| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > domnnzr | Structured version Visualization version GIF version | ||
| Description: A domain is a nonzero ring. (Contributed by Mario Carneiro, 28-Mar-2015.) |
| Ref | Expression |
|---|---|
| domnnzr | ⊢ (𝑅 ∈ Domn → 𝑅 ∈ NzRing) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 2 | eqid 2729 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 3 | eqid 2729 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 4 | 1, 2, 3 | isdomn 20608 | . 2 ⊢ (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)𝑦) = (0g‘𝑅) → (𝑥 = (0g‘𝑅) ∨ 𝑦 = (0g‘𝑅))))) |
| 5 | 4 | simplbi 497 | 1 ⊢ (𝑅 ∈ Domn → 𝑅 ∈ NzRing) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 .rcmulr 17180 0gc0g 17361 NzRingcnzr 20415 Domncdomn 20595 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5248 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-iota 6442 df-fv 6494 df-ov 7356 df-domn 20598 |
| This theorem is referenced by: domnring 20610 isdomn4 20619 fidomndrng 20676 abvn0b 20739 domnchr 21457 znidomb 21486 nrgdomn 24575 ply1domn 26045 fta1glem1 26089 fta1glem2 26090 fta1b 26093 idomrootle 26094 lgsqrlem4 27276 domnprodn0 33228 subrdom 33237 fracfld 33260 qsidomlem1 33402 1arithufdlem1 33494 ply1dg1rt 33527 assafld 33612 idomnnzpownz 42108 idomnnzgmulnz 42109 deg1gprod 42116 deg1pow 42117 domnexpgn0cl 42499 fiabv 42512 deg1mhm 43176 |
| Copyright terms: Public domain | W3C validator |