Proof of Theorem tposresg
| Step | Hyp | Ref
| Expression |
| 1 | | rescom 6018 |
. . 3
⊢ ((tpos
𝐹 ↾ ((V × V)
∪ {∅})) ↾ 𝑅) = ((tpos 𝐹 ↾ 𝑅) ↾ ((V × V) ∪
{∅})) |
| 2 | | reltpos 8252 |
. . . . 5
⊢ Rel tpos
𝐹 |
| 3 | | dmtposss 48749 |
. . . . 5
⊢ dom tpos
𝐹 ⊆ ((V × V)
∪ {∅}) |
| 4 | | relssres 6038 |
. . . . 5
⊢ ((Rel
tpos 𝐹 ∧ dom tpos 𝐹 ⊆ ((V × V) ∪
{∅})) → (tpos 𝐹
↾ ((V × V) ∪ {∅})) = tpos 𝐹) |
| 5 | 2, 3, 4 | mp2an 692 |
. . . 4
⊢ (tpos
𝐹 ↾ ((V × V)
∪ {∅})) = tpos 𝐹 |
| 6 | 5 | reseq1i 5991 |
. . 3
⊢ ((tpos
𝐹 ↾ ((V × V)
∪ {∅})) ↾ 𝑅) = (tpos 𝐹 ↾ 𝑅) |
| 7 | | resres 6008 |
. . 3
⊢ ((tpos
𝐹 ↾ 𝑅) ↾ ((V × V) ∪ {∅})) =
(tpos 𝐹 ↾ (𝑅 ∩ ((V × V) ∪
{∅}))) |
| 8 | 1, 6, 7 | 3eqtr3i 2772 |
. 2
⊢ (tpos
𝐹 ↾ 𝑅) = (tpos 𝐹 ↾ (𝑅 ∩ ((V × V) ∪
{∅}))) |
| 9 | | indi 4283 |
. . . 4
⊢ (𝑅 ∩ ((V × V) ∪
{∅})) = ((𝑅 ∩ (V
× V)) ∪ (𝑅 ∩
{∅})) |
| 10 | | cnvcnv 6210 |
. . . . 5
⊢ ◡◡𝑅 = (𝑅 ∩ (V × V)) |
| 11 | 10 | uneq1i 4163 |
. . . 4
⊢ (◡◡𝑅 ∪ (𝑅 ∩ {∅})) = ((𝑅 ∩ (V × V)) ∪ (𝑅 ∩
{∅})) |
| 12 | 9, 11 | eqtr4i 2767 |
. . 3
⊢ (𝑅 ∩ ((V × V) ∪
{∅})) = (◡◡𝑅 ∪ (𝑅 ∩ {∅})) |
| 13 | 12 | reseq2i 5992 |
. 2
⊢ (tpos
𝐹 ↾ (𝑅 ∩ ((V × V) ∪
{∅}))) = (tpos 𝐹
↾ (◡◡𝑅 ∪ (𝑅 ∩ {∅}))) |
| 14 | | resundi 6009 |
. . 3
⊢ (tpos
𝐹 ↾ (◡◡𝑅 ∪ (𝑅 ∩ {∅}))) = ((tpos 𝐹 ↾ ◡◡𝑅) ∪ (tpos 𝐹 ↾ (𝑅 ∩ {∅}))) |
| 15 | | rescom 6018 |
. . . . . 6
⊢ ((tpos
𝐹 ↾ {∅})
↾ 𝑅) = ((tpos 𝐹 ↾ 𝑅) ↾ {∅}) |
| 16 | | tposres0 48750 |
. . . . . . 7
⊢ (tpos
𝐹 ↾ {∅}) =
(𝐹 ↾
{∅}) |
| 17 | 16 | reseq1i 5991 |
. . . . . 6
⊢ ((tpos
𝐹 ↾ {∅})
↾ 𝑅) = ((𝐹 ↾ {∅}) ↾
𝑅) |
| 18 | | resres 6008 |
. . . . . 6
⊢ ((tpos
𝐹 ↾ 𝑅) ↾ {∅}) = (tpos 𝐹 ↾ (𝑅 ∩ {∅})) |
| 19 | 15, 17, 18 | 3eqtr3ri 2773 |
. . . . 5
⊢ (tpos
𝐹 ↾ (𝑅 ∩ {∅})) = ((𝐹 ↾ {∅}) ↾
𝑅) |
| 20 | | rescom 6018 |
. . . . 5
⊢ ((𝐹 ↾ {∅}) ↾
𝑅) = ((𝐹 ↾ 𝑅) ↾ {∅}) |
| 21 | | resres 6008 |
. . . . 5
⊢ ((𝐹 ↾ 𝑅) ↾ {∅}) = (𝐹 ↾ (𝑅 ∩ {∅})) |
| 22 | 19, 20, 21 | 3eqtri 2768 |
. . . 4
⊢ (tpos
𝐹 ↾ (𝑅 ∩ {∅})) = (𝐹 ↾ (𝑅 ∩ {∅})) |
| 23 | 22 | uneq2i 4164 |
. . 3
⊢ ((tpos
𝐹 ↾ ◡◡𝑅) ∪ (tpos 𝐹 ↾ (𝑅 ∩ {∅}))) = ((tpos 𝐹 ↾ ◡◡𝑅) ∪ (𝐹 ↾ (𝑅 ∩ {∅}))) |
| 24 | 14, 23 | eqtri 2764 |
. 2
⊢ (tpos
𝐹 ↾ (◡◡𝑅 ∪ (𝑅 ∩ {∅}))) = ((tpos 𝐹 ↾ ◡◡𝑅) ∪ (𝐹 ↾ (𝑅 ∩ {∅}))) |
| 25 | 8, 13, 24 | 3eqtri 2768 |
1
⊢ (tpos
𝐹 ↾ 𝑅) = ((tpos 𝐹 ↾ ◡◡𝑅) ∪ (𝐹 ↾ (𝑅 ∩ {∅}))) |