| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dmtposss | Structured version Visualization version GIF version | ||
| Description: The domain of tpos 𝐹 is a subset. (Contributed by Zhi Wang, 6-Oct-2025.) |
| Ref | Expression |
|---|---|
| dmtposss | ⊢ dom tpos 𝐹 ⊆ ((V × V) ∪ {∅}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-tpos 8165 | . . 3 ⊢ tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})) | |
| 2 | 1 | dmeqi 5850 | . 2 ⊢ dom tpos 𝐹 = dom (𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})) |
| 3 | dmcoss 5921 | . . 3 ⊢ dom (𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})) ⊆ dom (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) | |
| 4 | eqid 2733 | . . . . 5 ⊢ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) = (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) | |
| 5 | 4 | dmmptss 6196 | . . . 4 ⊢ dom (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) ⊆ (◡dom 𝐹 ∪ {∅}) |
| 6 | relcnv 6060 | . . . . . 6 ⊢ Rel ◡dom 𝐹 | |
| 7 | df-rel 5628 | . . . . . 6 ⊢ (Rel ◡dom 𝐹 ↔ ◡dom 𝐹 ⊆ (V × V)) | |
| 8 | 6, 7 | mpbi 230 | . . . . 5 ⊢ ◡dom 𝐹 ⊆ (V × V) |
| 9 | unss1 4134 | . . . . 5 ⊢ (◡dom 𝐹 ⊆ (V × V) → (◡dom 𝐹 ∪ {∅}) ⊆ ((V × V) ∪ {∅})) | |
| 10 | 8, 9 | ax-mp 5 | . . . 4 ⊢ (◡dom 𝐹 ∪ {∅}) ⊆ ((V × V) ∪ {∅}) |
| 11 | 5, 10 | sstri 3940 | . . 3 ⊢ dom (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) ⊆ ((V × V) ∪ {∅}) |
| 12 | 3, 11 | sstri 3940 | . 2 ⊢ dom (𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})) ⊆ ((V × V) ∪ {∅}) |
| 13 | 2, 12 | eqsstri 3977 | 1 ⊢ dom tpos 𝐹 ⊆ ((V × V) ∪ {∅}) |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3437 ∪ cun 3896 ⊆ wss 3898 ∅c0 4282 {csn 4577 ∪ cuni 4860 ↦ cmpt 5176 × cxp 5619 ◡ccnv 5620 dom cdm 5621 ∘ ccom 5625 Rel wrel 5626 tpos ctpos 8164 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-mpt 5177 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-tpos 8165 |
| This theorem is referenced by: tposresg 49039 |
| Copyright terms: Public domain | W3C validator |