| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmmptss | Structured version Visualization version GIF version | ||
| Description: The domain of a mapping is a subset of its base class. (Contributed by Scott Fenton, 17-Jun-2013.) |
| Ref | Expression |
|---|---|
| dmmpt.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| dmmptss | ⊢ dom 𝐹 ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmmpt.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 2 | 1 | dmmpt 6189 | . 2 ⊢ dom 𝐹 = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} |
| 3 | 2 | ssrab3 4033 | 1 ⊢ dom 𝐹 ⊆ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 Vcvv 3436 ⊆ wss 3903 ↦ cmpt 5173 dom cdm 5619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-mpt 5174 df-xp 5625 df-rel 5626 df-cnv 5627 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 |
| This theorem is referenced by: mptrcl 6939 fvmptss 6942 fvmptex 6944 fvmptnf 6952 elfvmptrab1w 6957 elfvmptrab1 6958 mptexg 7157 mptexw 7888 dmmpossx 8001 tposssxp 8163 mptfi 9241 cnvimamptfin 9243 cantnfres 9573 mptct 10432 arwrcl 17951 submgmrcl 18569 cntzrcl 19206 gsumconst 19813 psrass1lem 21839 psrass1 21871 psrass23l 21874 psrcom 21875 psrass23 21876 mpfrcl 21990 psropprmul 22120 coe1mul2 22153 lmrcl 23116 1stcrestlem 23337 ptbasfi 23466 isxms2 24334 setsmstopn 24364 tngtopn 24536 rrxmval 25303 ulmss 26304 dchrrcl 27149 gsummpt2co 33001 locfinreflem 33807 sitgclg 34310 cvmsrcl 35237 snmlval 35304 gonan0 35365 bj-fvmptunsn1 37231 eldiophb 42730 elmnc 43109 itgocn 43137 tannpoly 46874 dmmpossx2 48321 dmtposss 48860 |
| Copyright terms: Public domain | W3C validator |