MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmmptss Structured version   Visualization version   GIF version

Theorem dmmptss 6217
Description: The domain of a mapping is a subset of its base class. (Contributed by Scott Fenton, 17-Jun-2013.)
Hypothesis
Ref Expression
dmmpt.1 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
dmmptss dom 𝐹𝐴
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem dmmptss
StepHypRef Expression
1 dmmpt.1 . . 3 𝐹 = (𝑥𝐴𝐵)
21dmmpt 6216 . 2 dom 𝐹 = {𝑥𝐴𝐵 ∈ V}
32ssrab3 4048 1 dom 𝐹𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  Vcvv 3450  wss 3917  cmpt 5191  dom cdm 5641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-mpt 5192  df-xp 5647  df-rel 5648  df-cnv 5649  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654
This theorem is referenced by:  mptrcl  6980  fvmptss  6983  fvmptex  6985  fvmptnf  6993  elfvmptrab1w  6998  elfvmptrab1  6999  mptexg  7198  mptexw  7934  dmmpossx  8048  tposssxp  8212  mptfi  9309  cnvimamptfin  9311  cantnfres  9637  mptct  10498  arwrcl  18013  submgmrcl  18629  cntzrcl  19266  gsumconst  19871  psrass1lem  21848  psrass1  21880  psrass23l  21883  psrcom  21884  psrass23  21885  mpfrcl  21999  psropprmul  22129  coe1mul2  22162  lmrcl  23125  1stcrestlem  23346  ptbasfi  23475  isxms2  24343  setsmstopn  24373  tngtopn  24545  rrxmval  25312  ulmss  26313  dchrrcl  27158  gsummpt2co  32995  locfinreflem  33837  sitgclg  34340  cvmsrcl  35258  snmlval  35325  gonan0  35386  bj-fvmptunsn1  37252  eldiophb  42752  elmnc  43132  itgocn  43160  dmmpossx2  48329  dmtposss  48868
  Copyright terms: Public domain W3C validator