MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmmptss Structured version   Visualization version   GIF version

Theorem dmmptss 6133
Description: The domain of a mapping is a subset of its base class. (Contributed by Scott Fenton, 17-Jun-2013.)
Hypothesis
Ref Expression
dmmpt.1 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
dmmptss dom 𝐹𝐴
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem dmmptss
StepHypRef Expression
1 dmmpt.1 . . 3 𝐹 = (𝑥𝐴𝐵)
21dmmpt 6132 . 2 dom 𝐹 = {𝑥𝐴𝐵 ∈ V}
32ssrab3 4011 1 dom 𝐹𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2108  Vcvv 3422  wss 3883  cmpt 5153  dom cdm 5580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-mpt 5154  df-xp 5586  df-rel 5587  df-cnv 5588  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593
This theorem is referenced by:  mptrcl  6866  fvmptss  6869  fvmptex  6871  fvmptnf  6879  elfvmptrab1w  6883  elfvmptrab1  6884  mptexg  7079  mptexw  7769  dmmpossx  7879  tposssxp  8017  mptfi  9048  cnvimamptfin  9050  cantnfres  9365  mptct  10225  arwrcl  17675  cntzrcl  18848  gsumconst  19450  psrass1lemOLD  21053  psrass1lem  21056  psrass1  21084  psrass23l  21087  psrcom  21088  psrass23  21089  mpfrcl  21205  psropprmul  21319  coe1mul2  21350  lmrcl  22290  1stcrestlem  22511  ptbasfi  22640  isxms2  23509  setsmstopn  23539  tngtopn  23720  rrxmval  24474  ulmss  25461  dchrrcl  26293  gsummpt2co  31210  locfinreflem  31692  sitgclg  32209  cvmsrcl  33126  snmlval  33193  gonan0  33254  bj-fvmptunsn1  35355  eldiophb  40495  elmnc  40877  itgocn  40905  submgmrcl  45224  dmmpossx2  45560
  Copyright terms: Public domain W3C validator