MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmmptss Structured version   Visualization version   GIF version

Theorem dmmptss 6214
Description: The domain of a mapping is a subset of its base class. (Contributed by Scott Fenton, 17-Jun-2013.)
Hypothesis
Ref Expression
dmmpt.1 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
dmmptss dom 𝐹𝐴
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem dmmptss
StepHypRef Expression
1 dmmpt.1 . . 3 𝐹 = (𝑥𝐴𝐵)
21dmmpt 6213 . 2 dom 𝐹 = {𝑥𝐴𝐵 ∈ V}
32ssrab3 4045 1 dom 𝐹𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  Vcvv 3447  wss 3914  cmpt 5188  dom cdm 5638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-mpt 5189  df-xp 5644  df-rel 5645  df-cnv 5646  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651
This theorem is referenced by:  mptrcl  6977  fvmptss  6980  fvmptex  6982  fvmptnf  6990  elfvmptrab1w  6995  elfvmptrab1  6996  mptexg  7195  mptexw  7931  dmmpossx  8045  tposssxp  8209  mptfi  9302  cnvimamptfin  9304  cantnfres  9630  mptct  10491  arwrcl  18006  submgmrcl  18622  cntzrcl  19259  gsumconst  19864  psrass1lem  21841  psrass1  21873  psrass23l  21876  psrcom  21877  psrass23  21878  mpfrcl  21992  psropprmul  22122  coe1mul2  22155  lmrcl  23118  1stcrestlem  23339  ptbasfi  23468  isxms2  24336  setsmstopn  24366  tngtopn  24538  rrxmval  25305  ulmss  26306  dchrrcl  27151  gsummpt2co  32988  locfinreflem  33830  sitgclg  34333  cvmsrcl  35251  snmlval  35318  gonan0  35379  bj-fvmptunsn1  37245  eldiophb  42745  elmnc  43125  itgocn  43153  tannpoly  46891  dmmpossx2  48325  dmtposss  48864
  Copyright terms: Public domain W3C validator