![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > domnnzr | Structured version Visualization version GIF version |
Description: A domain is a nonzero ring. (Contributed by Mario Carneiro, 28-Mar-2015.) |
Ref | Expression |
---|---|
domnnzr | ⊢ (𝑅 ∈ Domn → 𝑅 ∈ NzRing) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
2 | eqid 2740 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
3 | eqid 2740 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
4 | 1, 2, 3 | isdomn 20727 | . 2 ⊢ (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)𝑦) = (0g‘𝑅) → (𝑥 = (0g‘𝑅) ∨ 𝑦 = (0g‘𝑅))))) |
5 | 4 | simplbi 497 | 1 ⊢ (𝑅 ∈ Domn → 𝑅 ∈ NzRing) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 846 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 .rcmulr 17312 0gc0g 17499 NzRingcnzr 20538 Domncdomn 20714 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 df-domn 20717 |
This theorem is referenced by: domnring 20729 isdomn4 20738 fidomndrng 20796 abvn0b 20859 domnchr 21570 znidomb 21603 nrgdomn 24713 ply1domn 26183 fta1glem1 26227 fta1glem2 26228 fta1b 26231 idomrootle 26232 lgsqrlem4 27411 domnprodn0 33247 subrdom 33254 fracfld 33275 qsidomlem1 33445 1arithufdlem1 33537 ply1dg1rt 33569 assafld 33650 idomnnzpownz 42089 idomnnzgmulnz 42090 deg1gprod 42097 deg1pow 42098 domnexpgn0cl 42478 fiabv 42491 deg1mhm 43161 |
Copyright terms: Public domain | W3C validator |