| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmmptss | Structured version Visualization version GIF version | ||
| Description: The domain of a mapping is a subset of its base class. (Contributed by Scott Fenton, 17-Jun-2013.) |
| Ref | Expression |
|---|---|
| dmmpt.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| dmmptss | ⊢ dom 𝐹 ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmmpt.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 2 | 1 | dmmpt 6201 | . 2 ⊢ dom 𝐹 = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} |
| 3 | 2 | ssrab3 4041 | 1 ⊢ dom 𝐹 ⊆ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 Vcvv 3444 ⊆ wss 3911 ↦ cmpt 5183 dom cdm 5631 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-mpt 5184 df-xp 5637 df-rel 5638 df-cnv 5639 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 |
| This theorem is referenced by: mptrcl 6959 fvmptss 6962 fvmptex 6964 fvmptnf 6972 elfvmptrab1w 6977 elfvmptrab1 6978 mptexg 7177 mptexw 7911 dmmpossx 8024 tposssxp 8186 mptfi 9278 cnvimamptfin 9280 cantnfres 9606 mptct 10467 arwrcl 17986 submgmrcl 18604 cntzrcl 19241 gsumconst 19848 psrass1lem 21874 psrass1 21906 psrass23l 21909 psrcom 21910 psrass23 21911 mpfrcl 22025 psropprmul 22155 coe1mul2 22188 lmrcl 23151 1stcrestlem 23372 ptbasfi 23501 isxms2 24369 setsmstopn 24399 tngtopn 24571 rrxmval 25338 ulmss 26339 dchrrcl 27184 gsummpt2co 33031 locfinreflem 33823 sitgclg 34326 cvmsrcl 35244 snmlval 35311 gonan0 35372 bj-fvmptunsn1 37238 eldiophb 42738 elmnc 43118 itgocn 43146 tannpoly 46884 dmmpossx2 48318 dmtposss 48857 |
| Copyright terms: Public domain | W3C validator |