| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dmtposss | Structured version Visualization version GIF version | ||
| Description: The domain of tpos 𝐹 is a subset. (Contributed by Zhi Wang, 6-Oct-2025.) |
| Ref | Expression |
|---|---|
| dmtposss | ⊢ dom tpos 𝐹 ⊆ ((V × V) ∪ {∅}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-tpos 8247 | . . 3 ⊢ tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})) | |
| 2 | 1 | dmeqi 5913 | . 2 ⊢ dom tpos 𝐹 = dom (𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})) |
| 3 | dmcoss 5983 | . . 3 ⊢ dom (𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})) ⊆ dom (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) | |
| 4 | eqid 2736 | . . . . 5 ⊢ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) = (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) | |
| 5 | 4 | dmmptss 6259 | . . . 4 ⊢ dom (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) ⊆ (◡dom 𝐹 ∪ {∅}) |
| 6 | relcnv 6120 | . . . . . 6 ⊢ Rel ◡dom 𝐹 | |
| 7 | df-rel 5690 | . . . . . 6 ⊢ (Rel ◡dom 𝐹 ↔ ◡dom 𝐹 ⊆ (V × V)) | |
| 8 | 6, 7 | mpbi 230 | . . . . 5 ⊢ ◡dom 𝐹 ⊆ (V × V) |
| 9 | unss1 4184 | . . . . 5 ⊢ (◡dom 𝐹 ⊆ (V × V) → (◡dom 𝐹 ∪ {∅}) ⊆ ((V × V) ∪ {∅})) | |
| 10 | 8, 9 | ax-mp 5 | . . . 4 ⊢ (◡dom 𝐹 ∪ {∅}) ⊆ ((V × V) ∪ {∅}) |
| 11 | 5, 10 | sstri 3992 | . . 3 ⊢ dom (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) ⊆ ((V × V) ∪ {∅}) |
| 12 | 3, 11 | sstri 3992 | . 2 ⊢ dom (𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})) ⊆ ((V × V) ∪ {∅}) |
| 13 | 2, 12 | eqsstri 4029 | 1 ⊢ dom tpos 𝐹 ⊆ ((V × V) ∪ {∅}) |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3479 ∪ cun 3948 ⊆ wss 3950 ∅c0 4332 {csn 4624 ∪ cuni 4905 ↦ cmpt 5223 × cxp 5681 ◡ccnv 5682 dom cdm 5683 ∘ ccom 5687 Rel wrel 5688 tpos ctpos 8246 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5294 ax-nul 5304 ax-pr 5430 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-br 5142 df-opab 5204 df-mpt 5224 df-xp 5689 df-rel 5690 df-cnv 5691 df-co 5692 df-dm 5693 df-rn 5694 df-res 5695 df-ima 5696 df-tpos 8247 |
| This theorem is referenced by: tposresg 48751 |
| Copyright terms: Public domain | W3C validator |