MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmmptss Structured version   Visualization version   GIF version

Theorem dmmptss 6202
Description: The domain of a mapping is a subset of its base class. (Contributed by Scott Fenton, 17-Jun-2013.)
Hypothesis
Ref Expression
dmmpt.1 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
dmmptss dom 𝐹𝐴
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem dmmptss
StepHypRef Expression
1 dmmpt.1 . . 3 𝐹 = (𝑥𝐴𝐵)
21dmmpt 6201 . 2 dom 𝐹 = {𝑥𝐴𝐵 ∈ V}
32ssrab3 4041 1 dom 𝐹𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  Vcvv 3444  wss 3911  cmpt 5183  dom cdm 5631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-mpt 5184  df-xp 5637  df-rel 5638  df-cnv 5639  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644
This theorem is referenced by:  mptrcl  6959  fvmptss  6962  fvmptex  6964  fvmptnf  6972  elfvmptrab1w  6977  elfvmptrab1  6978  mptexg  7177  mptexw  7911  dmmpossx  8024  tposssxp  8186  mptfi  9278  cnvimamptfin  9280  cantnfres  9606  mptct  10467  arwrcl  17982  submgmrcl  18598  cntzrcl  19235  gsumconst  19840  psrass1lem  21817  psrass1  21849  psrass23l  21852  psrcom  21853  psrass23  21854  mpfrcl  21968  psropprmul  22098  coe1mul2  22131  lmrcl  23094  1stcrestlem  23315  ptbasfi  23444  isxms2  24312  setsmstopn  24342  tngtopn  24514  rrxmval  25281  ulmss  26282  dchrrcl  27127  gsummpt2co  32961  locfinreflem  33803  sitgclg  34306  cvmsrcl  35224  snmlval  35291  gonan0  35352  bj-fvmptunsn1  37218  eldiophb  42718  elmnc  43098  itgocn  43126  tannpoly  46864  dmmpossx2  48298  dmtposss  48837
  Copyright terms: Public domain W3C validator