MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmmptss Structured version   Visualization version   GIF version

Theorem dmmptss 6230
Description: The domain of a mapping is a subset of its base class. (Contributed by Scott Fenton, 17-Jun-2013.)
Hypothesis
Ref Expression
dmmpt.1 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
dmmptss dom 𝐹𝐴
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem dmmptss
StepHypRef Expression
1 dmmpt.1 . . 3 𝐹 = (𝑥𝐴𝐵)
21dmmpt 6229 . 2 dom 𝐹 = {𝑥𝐴𝐵 ∈ V}
32ssrab3 4057 1 dom 𝐹𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2108  Vcvv 3459  wss 3926  cmpt 5201  dom cdm 5654
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-mpt 5202  df-xp 5660  df-rel 5661  df-cnv 5662  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667
This theorem is referenced by:  mptrcl  6995  fvmptss  6998  fvmptex  7000  fvmptnf  7008  elfvmptrab1w  7013  elfvmptrab1  7014  mptexg  7213  mptexw  7951  dmmpossx  8065  tposssxp  8229  mptfi  9363  cnvimamptfin  9365  cantnfres  9691  mptct  10552  arwrcl  18057  submgmrcl  18673  cntzrcl  19310  gsumconst  19915  psrass1lem  21892  psrass1  21924  psrass23l  21927  psrcom  21928  psrass23  21929  mpfrcl  22043  psropprmul  22173  coe1mul2  22206  lmrcl  23169  1stcrestlem  23390  ptbasfi  23519  isxms2  24387  setsmstopn  24417  tngtopn  24589  rrxmval  25357  ulmss  26358  dchrrcl  27203  gsummpt2co  33042  locfinreflem  33871  sitgclg  34374  cvmsrcl  35286  snmlval  35353  gonan0  35414  bj-fvmptunsn1  37275  eldiophb  42780  elmnc  43160  itgocn  43188  dmmpossx2  48312  dmtposss  48851
  Copyright terms: Public domain W3C validator