MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmmptss Structured version   Visualization version   GIF version

Theorem dmmptss 6144
Description: The domain of a mapping is a subset of its base class. (Contributed by Scott Fenton, 17-Jun-2013.)
Hypothesis
Ref Expression
dmmpt.1 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
dmmptss dom 𝐹𝐴
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem dmmptss
StepHypRef Expression
1 dmmpt.1 . . 3 𝐹 = (𝑥𝐴𝐵)
21dmmpt 6143 . 2 dom 𝐹 = {𝑥𝐴𝐵 ∈ V}
32ssrab3 4015 1 dom 𝐹𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2106  Vcvv 3432  wss 3887  cmpt 5157  dom cdm 5589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-mpt 5158  df-xp 5595  df-rel 5596  df-cnv 5597  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602
This theorem is referenced by:  mptrcl  6884  fvmptss  6887  fvmptex  6889  fvmptnf  6897  elfvmptrab1w  6901  elfvmptrab1  6902  mptexg  7097  mptexw  7795  dmmpossx  7906  tposssxp  8046  mptfi  9118  cnvimamptfin  9120  cantnfres  9435  mptct  10294  arwrcl  17759  cntzrcl  18933  gsumconst  19535  psrass1lemOLD  21143  psrass1lem  21146  psrass1  21174  psrass23l  21177  psrcom  21178  psrass23  21179  mpfrcl  21295  psropprmul  21409  coe1mul2  21440  lmrcl  22382  1stcrestlem  22603  ptbasfi  22732  isxms2  23601  setsmstopn  23633  tngtopn  23814  rrxmval  24569  ulmss  25556  dchrrcl  26388  gsummpt2co  31308  locfinreflem  31790  sitgclg  32309  cvmsrcl  33226  snmlval  33293  gonan0  33354  bj-fvmptunsn1  35428  eldiophb  40579  elmnc  40961  itgocn  40989  submgmrcl  45336  dmmpossx2  45672
  Copyright terms: Public domain W3C validator