| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tposres0 | Structured version Visualization version GIF version | ||
| Description: The transposition of a set restricted to the empty set is the set restricted to the empty set. See also ressn 6272 and dftpos6 48744 for an alternate proof. (Contributed by Zhi Wang, 6-Oct-2025.) |
| Ref | Expression |
|---|---|
| tposres0 | ⊢ (tpos 𝐹 ↾ {∅}) = (𝐹 ↾ {∅}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relres 5990 | . 2 ⊢ Rel (tpos 𝐹 ↾ {∅}) | |
| 2 | relres 5990 | . 2 ⊢ Rel (𝐹 ↾ {∅}) | |
| 3 | velsn 4615 | . . . . 5 ⊢ (𝑥 ∈ {∅} ↔ 𝑥 = ∅) | |
| 4 | brtpos0 8227 | . . . . . . 7 ⊢ (𝑦 ∈ V → (∅tpos 𝐹𝑦 ↔ ∅𝐹𝑦)) | |
| 5 | 4 | elv 3462 | . . . . . 6 ⊢ (∅tpos 𝐹𝑦 ↔ ∅𝐹𝑦) |
| 6 | breq1 5120 | . . . . . . 7 ⊢ (𝑥 = ∅ → (𝑥tpos 𝐹𝑦 ↔ ∅tpos 𝐹𝑦)) | |
| 7 | breq1 5120 | . . . . . . 7 ⊢ (𝑥 = ∅ → (𝑥𝐹𝑦 ↔ ∅𝐹𝑦)) | |
| 8 | 6, 7 | bibi12d 345 | . . . . . 6 ⊢ (𝑥 = ∅ → ((𝑥tpos 𝐹𝑦 ↔ 𝑥𝐹𝑦) ↔ (∅tpos 𝐹𝑦 ↔ ∅𝐹𝑦))) |
| 9 | 5, 8 | mpbiri 258 | . . . . 5 ⊢ (𝑥 = ∅ → (𝑥tpos 𝐹𝑦 ↔ 𝑥𝐹𝑦)) |
| 10 | 3, 9 | sylbi 217 | . . . 4 ⊢ (𝑥 ∈ {∅} → (𝑥tpos 𝐹𝑦 ↔ 𝑥𝐹𝑦)) |
| 11 | 10 | pm5.32i 574 | . . 3 ⊢ ((𝑥 ∈ {∅} ∧ 𝑥tpos 𝐹𝑦) ↔ (𝑥 ∈ {∅} ∧ 𝑥𝐹𝑦)) |
| 12 | vex 3461 | . . . 4 ⊢ 𝑦 ∈ V | |
| 13 | 12 | brresi 5973 | . . 3 ⊢ (𝑥(tpos 𝐹 ↾ {∅})𝑦 ↔ (𝑥 ∈ {∅} ∧ 𝑥tpos 𝐹𝑦)) |
| 14 | 12 | brresi 5973 | . . 3 ⊢ (𝑥(𝐹 ↾ {∅})𝑦 ↔ (𝑥 ∈ {∅} ∧ 𝑥𝐹𝑦)) |
| 15 | 11, 13, 14 | 3bitr4i 303 | . 2 ⊢ (𝑥(tpos 𝐹 ↾ {∅})𝑦 ↔ 𝑥(𝐹 ↾ {∅})𝑦) |
| 16 | 1, 2, 15 | eqbrriv 5768 | 1 ⊢ (tpos 𝐹 ↾ {∅}) = (𝐹 ↾ {∅}) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 Vcvv 3457 ∅c0 4306 {csn 4599 class class class wbr 5117 ↾ cres 5654 tpos ctpos 8219 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-br 5118 df-opab 5180 df-mpt 5200 df-id 5546 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-iota 6481 df-fun 6530 df-fn 6531 df-fv 6536 df-tpos 8220 |
| This theorem is referenced by: tposresg 48747 |
| Copyright terms: Public domain | W3C validator |