MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmmptss Structured version   Visualization version   GIF version

Theorem dmmptss 6240
Description: The domain of a mapping is a subset of its base class. (Contributed by Scott Fenton, 17-Jun-2013.)
Hypothesis
Ref Expression
dmmpt.1 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
dmmptss dom 𝐹𝐴
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem dmmptss
StepHypRef Expression
1 dmmpt.1 . . 3 𝐹 = (𝑥𝐴𝐵)
21dmmpt 6239 . 2 dom 𝐹 = {𝑥𝐴𝐵 ∈ V}
32ssrab3 4080 1 dom 𝐹𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2106  Vcvv 3474  wss 3948  cmpt 5231  dom cdm 5676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-mpt 5232  df-xp 5682  df-rel 5683  df-cnv 5684  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689
This theorem is referenced by:  mptrcl  7007  fvmptss  7010  fvmptex  7012  fvmptnf  7020  elfvmptrab1w  7024  elfvmptrab1  7025  mptexg  7222  mptexw  7938  dmmpossx  8051  tposssxp  8214  mptfi  9350  cnvimamptfin  9352  cantnfres  9671  mptct  10532  arwrcl  17993  cntzrcl  19190  gsumconst  19801  psrass1lemOLD  21492  psrass1lem  21495  psrass1  21524  psrass23l  21527  psrcom  21528  psrass23  21529  mpfrcl  21647  psropprmul  21759  coe1mul2  21790  lmrcl  22734  1stcrestlem  22955  ptbasfi  23084  isxms2  23953  setsmstopn  23985  tngtopn  24166  rrxmval  24921  ulmss  25908  dchrrcl  26740  gsummpt2co  32195  locfinreflem  32815  sitgclg  33336  cvmsrcl  34250  snmlval  34317  gonan0  34378  bj-fvmptunsn1  36133  eldiophb  41485  elmnc  41868  itgocn  41896  submgmrcl  46542  dmmpossx2  47002
  Copyright terms: Public domain W3C validator