Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmtposss Structured version   Visualization version   GIF version

Theorem dmtposss 48907
Description: The domain of tpos 𝐹 is a subset. (Contributed by Zhi Wang, 6-Oct-2025.)
Assertion
Ref Expression
dmtposss dom tpos 𝐹 ⊆ ((V × V) ∪ {∅})

Proof of Theorem dmtposss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-tpos 8151 . . 3 tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}))
21dmeqi 5839 . 2 dom tpos 𝐹 = dom (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}))
3 dmcoss 5909 . . 3 dom (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})) ⊆ dom (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})
4 eqid 2731 . . . . 5 (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) = (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})
54dmmptss 6183 . . . 4 dom (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) ⊆ (dom 𝐹 ∪ {∅})
6 relcnv 6048 . . . . . 6 Rel dom 𝐹
7 df-rel 5618 . . . . . 6 (Rel dom 𝐹dom 𝐹 ⊆ (V × V))
86, 7mpbi 230 . . . . 5 dom 𝐹 ⊆ (V × V)
9 unss1 4130 . . . . 5 (dom 𝐹 ⊆ (V × V) → (dom 𝐹 ∪ {∅}) ⊆ ((V × V) ∪ {∅}))
108, 9ax-mp 5 . . . 4 (dom 𝐹 ∪ {∅}) ⊆ ((V × V) ∪ {∅})
115, 10sstri 3939 . . 3 dom (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) ⊆ ((V × V) ∪ {∅})
123, 11sstri 3939 . 2 dom (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})) ⊆ ((V × V) ∪ {∅})
132, 12eqsstri 3976 1 dom tpos 𝐹 ⊆ ((V × V) ∪ {∅})
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3436  cun 3895  wss 3897  c0 4278  {csn 4571   cuni 4854  cmpt 5167   × cxp 5609  ccnv 5610  dom cdm 5611  ccom 5615  Rel wrel 5616  tpos ctpos 8150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-br 5087  df-opab 5149  df-mpt 5168  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-tpos 8151
This theorem is referenced by:  tposresg  48909
  Copyright terms: Public domain W3C validator