| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dmtposss | Structured version Visualization version GIF version | ||
| Description: The domain of tpos 𝐹 is a subset. (Contributed by Zhi Wang, 6-Oct-2025.) |
| Ref | Expression |
|---|---|
| dmtposss | ⊢ dom tpos 𝐹 ⊆ ((V × V) ∪ {∅}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-tpos 8182 | . . 3 ⊢ tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})) | |
| 2 | 1 | dmeqi 5858 | . 2 ⊢ dom tpos 𝐹 = dom (𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})) |
| 3 | dmcoss 5927 | . . 3 ⊢ dom (𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})) ⊆ dom (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) | |
| 4 | eqid 2729 | . . . . 5 ⊢ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) = (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) | |
| 5 | 4 | dmmptss 6202 | . . . 4 ⊢ dom (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) ⊆ (◡dom 𝐹 ∪ {∅}) |
| 6 | relcnv 6064 | . . . . . 6 ⊢ Rel ◡dom 𝐹 | |
| 7 | df-rel 5638 | . . . . . 6 ⊢ (Rel ◡dom 𝐹 ↔ ◡dom 𝐹 ⊆ (V × V)) | |
| 8 | 6, 7 | mpbi 230 | . . . . 5 ⊢ ◡dom 𝐹 ⊆ (V × V) |
| 9 | unss1 4144 | . . . . 5 ⊢ (◡dom 𝐹 ⊆ (V × V) → (◡dom 𝐹 ∪ {∅}) ⊆ ((V × V) ∪ {∅})) | |
| 10 | 8, 9 | ax-mp 5 | . . . 4 ⊢ (◡dom 𝐹 ∪ {∅}) ⊆ ((V × V) ∪ {∅}) |
| 11 | 5, 10 | sstri 3953 | . . 3 ⊢ dom (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) ⊆ ((V × V) ∪ {∅}) |
| 12 | 3, 11 | sstri 3953 | . 2 ⊢ dom (𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})) ⊆ ((V × V) ∪ {∅}) |
| 13 | 2, 12 | eqsstri 3990 | 1 ⊢ dom tpos 𝐹 ⊆ ((V × V) ∪ {∅}) |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3444 ∪ cun 3909 ⊆ wss 3911 ∅c0 4292 {csn 4585 ∪ cuni 4867 ↦ cmpt 5183 × cxp 5629 ◡ccnv 5630 dom cdm 5631 ∘ ccom 5635 Rel wrel 5636 tpos ctpos 8181 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-mpt 5184 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-tpos 8182 |
| This theorem is referenced by: tposresg 48839 |
| Copyright terms: Public domain | W3C validator |