![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmmptss | Structured version Visualization version GIF version |
Description: The domain of a mapping is a subset of its base class. (Contributed by Scott Fenton, 17-Jun-2013.) |
Ref | Expression |
---|---|
dmmpt.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
Ref | Expression |
---|---|
dmmptss | ⊢ dom 𝐹 ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmmpt.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
2 | 1 | dmmpt 6271 | . 2 ⊢ dom 𝐹 = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} |
3 | 2 | ssrab3 4105 | 1 ⊢ dom 𝐹 ⊆ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 Vcvv 3488 ⊆ wss 3976 ↦ cmpt 5249 dom cdm 5700 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-mpt 5250 df-xp 5706 df-rel 5707 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 |
This theorem is referenced by: mptrcl 7038 fvmptss 7041 fvmptex 7043 fvmptnf 7051 elfvmptrab1w 7056 elfvmptrab1 7057 mptexg 7258 mptexw 7993 dmmpossx 8107 tposssxp 8271 mptfi 9421 cnvimamptfin 9423 cantnfres 9746 mptct 10607 arwrcl 18111 submgmrcl 18733 cntzrcl 19367 gsumconst 19976 psrass1lem 21975 psrass1 22007 psrass23l 22010 psrcom 22011 psrass23 22012 mpfrcl 22132 psropprmul 22260 coe1mul2 22293 lmrcl 23260 1stcrestlem 23481 ptbasfi 23610 isxms2 24479 setsmstopn 24511 tngtopn 24692 rrxmval 25458 ulmss 26458 dchrrcl 27302 gsummpt2co 33031 locfinreflem 33786 sitgclg 34307 cvmsrcl 35232 snmlval 35299 gonan0 35360 bj-fvmptunsn1 37223 eldiophb 42713 elmnc 43093 itgocn 43121 dmmpossx2 48061 |
Copyright terms: Public domain | W3C validator |