MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmmptss Structured version   Visualization version   GIF version

Theorem dmmptss 6188
Description: The domain of a mapping is a subset of its base class. (Contributed by Scott Fenton, 17-Jun-2013.)
Hypothesis
Ref Expression
dmmpt.1 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
dmmptss dom 𝐹𝐴
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem dmmptss
StepHypRef Expression
1 dmmpt.1 . . 3 𝐹 = (𝑥𝐴𝐵)
21dmmpt 6187 . 2 dom 𝐹 = {𝑥𝐴𝐵 ∈ V}
32ssrab3 4029 1 dom 𝐹𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2111  Vcvv 3436  wss 3897  cmpt 5170  dom cdm 5614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-mpt 5171  df-xp 5620  df-rel 5621  df-cnv 5622  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627
This theorem is referenced by:  mptrcl  6938  fvmptss  6941  fvmptex  6943  fvmptnf  6951  elfvmptrab1w  6956  elfvmptrab1  6957  mptexg  7155  mptexw  7885  dmmpossx  7998  tposssxp  8160  mptfi  9235  cnvimamptfin  9237  cantnfres  9567  mptct  10429  arwrcl  17951  submgmrcl  18603  cntzrcl  19239  gsumconst  19846  psrass1lem  21869  psrass1  21901  psrass23l  21904  psrcom  21905  psrass23  21906  mpfrcl  22020  psropprmul  22150  coe1mul2  22183  lmrcl  23146  1stcrestlem  23367  ptbasfi  23496  isxms2  24363  setsmstopn  24393  tngtopn  24565  rrxmval  25332  ulmss  26333  dchrrcl  27178  gsummpt2co  33028  locfinreflem  33853  sitgclg  34355  cvmsrcl  35308  snmlval  35375  gonan0  35436  bj-fvmptunsn1  37299  eldiophb  42798  elmnc  43177  itgocn  43205  tannpoly  46929  dmmpossx2  48376  dmtposss  48915
  Copyright terms: Public domain W3C validator