Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tposresg Structured version   Visualization version   GIF version

Theorem tposresg 48747
Description: The transposition restricted to a set. (Contributed by Zhi Wang, 6-Oct-2025.)
Assertion
Ref Expression
tposresg (tpos 𝐹𝑅) = ((tpos 𝐹𝑅) ∪ (𝐹 ↾ (𝑅 ∩ {∅})))

Proof of Theorem tposresg
StepHypRef Expression
1 rescom 5987 . . 3 ((tpos 𝐹 ↾ ((V × V) ∪ {∅})) ↾ 𝑅) = ((tpos 𝐹𝑅) ↾ ((V × V) ∪ {∅}))
2 reltpos 8225 . . . . 5 Rel tpos 𝐹
3 dmtposss 48745 . . . . 5 dom tpos 𝐹 ⊆ ((V × V) ∪ {∅})
4 relssres 6007 . . . . 5 ((Rel tpos 𝐹 ∧ dom tpos 𝐹 ⊆ ((V × V) ∪ {∅})) → (tpos 𝐹 ↾ ((V × V) ∪ {∅})) = tpos 𝐹)
52, 3, 4mp2an 692 . . . 4 (tpos 𝐹 ↾ ((V × V) ∪ {∅})) = tpos 𝐹
65reseq1i 5960 . . 3 ((tpos 𝐹 ↾ ((V × V) ∪ {∅})) ↾ 𝑅) = (tpos 𝐹𝑅)
7 resres 5977 . . 3 ((tpos 𝐹𝑅) ↾ ((V × V) ∪ {∅})) = (tpos 𝐹 ↾ (𝑅 ∩ ((V × V) ∪ {∅})))
81, 6, 73eqtr3i 2765 . 2 (tpos 𝐹𝑅) = (tpos 𝐹 ↾ (𝑅 ∩ ((V × V) ∪ {∅})))
9 indi 4257 . . . 4 (𝑅 ∩ ((V × V) ∪ {∅})) = ((𝑅 ∩ (V × V)) ∪ (𝑅 ∩ {∅}))
10 cnvcnv 6179 . . . . 5 𝑅 = (𝑅 ∩ (V × V))
1110uneq1i 4137 . . . 4 (𝑅 ∪ (𝑅 ∩ {∅})) = ((𝑅 ∩ (V × V)) ∪ (𝑅 ∩ {∅}))
129, 11eqtr4i 2760 . . 3 (𝑅 ∩ ((V × V) ∪ {∅})) = (𝑅 ∪ (𝑅 ∩ {∅}))
1312reseq2i 5961 . 2 (tpos 𝐹 ↾ (𝑅 ∩ ((V × V) ∪ {∅}))) = (tpos 𝐹 ↾ (𝑅 ∪ (𝑅 ∩ {∅})))
14 resundi 5978 . . 3 (tpos 𝐹 ↾ (𝑅 ∪ (𝑅 ∩ {∅}))) = ((tpos 𝐹𝑅) ∪ (tpos 𝐹 ↾ (𝑅 ∩ {∅})))
15 rescom 5987 . . . . . 6 ((tpos 𝐹 ↾ {∅}) ↾ 𝑅) = ((tpos 𝐹𝑅) ↾ {∅})
16 tposres0 48746 . . . . . . 7 (tpos 𝐹 ↾ {∅}) = (𝐹 ↾ {∅})
1716reseq1i 5960 . . . . . 6 ((tpos 𝐹 ↾ {∅}) ↾ 𝑅) = ((𝐹 ↾ {∅}) ↾ 𝑅)
18 resres 5977 . . . . . 6 ((tpos 𝐹𝑅) ↾ {∅}) = (tpos 𝐹 ↾ (𝑅 ∩ {∅}))
1915, 17, 183eqtr3ri 2766 . . . . 5 (tpos 𝐹 ↾ (𝑅 ∩ {∅})) = ((𝐹 ↾ {∅}) ↾ 𝑅)
20 rescom 5987 . . . . 5 ((𝐹 ↾ {∅}) ↾ 𝑅) = ((𝐹𝑅) ↾ {∅})
21 resres 5977 . . . . 5 ((𝐹𝑅) ↾ {∅}) = (𝐹 ↾ (𝑅 ∩ {∅}))
2219, 20, 213eqtri 2761 . . . 4 (tpos 𝐹 ↾ (𝑅 ∩ {∅})) = (𝐹 ↾ (𝑅 ∩ {∅}))
2322uneq2i 4138 . . 3 ((tpos 𝐹𝑅) ∪ (tpos 𝐹 ↾ (𝑅 ∩ {∅}))) = ((tpos 𝐹𝑅) ∪ (𝐹 ↾ (𝑅 ∩ {∅})))
2414, 23eqtri 2757 . 2 (tpos 𝐹 ↾ (𝑅 ∪ (𝑅 ∩ {∅}))) = ((tpos 𝐹𝑅) ∪ (𝐹 ↾ (𝑅 ∩ {∅})))
258, 13, 243eqtri 2761 1 (tpos 𝐹𝑅) = ((tpos 𝐹𝑅) ∪ (𝐹 ↾ (𝑅 ∩ {∅})))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  Vcvv 3457  cun 3922  cin 3923  wss 3924  c0 4306  {csn 4599   × cxp 5650  ccnv 5651  dom cdm 5652  cres 5654  Rel wrel 5657  tpos ctpos 8219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3414  df-v 3459  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-br 5118  df-opab 5180  df-mpt 5200  df-id 5546  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-iota 6481  df-fun 6530  df-fn 6531  df-fv 6536  df-tpos 8220
This theorem is referenced by:  tposres2  48749
  Copyright terms: Public domain W3C validator