Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dmmptss | Structured version Visualization version GIF version |
Description: The domain of a mapping is a subset of its base class. (Contributed by Scott Fenton, 17-Jun-2013.) |
Ref | Expression |
---|---|
dmmpt.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
Ref | Expression |
---|---|
dmmptss | ⊢ dom 𝐹 ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmmpt.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
2 | 1 | dmmpt 6132 | . 2 ⊢ dom 𝐹 = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} |
3 | 2 | ssrab3 4011 | 1 ⊢ dom 𝐹 ⊆ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 Vcvv 3422 ⊆ wss 3883 ↦ cmpt 5153 dom cdm 5580 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-mpt 5154 df-xp 5586 df-rel 5587 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 |
This theorem is referenced by: mptrcl 6866 fvmptss 6869 fvmptex 6871 fvmptnf 6879 elfvmptrab1w 6883 elfvmptrab1 6884 mptexg 7079 mptexw 7769 dmmpossx 7879 tposssxp 8017 mptfi 9048 cnvimamptfin 9050 cantnfres 9365 mptct 10225 arwrcl 17675 cntzrcl 18848 gsumconst 19450 psrass1lemOLD 21053 psrass1lem 21056 psrass1 21084 psrass23l 21087 psrcom 21088 psrass23 21089 mpfrcl 21205 psropprmul 21319 coe1mul2 21350 lmrcl 22290 1stcrestlem 22511 ptbasfi 22640 isxms2 23509 setsmstopn 23539 tngtopn 23720 rrxmval 24474 ulmss 25461 dchrrcl 26293 gsummpt2co 31210 locfinreflem 31692 sitgclg 32209 cvmsrcl 33126 snmlval 33193 gonan0 33254 bj-fvmptunsn1 35355 eldiophb 40495 elmnc 40877 itgocn 40905 submgmrcl 45224 dmmpossx2 45560 |
Copyright terms: Public domain | W3C validator |