Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dmmptss | Structured version Visualization version GIF version |
Description: The domain of a mapping is a subset of its base class. (Contributed by Scott Fenton, 17-Jun-2013.) |
Ref | Expression |
---|---|
dmmpt.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
Ref | Expression |
---|---|
dmmptss | ⊢ dom 𝐹 ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmmpt.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
2 | 1 | dmmpt 6143 | . 2 ⊢ dom 𝐹 = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} |
3 | 2 | ssrab3 4015 | 1 ⊢ dom 𝐹 ⊆ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2106 Vcvv 3432 ⊆ wss 3887 ↦ cmpt 5157 dom cdm 5589 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-mpt 5158 df-xp 5595 df-rel 5596 df-cnv 5597 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 |
This theorem is referenced by: mptrcl 6884 fvmptss 6887 fvmptex 6889 fvmptnf 6897 elfvmptrab1w 6901 elfvmptrab1 6902 mptexg 7097 mptexw 7795 dmmpossx 7906 tposssxp 8046 mptfi 9118 cnvimamptfin 9120 cantnfres 9435 mptct 10294 arwrcl 17759 cntzrcl 18933 gsumconst 19535 psrass1lemOLD 21143 psrass1lem 21146 psrass1 21174 psrass23l 21177 psrcom 21178 psrass23 21179 mpfrcl 21295 psropprmul 21409 coe1mul2 21440 lmrcl 22382 1stcrestlem 22603 ptbasfi 22732 isxms2 23601 setsmstopn 23633 tngtopn 23814 rrxmval 24569 ulmss 25556 dchrrcl 26388 gsummpt2co 31308 locfinreflem 31790 sitgclg 32309 cvmsrcl 33226 snmlval 33293 gonan0 33354 bj-fvmptunsn1 35428 eldiophb 40579 elmnc 40961 itgocn 40989 submgmrcl 45336 dmmpossx2 45672 |
Copyright terms: Public domain | W3C validator |