MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmmptss Structured version   Visualization version   GIF version

Theorem dmmptss 6167
Description: The domain of a mapping is a subset of its base class. (Contributed by Scott Fenton, 17-Jun-2013.)
Hypothesis
Ref Expression
dmmpt.1 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
dmmptss dom 𝐹𝐴
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem dmmptss
StepHypRef Expression
1 dmmpt.1 . . 3 𝐹 = (𝑥𝐴𝐵)
21dmmpt 6166 . 2 dom 𝐹 = {𝑥𝐴𝐵 ∈ V}
32ssrab3 4026 1 dom 𝐹𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2105  Vcvv 3441  wss 3897  cmpt 5170  dom cdm 5608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-sep 5238  ax-nul 5245  ax-pr 5367
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-rab 3405  df-v 3443  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4268  df-if 4472  df-sn 4572  df-pr 4574  df-op 4578  df-br 5088  df-opab 5150  df-mpt 5171  df-xp 5614  df-rel 5615  df-cnv 5616  df-dm 5618  df-rn 5619  df-res 5620  df-ima 5621
This theorem is referenced by:  mptrcl  6924  fvmptss  6927  fvmptex  6929  fvmptnf  6937  elfvmptrab1w  6941  elfvmptrab1  6942  mptexg  7137  mptexw  7842  dmmpossx  7953  tposssxp  8095  mptfi  9195  cnvimamptfin  9197  cantnfres  9513  mptct  10374  arwrcl  17836  cntzrcl  19009  gsumconst  19610  psrass1lemOLD  21226  psrass1lem  21229  psrass1  21257  psrass23l  21260  psrcom  21261  psrass23  21262  mpfrcl  21378  psropprmul  21492  coe1mul2  21523  lmrcl  22465  1stcrestlem  22686  ptbasfi  22815  isxms2  23684  setsmstopn  23716  tngtopn  23897  rrxmval  24652  ulmss  25639  dchrrcl  26471  gsummpt2co  31443  locfinreflem  31930  sitgclg  32449  cvmsrcl  33365  snmlval  33432  gonan0  33493  bj-fvmptunsn1  35500  eldiophb  40795  elmnc  41178  itgocn  41206  submgmrcl  45601  dmmpossx2  45937
  Copyright terms: Public domain W3C validator