| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmmptss | Structured version Visualization version GIF version | ||
| Description: The domain of a mapping is a subset of its base class. (Contributed by Scott Fenton, 17-Jun-2013.) |
| Ref | Expression |
|---|---|
| dmmpt.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| dmmptss | ⊢ dom 𝐹 ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmmpt.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 2 | 1 | dmmpt 6229 | . 2 ⊢ dom 𝐹 = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} |
| 3 | 2 | ssrab3 4057 | 1 ⊢ dom 𝐹 ⊆ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 Vcvv 3459 ⊆ wss 3926 ↦ cmpt 5201 dom cdm 5654 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-mpt 5202 df-xp 5660 df-rel 5661 df-cnv 5662 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 |
| This theorem is referenced by: mptrcl 6995 fvmptss 6998 fvmptex 7000 fvmptnf 7008 elfvmptrab1w 7013 elfvmptrab1 7014 mptexg 7213 mptexw 7951 dmmpossx 8065 tposssxp 8229 mptfi 9363 cnvimamptfin 9365 cantnfres 9691 mptct 10552 arwrcl 18057 submgmrcl 18673 cntzrcl 19310 gsumconst 19915 psrass1lem 21892 psrass1 21924 psrass23l 21927 psrcom 21928 psrass23 21929 mpfrcl 22043 psropprmul 22173 coe1mul2 22206 lmrcl 23169 1stcrestlem 23390 ptbasfi 23519 isxms2 24387 setsmstopn 24417 tngtopn 24589 rrxmval 25357 ulmss 26358 dchrrcl 27203 gsummpt2co 33042 locfinreflem 33871 sitgclg 34374 cvmsrcl 35286 snmlval 35353 gonan0 35414 bj-fvmptunsn1 37275 eldiophb 42780 elmnc 43160 itgocn 43188 dmmpossx2 48312 dmtposss 48851 |
| Copyright terms: Public domain | W3C validator |