Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > domnnzr | Structured version Visualization version GIF version |
Description: A domain is a nonzero ring. (Contributed by Mario Carneiro, 28-Mar-2015.) |
Ref | Expression |
---|---|
domnnzr | ⊢ (𝑅 ∈ Domn → 𝑅 ∈ NzRing) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2759 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
2 | eqid 2759 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
3 | eqid 2759 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
4 | 1, 2, 3 | isdomn 20125 | . 2 ⊢ (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)𝑦) = (0g‘𝑅) → (𝑥 = (0g‘𝑅) ∨ 𝑦 = (0g‘𝑅))))) |
5 | 4 | simplbi 502 | 1 ⊢ (𝑅 ∈ Domn → 𝑅 ∈ NzRing) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 845 = wceq 1539 ∈ wcel 2112 ∀wral 3071 ‘cfv 6333 (class class class)co 7148 Basecbs 16531 .rcmulr 16614 0gc0g 16761 NzRingcnzr 20088 Domncdomn 20111 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-nul 5174 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3an 1087 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ral 3076 df-rex 3077 df-rab 3080 df-v 3412 df-sbc 3698 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-sn 4521 df-pr 4523 df-op 4527 df-uni 4797 df-br 5031 df-iota 6292 df-fv 6341 df-ov 7151 df-domn 20115 |
This theorem is referenced by: domnring 20127 opprdomn 20132 abvn0b 20133 fidomndrng 20138 domnchr 20290 znidomb 20319 nrgdomn 23363 ply1domn 24813 fta1glem1 24855 fta1glem2 24856 fta1b 24859 lgsqrlem4 26022 qsidomlem1 31139 idomrootle 40502 deg1mhm 40514 |
Copyright terms: Public domain | W3C validator |