Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmtposss Structured version   Visualization version   GIF version

Theorem dmtposss 49037
Description: The domain of tpos 𝐹 is a subset. (Contributed by Zhi Wang, 6-Oct-2025.)
Assertion
Ref Expression
dmtposss dom tpos 𝐹 ⊆ ((V × V) ∪ {∅})

Proof of Theorem dmtposss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-tpos 8165 . . 3 tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}))
21dmeqi 5850 . 2 dom tpos 𝐹 = dom (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}))
3 dmcoss 5921 . . 3 dom (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})) ⊆ dom (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})
4 eqid 2733 . . . . 5 (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) = (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})
54dmmptss 6196 . . . 4 dom (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) ⊆ (dom 𝐹 ∪ {∅})
6 relcnv 6060 . . . . . 6 Rel dom 𝐹
7 df-rel 5628 . . . . . 6 (Rel dom 𝐹dom 𝐹 ⊆ (V × V))
86, 7mpbi 230 . . . . 5 dom 𝐹 ⊆ (V × V)
9 unss1 4134 . . . . 5 (dom 𝐹 ⊆ (V × V) → (dom 𝐹 ∪ {∅}) ⊆ ((V × V) ∪ {∅}))
108, 9ax-mp 5 . . . 4 (dom 𝐹 ∪ {∅}) ⊆ ((V × V) ∪ {∅})
115, 10sstri 3940 . . 3 dom (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) ⊆ ((V × V) ∪ {∅})
123, 11sstri 3940 . 2 dom (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})) ⊆ ((V × V) ∪ {∅})
132, 12eqsstri 3977 1 dom tpos 𝐹 ⊆ ((V × V) ∪ {∅})
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3437  cun 3896  wss 3898  c0 4282  {csn 4577   cuni 4860  cmpt 5176   × cxp 5619  ccnv 5620  dom cdm 5621  ccom 5625  Rel wrel 5626  tpos ctpos 8164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5096  df-opab 5158  df-mpt 5177  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-tpos 8165
This theorem is referenced by:  tposresg  49039
  Copyright terms: Public domain W3C validator