| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmmptss | Structured version Visualization version GIF version | ||
| Description: The domain of a mapping is a subset of its base class. (Contributed by Scott Fenton, 17-Jun-2013.) |
| Ref | Expression |
|---|---|
| dmmpt.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| dmmptss | ⊢ dom 𝐹 ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmmpt.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 2 | 1 | dmmpt 6187 | . 2 ⊢ dom 𝐹 = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} |
| 3 | 2 | ssrab3 4029 | 1 ⊢ dom 𝐹 ⊆ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3897 ↦ cmpt 5170 dom cdm 5614 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-mpt 5171 df-xp 5620 df-rel 5621 df-cnv 5622 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 |
| This theorem is referenced by: mptrcl 6938 fvmptss 6941 fvmptex 6943 fvmptnf 6951 elfvmptrab1w 6956 elfvmptrab1 6957 mptexg 7155 mptexw 7885 dmmpossx 7998 tposssxp 8160 mptfi 9235 cnvimamptfin 9237 cantnfres 9567 mptct 10429 arwrcl 17951 submgmrcl 18603 cntzrcl 19239 gsumconst 19846 psrass1lem 21869 psrass1 21901 psrass23l 21904 psrcom 21905 psrass23 21906 mpfrcl 22020 psropprmul 22150 coe1mul2 22183 lmrcl 23146 1stcrestlem 23367 ptbasfi 23496 isxms2 24363 setsmstopn 24393 tngtopn 24565 rrxmval 25332 ulmss 26333 dchrrcl 27178 gsummpt2co 33028 locfinreflem 33853 sitgclg 34355 cvmsrcl 35308 snmlval 35375 gonan0 35436 bj-fvmptunsn1 37299 eldiophb 42798 elmnc 43177 itgocn 43205 tannpoly 46929 dmmpossx2 48376 dmtposss 48915 |
| Copyright terms: Public domain | W3C validator |