MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmmptss Structured version   Visualization version   GIF version

Theorem dmmptss 6239
Description: The domain of a mapping is a subset of its base class. (Contributed by Scott Fenton, 17-Jun-2013.)
Hypothesis
Ref Expression
dmmpt.1 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
dmmptss dom 𝐹𝐴
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem dmmptss
StepHypRef Expression
1 dmmpt.1 . . 3 𝐹 = (𝑥𝐴𝐵)
21dmmpt 6238 . 2 dom 𝐹 = {𝑥𝐴𝐵 ∈ V}
32ssrab3 4079 1 dom 𝐹𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2104  Vcvv 3472  wss 3947  cmpt 5230  dom cdm 5675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-br 5148  df-opab 5210  df-mpt 5231  df-xp 5681  df-rel 5682  df-cnv 5683  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688
This theorem is referenced by:  mptrcl  7006  fvmptss  7009  fvmptex  7011  fvmptnf  7019  elfvmptrab1w  7023  elfvmptrab1  7024  mptexg  7224  mptexw  7941  dmmpossx  8054  tposssxp  8217  mptfi  9353  cnvimamptfin  9355  cantnfres  9674  mptct  10535  arwrcl  17998  submgmrcl  18620  cntzrcl  19232  gsumconst  19843  psrass1lemOLD  21712  psrass1lem  21715  psrass1  21744  psrass23l  21747  psrcom  21748  psrass23  21749  mpfrcl  21867  psropprmul  21980  coe1mul2  22011  lmrcl  22955  1stcrestlem  23176  ptbasfi  23305  isxms2  24174  setsmstopn  24206  tngtopn  24387  rrxmval  25153  ulmss  26145  dchrrcl  26979  gsummpt2co  32470  locfinreflem  33118  sitgclg  33639  cvmsrcl  34553  snmlval  34620  gonan0  34681  bj-fvmptunsn1  36441  eldiophb  41797  elmnc  42180  itgocn  42208  dmmpossx2  47100
  Copyright terms: Public domain W3C validator