Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tposres0 Structured version   Visualization version   GIF version

Theorem tposres0 48750
Description: The transposition of a set restricted to the empty set is the set restricted to the empty set. See also ressn 6303 and dftpos6 48748 for an alternate proof. (Contributed by Zhi Wang, 6-Oct-2025.)
Assertion
Ref Expression
tposres0 (tpos 𝐹 ↾ {∅}) = (𝐹 ↾ {∅})

Proof of Theorem tposres0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relres 6021 . 2 Rel (tpos 𝐹 ↾ {∅})
2 relres 6021 . 2 Rel (𝐹 ↾ {∅})
3 velsn 4640 . . . . 5 (𝑥 ∈ {∅} ↔ 𝑥 = ∅)
4 brtpos0 8254 . . . . . . 7 (𝑦 ∈ V → (∅tpos 𝐹𝑦 ↔ ∅𝐹𝑦))
54elv 3484 . . . . . 6 (∅tpos 𝐹𝑦 ↔ ∅𝐹𝑦)
6 breq1 5144 . . . . . . 7 (𝑥 = ∅ → (𝑥tpos 𝐹𝑦 ↔ ∅tpos 𝐹𝑦))
7 breq1 5144 . . . . . . 7 (𝑥 = ∅ → (𝑥𝐹𝑦 ↔ ∅𝐹𝑦))
86, 7bibi12d 345 . . . . . 6 (𝑥 = ∅ → ((𝑥tpos 𝐹𝑦𝑥𝐹𝑦) ↔ (∅tpos 𝐹𝑦 ↔ ∅𝐹𝑦)))
95, 8mpbiri 258 . . . . 5 (𝑥 = ∅ → (𝑥tpos 𝐹𝑦𝑥𝐹𝑦))
103, 9sylbi 217 . . . 4 (𝑥 ∈ {∅} → (𝑥tpos 𝐹𝑦𝑥𝐹𝑦))
1110pm5.32i 574 . . 3 ((𝑥 ∈ {∅} ∧ 𝑥tpos 𝐹𝑦) ↔ (𝑥 ∈ {∅} ∧ 𝑥𝐹𝑦))
12 vex 3483 . . . 4 𝑦 ∈ V
1312brresi 6004 . . 3 (𝑥(tpos 𝐹 ↾ {∅})𝑦 ↔ (𝑥 ∈ {∅} ∧ 𝑥tpos 𝐹𝑦))
1412brresi 6004 . . 3 (𝑥(𝐹 ↾ {∅})𝑦 ↔ (𝑥 ∈ {∅} ∧ 𝑥𝐹𝑦))
1511, 13, 143bitr4i 303 . 2 (𝑥(tpos 𝐹 ↾ {∅})𝑦𝑥(𝐹 ↾ {∅})𝑦)
161, 2, 15eqbrriv 5799 1 (tpos 𝐹 ↾ {∅}) = (𝐹 ↾ {∅})
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2108  Vcvv 3479  c0 4332  {csn 4624   class class class wbr 5141  cres 5685  tpos ctpos 8246
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5294  ax-nul 5304  ax-pow 5363  ax-pr 5430  ax-un 7751
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4906  df-br 5142  df-opab 5204  df-mpt 5224  df-id 5576  df-xp 5689  df-rel 5690  df-cnv 5691  df-co 5692  df-dm 5693  df-rn 5694  df-res 5695  df-ima 5696  df-iota 6512  df-fun 6561  df-fn 6562  df-fv 6567  df-tpos 8247
This theorem is referenced by:  tposresg  48751
  Copyright terms: Public domain W3C validator