Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tposresg Structured version   Visualization version   GIF version

Theorem tposresg 48859
Description: The transposition restricted to a set. (Contributed by Zhi Wang, 6-Oct-2025.)
Assertion
Ref Expression
tposresg (tpos 𝐹𝑅) = ((tpos 𝐹𝑅) ∪ (𝐹 ↾ (𝑅 ∩ {∅})))

Proof of Theorem tposresg
StepHypRef Expression
1 rescom 5962 . . 3 ((tpos 𝐹 ↾ ((V × V) ∪ {∅})) ↾ 𝑅) = ((tpos 𝐹𝑅) ↾ ((V × V) ∪ {∅}))
2 reltpos 8187 . . . . 5 Rel tpos 𝐹
3 dmtposss 48857 . . . . 5 dom tpos 𝐹 ⊆ ((V × V) ∪ {∅})
4 relssres 5982 . . . . 5 ((Rel tpos 𝐹 ∧ dom tpos 𝐹 ⊆ ((V × V) ∪ {∅})) → (tpos 𝐹 ↾ ((V × V) ∪ {∅})) = tpos 𝐹)
52, 3, 4mp2an 692 . . . 4 (tpos 𝐹 ↾ ((V × V) ∪ {∅})) = tpos 𝐹
65reseq1i 5935 . . 3 ((tpos 𝐹 ↾ ((V × V) ∪ {∅})) ↾ 𝑅) = (tpos 𝐹𝑅)
7 resres 5952 . . 3 ((tpos 𝐹𝑅) ↾ ((V × V) ∪ {∅})) = (tpos 𝐹 ↾ (𝑅 ∩ ((V × V) ∪ {∅})))
81, 6, 73eqtr3i 2760 . 2 (tpos 𝐹𝑅) = (tpos 𝐹 ↾ (𝑅 ∩ ((V × V) ∪ {∅})))
9 indi 4243 . . . 4 (𝑅 ∩ ((V × V) ∪ {∅})) = ((𝑅 ∩ (V × V)) ∪ (𝑅 ∩ {∅}))
10 cnvcnv 6153 . . . . 5 𝑅 = (𝑅 ∩ (V × V))
1110uneq1i 4123 . . . 4 (𝑅 ∪ (𝑅 ∩ {∅})) = ((𝑅 ∩ (V × V)) ∪ (𝑅 ∩ {∅}))
129, 11eqtr4i 2755 . . 3 (𝑅 ∩ ((V × V) ∪ {∅})) = (𝑅 ∪ (𝑅 ∩ {∅}))
1312reseq2i 5936 . 2 (tpos 𝐹 ↾ (𝑅 ∩ ((V × V) ∪ {∅}))) = (tpos 𝐹 ↾ (𝑅 ∪ (𝑅 ∩ {∅})))
14 resundi 5953 . . 3 (tpos 𝐹 ↾ (𝑅 ∪ (𝑅 ∩ {∅}))) = ((tpos 𝐹𝑅) ∪ (tpos 𝐹 ↾ (𝑅 ∩ {∅})))
15 rescom 5962 . . . . . 6 ((tpos 𝐹 ↾ {∅}) ↾ 𝑅) = ((tpos 𝐹𝑅) ↾ {∅})
16 tposres0 48858 . . . . . . 7 (tpos 𝐹 ↾ {∅}) = (𝐹 ↾ {∅})
1716reseq1i 5935 . . . . . 6 ((tpos 𝐹 ↾ {∅}) ↾ 𝑅) = ((𝐹 ↾ {∅}) ↾ 𝑅)
18 resres 5952 . . . . . 6 ((tpos 𝐹𝑅) ↾ {∅}) = (tpos 𝐹 ↾ (𝑅 ∩ {∅}))
1915, 17, 183eqtr3ri 2761 . . . . 5 (tpos 𝐹 ↾ (𝑅 ∩ {∅})) = ((𝐹 ↾ {∅}) ↾ 𝑅)
20 rescom 5962 . . . . 5 ((𝐹 ↾ {∅}) ↾ 𝑅) = ((𝐹𝑅) ↾ {∅})
21 resres 5952 . . . . 5 ((𝐹𝑅) ↾ {∅}) = (𝐹 ↾ (𝑅 ∩ {∅}))
2219, 20, 213eqtri 2756 . . . 4 (tpos 𝐹 ↾ (𝑅 ∩ {∅})) = (𝐹 ↾ (𝑅 ∩ {∅}))
2322uneq2i 4124 . . 3 ((tpos 𝐹𝑅) ∪ (tpos 𝐹 ↾ (𝑅 ∩ {∅}))) = ((tpos 𝐹𝑅) ∪ (𝐹 ↾ (𝑅 ∩ {∅})))
2414, 23eqtri 2752 . 2 (tpos 𝐹 ↾ (𝑅 ∪ (𝑅 ∩ {∅}))) = ((tpos 𝐹𝑅) ∪ (𝐹 ↾ (𝑅 ∩ {∅})))
258, 13, 243eqtri 2756 1 (tpos 𝐹𝑅) = ((tpos 𝐹𝑅) ∪ (𝐹 ↾ (𝑅 ∩ {∅})))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  Vcvv 3444  cun 3909  cin 3910  wss 3911  c0 4292  {csn 4585   × cxp 5629  ccnv 5630  dom cdm 5631  cres 5633  Rel wrel 5636  tpos ctpos 8181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-fv 6507  df-tpos 8182
This theorem is referenced by:  tposres2  48861
  Copyright terms: Public domain W3C validator