Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tposres0 Structured version   Visualization version   GIF version

Theorem tposres0 48746
Description: The transposition of a set restricted to the empty set is the set restricted to the empty set. See also ressn 6272 and dftpos6 48744 for an alternate proof. (Contributed by Zhi Wang, 6-Oct-2025.)
Assertion
Ref Expression
tposres0 (tpos 𝐹 ↾ {∅}) = (𝐹 ↾ {∅})

Proof of Theorem tposres0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relres 5990 . 2 Rel (tpos 𝐹 ↾ {∅})
2 relres 5990 . 2 Rel (𝐹 ↾ {∅})
3 velsn 4615 . . . . 5 (𝑥 ∈ {∅} ↔ 𝑥 = ∅)
4 brtpos0 8227 . . . . . . 7 (𝑦 ∈ V → (∅tpos 𝐹𝑦 ↔ ∅𝐹𝑦))
54elv 3462 . . . . . 6 (∅tpos 𝐹𝑦 ↔ ∅𝐹𝑦)
6 breq1 5120 . . . . . . 7 (𝑥 = ∅ → (𝑥tpos 𝐹𝑦 ↔ ∅tpos 𝐹𝑦))
7 breq1 5120 . . . . . . 7 (𝑥 = ∅ → (𝑥𝐹𝑦 ↔ ∅𝐹𝑦))
86, 7bibi12d 345 . . . . . 6 (𝑥 = ∅ → ((𝑥tpos 𝐹𝑦𝑥𝐹𝑦) ↔ (∅tpos 𝐹𝑦 ↔ ∅𝐹𝑦)))
95, 8mpbiri 258 . . . . 5 (𝑥 = ∅ → (𝑥tpos 𝐹𝑦𝑥𝐹𝑦))
103, 9sylbi 217 . . . 4 (𝑥 ∈ {∅} → (𝑥tpos 𝐹𝑦𝑥𝐹𝑦))
1110pm5.32i 574 . . 3 ((𝑥 ∈ {∅} ∧ 𝑥tpos 𝐹𝑦) ↔ (𝑥 ∈ {∅} ∧ 𝑥𝐹𝑦))
12 vex 3461 . . . 4 𝑦 ∈ V
1312brresi 5973 . . 3 (𝑥(tpos 𝐹 ↾ {∅})𝑦 ↔ (𝑥 ∈ {∅} ∧ 𝑥tpos 𝐹𝑦))
1412brresi 5973 . . 3 (𝑥(𝐹 ↾ {∅})𝑦 ↔ (𝑥 ∈ {∅} ∧ 𝑥𝐹𝑦))
1511, 13, 143bitr4i 303 . 2 (𝑥(tpos 𝐹 ↾ {∅})𝑦𝑥(𝐹 ↾ {∅})𝑦)
161, 2, 15eqbrriv 5768 1 (tpos 𝐹 ↾ {∅}) = (𝐹 ↾ {∅})
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1539  wcel 2107  Vcvv 3457  c0 4306  {csn 4599   class class class wbr 5117  cres 5654  tpos ctpos 8219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3414  df-v 3459  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-br 5118  df-opab 5180  df-mpt 5200  df-id 5546  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-iota 6481  df-fun 6530  df-fn 6531  df-fv 6536  df-tpos 8220
This theorem is referenced by:  tposresg  48747
  Copyright terms: Public domain W3C validator