Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tposresg Structured version   Visualization version   GIF version

Theorem tposresg 48856
Description: The transposition restricted to a set. (Contributed by Zhi Wang, 6-Oct-2025.)
Assertion
Ref Expression
tposresg (tpos 𝐹𝑅) = ((tpos 𝐹𝑅) ∪ (𝐹 ↾ (𝑅 ∩ {∅})))

Proof of Theorem tposresg
StepHypRef Expression
1 rescom 5975 . . 3 ((tpos 𝐹 ↾ ((V × V) ∪ {∅})) ↾ 𝑅) = ((tpos 𝐹𝑅) ↾ ((V × V) ∪ {∅}))
2 reltpos 8212 . . . . 5 Rel tpos 𝐹
3 dmtposss 48854 . . . . 5 dom tpos 𝐹 ⊆ ((V × V) ∪ {∅})
4 relssres 5995 . . . . 5 ((Rel tpos 𝐹 ∧ dom tpos 𝐹 ⊆ ((V × V) ∪ {∅})) → (tpos 𝐹 ↾ ((V × V) ∪ {∅})) = tpos 𝐹)
52, 3, 4mp2an 692 . . . 4 (tpos 𝐹 ↾ ((V × V) ∪ {∅})) = tpos 𝐹
65reseq1i 5948 . . 3 ((tpos 𝐹 ↾ ((V × V) ∪ {∅})) ↾ 𝑅) = (tpos 𝐹𝑅)
7 resres 5965 . . 3 ((tpos 𝐹𝑅) ↾ ((V × V) ∪ {∅})) = (tpos 𝐹 ↾ (𝑅 ∩ ((V × V) ∪ {∅})))
81, 6, 73eqtr3i 2761 . 2 (tpos 𝐹𝑅) = (tpos 𝐹 ↾ (𝑅 ∩ ((V × V) ∪ {∅})))
9 indi 4249 . . . 4 (𝑅 ∩ ((V × V) ∪ {∅})) = ((𝑅 ∩ (V × V)) ∪ (𝑅 ∩ {∅}))
10 cnvcnv 6167 . . . . 5 𝑅 = (𝑅 ∩ (V × V))
1110uneq1i 4129 . . . 4 (𝑅 ∪ (𝑅 ∩ {∅})) = ((𝑅 ∩ (V × V)) ∪ (𝑅 ∩ {∅}))
129, 11eqtr4i 2756 . . 3 (𝑅 ∩ ((V × V) ∪ {∅})) = (𝑅 ∪ (𝑅 ∩ {∅}))
1312reseq2i 5949 . 2 (tpos 𝐹 ↾ (𝑅 ∩ ((V × V) ∪ {∅}))) = (tpos 𝐹 ↾ (𝑅 ∪ (𝑅 ∩ {∅})))
14 resundi 5966 . . 3 (tpos 𝐹 ↾ (𝑅 ∪ (𝑅 ∩ {∅}))) = ((tpos 𝐹𝑅) ∪ (tpos 𝐹 ↾ (𝑅 ∩ {∅})))
15 rescom 5975 . . . . . 6 ((tpos 𝐹 ↾ {∅}) ↾ 𝑅) = ((tpos 𝐹𝑅) ↾ {∅})
16 tposres0 48855 . . . . . . 7 (tpos 𝐹 ↾ {∅}) = (𝐹 ↾ {∅})
1716reseq1i 5948 . . . . . 6 ((tpos 𝐹 ↾ {∅}) ↾ 𝑅) = ((𝐹 ↾ {∅}) ↾ 𝑅)
18 resres 5965 . . . . . 6 ((tpos 𝐹𝑅) ↾ {∅}) = (tpos 𝐹 ↾ (𝑅 ∩ {∅}))
1915, 17, 183eqtr3ri 2762 . . . . 5 (tpos 𝐹 ↾ (𝑅 ∩ {∅})) = ((𝐹 ↾ {∅}) ↾ 𝑅)
20 rescom 5975 . . . . 5 ((𝐹 ↾ {∅}) ↾ 𝑅) = ((𝐹𝑅) ↾ {∅})
21 resres 5965 . . . . 5 ((𝐹𝑅) ↾ {∅}) = (𝐹 ↾ (𝑅 ∩ {∅}))
2219, 20, 213eqtri 2757 . . . 4 (tpos 𝐹 ↾ (𝑅 ∩ {∅})) = (𝐹 ↾ (𝑅 ∩ {∅}))
2322uneq2i 4130 . . 3 ((tpos 𝐹𝑅) ∪ (tpos 𝐹 ↾ (𝑅 ∩ {∅}))) = ((tpos 𝐹𝑅) ∪ (𝐹 ↾ (𝑅 ∩ {∅})))
2414, 23eqtri 2753 . 2 (tpos 𝐹 ↾ (𝑅 ∪ (𝑅 ∩ {∅}))) = ((tpos 𝐹𝑅) ∪ (𝐹 ↾ (𝑅 ∩ {∅})))
258, 13, 243eqtri 2757 1 (tpos 𝐹𝑅) = ((tpos 𝐹𝑅) ∪ (𝐹 ↾ (𝑅 ∩ {∅})))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  Vcvv 3450  cun 3914  cin 3915  wss 3916  c0 4298  {csn 4591   × cxp 5638  ccnv 5639  dom cdm 5640  cres 5642  Rel wrel 5645  tpos ctpos 8206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-fv 6521  df-tpos 8207
This theorem is referenced by:  tposres2  48858
  Copyright terms: Public domain W3C validator