Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dmmptss | Structured version Visualization version GIF version |
Description: The domain of a mapping is a subset of its base class. (Contributed by Scott Fenton, 17-Jun-2013.) |
Ref | Expression |
---|---|
dmmpt.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
Ref | Expression |
---|---|
dmmptss | ⊢ dom 𝐹 ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmmpt.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
2 | 1 | dmmpt 6166 | . 2 ⊢ dom 𝐹 = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} |
3 | 2 | ssrab3 4026 | 1 ⊢ dom 𝐹 ⊆ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ∈ wcel 2105 Vcvv 3441 ⊆ wss 3897 ↦ cmpt 5170 dom cdm 5608 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pr 5367 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-rab 3405 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-sn 4572 df-pr 4574 df-op 4578 df-br 5088 df-opab 5150 df-mpt 5171 df-xp 5614 df-rel 5615 df-cnv 5616 df-dm 5618 df-rn 5619 df-res 5620 df-ima 5621 |
This theorem is referenced by: mptrcl 6924 fvmptss 6927 fvmptex 6929 fvmptnf 6937 elfvmptrab1w 6941 elfvmptrab1 6942 mptexg 7137 mptexw 7842 dmmpossx 7953 tposssxp 8095 mptfi 9195 cnvimamptfin 9197 cantnfres 9513 mptct 10374 arwrcl 17836 cntzrcl 19009 gsumconst 19610 psrass1lemOLD 21226 psrass1lem 21229 psrass1 21257 psrass23l 21260 psrcom 21261 psrass23 21262 mpfrcl 21378 psropprmul 21492 coe1mul2 21523 lmrcl 22465 1stcrestlem 22686 ptbasfi 22815 isxms2 23684 setsmstopn 23716 tngtopn 23897 rrxmval 24652 ulmss 25639 dchrrcl 26471 gsummpt2co 31443 locfinreflem 31930 sitgclg 32449 cvmsrcl 33365 snmlval 33432 gonan0 33493 bj-fvmptunsn1 35500 eldiophb 40795 elmnc 41178 itgocn 41206 submgmrcl 45601 dmmpossx2 45937 |
Copyright terms: Public domain | W3C validator |