| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmmptss | Structured version Visualization version GIF version | ||
| Description: The domain of a mapping is a subset of its base class. (Contributed by Scott Fenton, 17-Jun-2013.) |
| Ref | Expression |
|---|---|
| dmmpt.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| dmmptss | ⊢ dom 𝐹 ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmmpt.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 2 | 1 | dmmpt 6216 | . 2 ⊢ dom 𝐹 = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} |
| 3 | 2 | ssrab3 4048 | 1 ⊢ dom 𝐹 ⊆ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 Vcvv 3450 ⊆ wss 3917 ↦ cmpt 5191 dom cdm 5641 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-mpt 5192 df-xp 5647 df-rel 5648 df-cnv 5649 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 |
| This theorem is referenced by: mptrcl 6980 fvmptss 6983 fvmptex 6985 fvmptnf 6993 elfvmptrab1w 6998 elfvmptrab1 6999 mptexg 7198 mptexw 7934 dmmpossx 8048 tposssxp 8212 mptfi 9309 cnvimamptfin 9311 cantnfres 9637 mptct 10498 arwrcl 18013 submgmrcl 18629 cntzrcl 19266 gsumconst 19871 psrass1lem 21848 psrass1 21880 psrass23l 21883 psrcom 21884 psrass23 21885 mpfrcl 21999 psropprmul 22129 coe1mul2 22162 lmrcl 23125 1stcrestlem 23346 ptbasfi 23475 isxms2 24343 setsmstopn 24373 tngtopn 24545 rrxmval 25312 ulmss 26313 dchrrcl 27158 gsummpt2co 32995 locfinreflem 33837 sitgclg 34340 cvmsrcl 35258 snmlval 35325 gonan0 35386 bj-fvmptunsn1 37252 eldiophb 42752 elmnc 43132 itgocn 43160 dmmpossx2 48329 dmtposss 48868 |
| Copyright terms: Public domain | W3C validator |