| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmmptss | Structured version Visualization version GIF version | ||
| Description: The domain of a mapping is a subset of its base class. (Contributed by Scott Fenton, 17-Jun-2013.) |
| Ref | Expression |
|---|---|
| dmmpt.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| dmmptss | ⊢ dom 𝐹 ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmmpt.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 2 | 1 | dmmpt 6213 | . 2 ⊢ dom 𝐹 = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} |
| 3 | 2 | ssrab3 4045 | 1 ⊢ dom 𝐹 ⊆ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 Vcvv 3447 ⊆ wss 3914 ↦ cmpt 5188 dom cdm 5638 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-mpt 5189 df-xp 5644 df-rel 5645 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 |
| This theorem is referenced by: mptrcl 6977 fvmptss 6980 fvmptex 6982 fvmptnf 6990 elfvmptrab1w 6995 elfvmptrab1 6996 mptexg 7195 mptexw 7931 dmmpossx 8045 tposssxp 8209 mptfi 9302 cnvimamptfin 9304 cantnfres 9630 mptct 10491 arwrcl 18006 submgmrcl 18622 cntzrcl 19259 gsumconst 19864 psrass1lem 21841 psrass1 21873 psrass23l 21876 psrcom 21877 psrass23 21878 mpfrcl 21992 psropprmul 22122 coe1mul2 22155 lmrcl 23118 1stcrestlem 23339 ptbasfi 23468 isxms2 24336 setsmstopn 24366 tngtopn 24538 rrxmval 25305 ulmss 26306 dchrrcl 27151 gsummpt2co 32988 locfinreflem 33830 sitgclg 34333 cvmsrcl 35251 snmlval 35318 gonan0 35379 bj-fvmptunsn1 37245 eldiophb 42745 elmnc 43125 itgocn 43153 tannpoly 46891 dmmpossx2 48325 dmtposss 48864 |
| Copyright terms: Public domain | W3C validator |