| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tposres0 | Structured version Visualization version GIF version | ||
| Description: The transposition of a set restricted to the empty set is the set restricted to the empty set. See also ressn 6260 and dftpos6 48853 for an alternate proof. (Contributed by Zhi Wang, 6-Oct-2025.) |
| Ref | Expression |
|---|---|
| tposres0 | ⊢ (tpos 𝐹 ↾ {∅}) = (𝐹 ↾ {∅}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relres 5978 | . 2 ⊢ Rel (tpos 𝐹 ↾ {∅}) | |
| 2 | relres 5978 | . 2 ⊢ Rel (𝐹 ↾ {∅}) | |
| 3 | velsn 4607 | . . . . 5 ⊢ (𝑥 ∈ {∅} ↔ 𝑥 = ∅) | |
| 4 | brtpos0 8214 | . . . . . . 7 ⊢ (𝑦 ∈ V → (∅tpos 𝐹𝑦 ↔ ∅𝐹𝑦)) | |
| 5 | 4 | elv 3455 | . . . . . 6 ⊢ (∅tpos 𝐹𝑦 ↔ ∅𝐹𝑦) |
| 6 | breq1 5112 | . . . . . . 7 ⊢ (𝑥 = ∅ → (𝑥tpos 𝐹𝑦 ↔ ∅tpos 𝐹𝑦)) | |
| 7 | breq1 5112 | . . . . . . 7 ⊢ (𝑥 = ∅ → (𝑥𝐹𝑦 ↔ ∅𝐹𝑦)) | |
| 8 | 6, 7 | bibi12d 345 | . . . . . 6 ⊢ (𝑥 = ∅ → ((𝑥tpos 𝐹𝑦 ↔ 𝑥𝐹𝑦) ↔ (∅tpos 𝐹𝑦 ↔ ∅𝐹𝑦))) |
| 9 | 5, 8 | mpbiri 258 | . . . . 5 ⊢ (𝑥 = ∅ → (𝑥tpos 𝐹𝑦 ↔ 𝑥𝐹𝑦)) |
| 10 | 3, 9 | sylbi 217 | . . . 4 ⊢ (𝑥 ∈ {∅} → (𝑥tpos 𝐹𝑦 ↔ 𝑥𝐹𝑦)) |
| 11 | 10 | pm5.32i 574 | . . 3 ⊢ ((𝑥 ∈ {∅} ∧ 𝑥tpos 𝐹𝑦) ↔ (𝑥 ∈ {∅} ∧ 𝑥𝐹𝑦)) |
| 12 | vex 3454 | . . . 4 ⊢ 𝑦 ∈ V | |
| 13 | 12 | brresi 5961 | . . 3 ⊢ (𝑥(tpos 𝐹 ↾ {∅})𝑦 ↔ (𝑥 ∈ {∅} ∧ 𝑥tpos 𝐹𝑦)) |
| 14 | 12 | brresi 5961 | . . 3 ⊢ (𝑥(𝐹 ↾ {∅})𝑦 ↔ (𝑥 ∈ {∅} ∧ 𝑥𝐹𝑦)) |
| 15 | 11, 13, 14 | 3bitr4i 303 | . 2 ⊢ (𝑥(tpos 𝐹 ↾ {∅})𝑦 ↔ 𝑥(𝐹 ↾ {∅})𝑦) |
| 16 | 1, 2, 15 | eqbrriv 5756 | 1 ⊢ (tpos 𝐹 ↾ {∅}) = (𝐹 ↾ {∅}) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∅c0 4298 {csn 4591 class class class wbr 5109 ↾ cres 5642 tpos ctpos 8206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-fv 6521 df-tpos 8207 |
| This theorem is referenced by: tposresg 48856 |
| Copyright terms: Public domain | W3C validator |