐹 ⊆ ((V × V) ∪ {∅})
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3457  cun 3922  wss 3924  c0 4306  {csn 4599   cuni 4880  cmpt 5198   × cxp 5649  ccnv 5650  dom cdm 5651  ccom 5655  Rel wrel 5656  tpos ctpos 8218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5263  ax-nul 5273  ax-pr 5399
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-rab 3414  df-v 3459  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-sn 4600  df-pr 4602  df-op 4606  df-br 5117  df-opab 5179  df-mpt 5199  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-tpos 8219
This theorem is referenced by:  tposresg  48733
  Copyright terms: Public domain W3C validator