Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tposresg Structured version   Visualization version   GIF version

Theorem tposresg 48751
Description: The transposition restricted to a set. (Contributed by Zhi Wang, 6-Oct-2025.)
Assertion
Ref Expression
tposresg (tpos 𝐹𝑅) = ((tpos 𝐹𝑅) ∪ (𝐹 ↾ (𝑅 ∩ {∅})))

Proof of Theorem tposresg
StepHypRef Expression
1 rescom 6018 . . 3 ((tpos 𝐹 ↾ ((V × V) ∪ {∅})) ↾ 𝑅) = ((tpos 𝐹𝑅) ↾ ((V × V) ∪ {∅}))
2 reltpos 8252 . . . . 5 Rel tpos 𝐹
3 dmtposss 48749 . . . . 5 dom tpos 𝐹 ⊆ ((V × V) ∪ {∅})
4 relssres 6038 . . . . 5 ((Rel tpos 𝐹 ∧ dom tpos 𝐹 ⊆ ((V × V) ∪ {∅})) → (tpos 𝐹 ↾ ((V × V) ∪ {∅})) = tpos 𝐹)
52, 3, 4mp2an 692 . . . 4 (tpos 𝐹 ↾ ((V × V) ∪ {∅})) = tpos 𝐹
65reseq1i 5991 . . 3 ((tpos 𝐹 ↾ ((V × V) ∪ {∅})) ↾ 𝑅) = (tpos 𝐹𝑅)
7 resres 6008 . . 3 ((tpos 𝐹𝑅) ↾ ((V × V) ∪ {∅})) = (tpos 𝐹 ↾ (𝑅 ∩ ((V × V) ∪ {∅})))
81, 6, 73eqtr3i 2772 . 2 (tpos 𝐹𝑅) = (tpos 𝐹 ↾ (𝑅 ∩ ((V × V) ∪ {∅})))
9 indi 4283 . . . 4 (𝑅 ∩ ((V × V) ∪ {∅})) = ((𝑅 ∩ (V × V)) ∪ (𝑅 ∩ {∅}))
10 cnvcnv 6210 . . . . 5 𝑅 = (𝑅 ∩ (V × V))
1110uneq1i 4163 . . . 4 (𝑅 ∪ (𝑅 ∩ {∅})) = ((𝑅 ∩ (V × V)) ∪ (𝑅 ∩ {∅}))
129, 11eqtr4i 2767 . . 3 (𝑅 ∩ ((V × V) ∪ {∅})) = (𝑅 ∪ (𝑅 ∩ {∅}))
1312reseq2i 5992 . 2 (tpos 𝐹 ↾ (𝑅 ∩ ((V × V) ∪ {∅}))) = (tpos 𝐹 ↾ (𝑅 ∪ (𝑅 ∩ {∅})))
14 resundi 6009 . . 3 (tpos 𝐹 ↾ (𝑅 ∪ (𝑅 ∩ {∅}))) = ((tpos 𝐹𝑅) ∪ (tpos 𝐹 ↾ (𝑅 ∩ {∅})))
15 rescom 6018 . . . . . 6 ((tpos 𝐹 ↾ {∅}) ↾ 𝑅) = ((tpos 𝐹𝑅) ↾ {∅})
16 tposres0 48750 . . . . . . 7 (tpos 𝐹 ↾ {∅}) = (𝐹 ↾ {∅})
1716reseq1i 5991 . . . . . 6 ((tpos 𝐹 ↾ {∅}) ↾ 𝑅) = ((𝐹 ↾ {∅}) ↾ 𝑅)
18 resres 6008 . . . . . 6 ((tpos 𝐹𝑅) ↾ {∅}) = (tpos 𝐹 ↾ (𝑅 ∩ {∅}))
1915, 17, 183eqtr3ri 2773 . . . . 5 (tpos 𝐹 ↾ (𝑅 ∩ {∅})) = ((𝐹 ↾ {∅}) ↾ 𝑅)
20 rescom 6018 . . . . 5 ((𝐹 ↾ {∅}) ↾ 𝑅) = ((𝐹𝑅) ↾ {∅})
21 resres 6008 . . . . 5 ((𝐹𝑅) ↾ {∅}) = (𝐹 ↾ (𝑅 ∩ {∅}))
2219, 20, 213eqtri 2768 . . . 4 (tpos 𝐹 ↾ (𝑅 ∩ {∅})) = (𝐹 ↾ (𝑅 ∩ {∅}))
2322uneq2i 4164 . . 3 ((tpos 𝐹𝑅) ∪ (tpos 𝐹 ↾ (𝑅 ∩ {∅}))) = ((tpos 𝐹𝑅) ∪ (𝐹 ↾ (𝑅 ∩ {∅})))
2414, 23eqtri 2764 . 2 (tpos 𝐹 ↾ (𝑅 ∪ (𝑅 ∩ {∅}))) = ((tpos 𝐹𝑅) ∪ (𝐹 ↾ (𝑅 ∩ {∅})))
258, 13, 243eqtri 2768 1 (tpos 𝐹𝑅) = ((tpos 𝐹𝑅) ∪ (𝐹 ↾ (𝑅 ∩ {∅})))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  Vcvv 3479  cun 3948  cin 3949  wss 3950  c0 4332  {csn 4624   × cxp 5681  ccnv 5682  dom cdm 5683  cres 5685  Rel wrel 5688  tpos ctpos 8246
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5294  ax-nul 5304  ax-pow 5363  ax-pr 5430  ax-un 7751
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4906  df-br 5142  df-opab 5204  df-mpt 5224  df-id 5576  df-xp 5689  df-rel 5690  df-cnv 5691  df-co 5692  df-dm 5693  df-rn 5694  df-res 5695  df-ima 5696  df-iota 6512  df-fun 6561  df-fn 6562  df-fv 6567  df-tpos 8247
This theorem is referenced by:  tposres2  48753
  Copyright terms: Public domain W3C validator