Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tposresg Structured version   Visualization version   GIF version

Theorem tposresg 48988
Description: The transposition restricted to a set. (Contributed by Zhi Wang, 6-Oct-2025.)
Assertion
Ref Expression
tposresg (tpos 𝐹𝑅) = ((tpos 𝐹𝑅) ∪ (𝐹 ↾ (𝑅 ∩ {∅})))

Proof of Theorem tposresg
StepHypRef Expression
1 rescom 5950 . . 3 ((tpos 𝐹 ↾ ((V × V) ∪ {∅})) ↾ 𝑅) = ((tpos 𝐹𝑅) ↾ ((V × V) ∪ {∅}))
2 reltpos 8161 . . . . 5 Rel tpos 𝐹
3 dmtposss 48986 . . . . 5 dom tpos 𝐹 ⊆ ((V × V) ∪ {∅})
4 relssres 5970 . . . . 5 ((Rel tpos 𝐹 ∧ dom tpos 𝐹 ⊆ ((V × V) ∪ {∅})) → (tpos 𝐹 ↾ ((V × V) ∪ {∅})) = tpos 𝐹)
52, 3, 4mp2an 692 . . . 4 (tpos 𝐹 ↾ ((V × V) ∪ {∅})) = tpos 𝐹
65reseq1i 5923 . . 3 ((tpos 𝐹 ↾ ((V × V) ∪ {∅})) ↾ 𝑅) = (tpos 𝐹𝑅)
7 resres 5940 . . 3 ((tpos 𝐹𝑅) ↾ ((V × V) ∪ {∅})) = (tpos 𝐹 ↾ (𝑅 ∩ ((V × V) ∪ {∅})))
81, 6, 73eqtr3i 2762 . 2 (tpos 𝐹𝑅) = (tpos 𝐹 ↾ (𝑅 ∩ ((V × V) ∪ {∅})))
9 indi 4231 . . . 4 (𝑅 ∩ ((V × V) ∪ {∅})) = ((𝑅 ∩ (V × V)) ∪ (𝑅 ∩ {∅}))
10 cnvcnv 6139 . . . . 5 𝑅 = (𝑅 ∩ (V × V))
1110uneq1i 4111 . . . 4 (𝑅 ∪ (𝑅 ∩ {∅})) = ((𝑅 ∩ (V × V)) ∪ (𝑅 ∩ {∅}))
129, 11eqtr4i 2757 . . 3 (𝑅 ∩ ((V × V) ∪ {∅})) = (𝑅 ∪ (𝑅 ∩ {∅}))
1312reseq2i 5924 . 2 (tpos 𝐹 ↾ (𝑅 ∩ ((V × V) ∪ {∅}))) = (tpos 𝐹 ↾ (𝑅 ∪ (𝑅 ∩ {∅})))
14 resundi 5941 . . 3 (tpos 𝐹 ↾ (𝑅 ∪ (𝑅 ∩ {∅}))) = ((tpos 𝐹𝑅) ∪ (tpos 𝐹 ↾ (𝑅 ∩ {∅})))
15 rescom 5950 . . . . . 6 ((tpos 𝐹 ↾ {∅}) ↾ 𝑅) = ((tpos 𝐹𝑅) ↾ {∅})
16 tposres0 48987 . . . . . . 7 (tpos 𝐹 ↾ {∅}) = (𝐹 ↾ {∅})
1716reseq1i 5923 . . . . . 6 ((tpos 𝐹 ↾ {∅}) ↾ 𝑅) = ((𝐹 ↾ {∅}) ↾ 𝑅)
18 resres 5940 . . . . . 6 ((tpos 𝐹𝑅) ↾ {∅}) = (tpos 𝐹 ↾ (𝑅 ∩ {∅}))
1915, 17, 183eqtr3ri 2763 . . . . 5 (tpos 𝐹 ↾ (𝑅 ∩ {∅})) = ((𝐹 ↾ {∅}) ↾ 𝑅)
20 rescom 5950 . . . . 5 ((𝐹 ↾ {∅}) ↾ 𝑅) = ((𝐹𝑅) ↾ {∅})
21 resres 5940 . . . . 5 ((𝐹𝑅) ↾ {∅}) = (𝐹 ↾ (𝑅 ∩ {∅}))
2219, 20, 213eqtri 2758 . . . 4 (tpos 𝐹 ↾ (𝑅 ∩ {∅})) = (𝐹 ↾ (𝑅 ∩ {∅}))
2322uneq2i 4112 . . 3 ((tpos 𝐹𝑅) ∪ (tpos 𝐹 ↾ (𝑅 ∩ {∅}))) = ((tpos 𝐹𝑅) ∪ (𝐹 ↾ (𝑅 ∩ {∅})))
2414, 23eqtri 2754 . 2 (tpos 𝐹 ↾ (𝑅 ∪ (𝑅 ∩ {∅}))) = ((tpos 𝐹𝑅) ∪ (𝐹 ↾ (𝑅 ∩ {∅})))
258, 13, 243eqtri 2758 1 (tpos 𝐹𝑅) = ((tpos 𝐹𝑅) ∪ (𝐹 ↾ (𝑅 ∩ {∅})))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  Vcvv 3436  cun 3895  cin 3896  wss 3897  c0 4280  {csn 4573   × cxp 5612  ccnv 5613  dom cdm 5614  cres 5616  Rel wrel 5619  tpos ctpos 8155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-fv 6489  df-tpos 8156
This theorem is referenced by:  tposres2  48990
  Copyright terms: Public domain W3C validator