![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmmptss | Structured version Visualization version GIF version |
Description: The domain of a mapping is a subset of its base class. (Contributed by Scott Fenton, 17-Jun-2013.) |
Ref | Expression |
---|---|
dmmpt.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
Ref | Expression |
---|---|
dmmptss | ⊢ dom 𝐹 ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmmpt.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
2 | 1 | dmmpt 6262 | . 2 ⊢ dom 𝐹 = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} |
3 | 2 | ssrab3 4092 | 1 ⊢ dom 𝐹 ⊆ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2106 Vcvv 3478 ⊆ wss 3963 ↦ cmpt 5231 dom cdm 5689 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-mpt 5232 df-xp 5695 df-rel 5696 df-cnv 5697 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 |
This theorem is referenced by: mptrcl 7025 fvmptss 7028 fvmptex 7030 fvmptnf 7038 elfvmptrab1w 7043 elfvmptrab1 7044 mptexg 7241 mptexw 7976 dmmpossx 8090 tposssxp 8254 mptfi 9389 cnvimamptfin 9391 cantnfres 9715 mptct 10576 arwrcl 18098 submgmrcl 18721 cntzrcl 19358 gsumconst 19967 psrass1lem 21970 psrass1 22002 psrass23l 22005 psrcom 22006 psrass23 22007 mpfrcl 22127 psropprmul 22255 coe1mul2 22288 lmrcl 23255 1stcrestlem 23476 ptbasfi 23605 isxms2 24474 setsmstopn 24506 tngtopn 24687 rrxmval 25453 ulmss 26455 dchrrcl 27299 gsummpt2co 33034 locfinreflem 33801 sitgclg 34324 cvmsrcl 35249 snmlval 35316 gonan0 35377 bj-fvmptunsn1 37240 eldiophb 42745 elmnc 43125 itgocn 43153 dmmpossx2 48182 |
Copyright terms: Public domain | W3C validator |