| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > domnnzr | Structured version Visualization version GIF version | ||
| Description: A domain is a nonzero ring. (Contributed by Mario Carneiro, 28-Mar-2015.) |
| Ref | Expression |
|---|---|
| domnnzr | ⊢ (𝑅 ∈ Domn → 𝑅 ∈ NzRing) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2737 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 2 | eqid 2737 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 3 | eqid 2737 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 4 | 1, 2, 3 | isdomn 20705 | . 2 ⊢ (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)𝑦) = (0g‘𝑅) → (𝑥 = (0g‘𝑅) ∨ 𝑦 = (0g‘𝑅))))) |
| 5 | 4 | simplbi 497 | 1 ⊢ (𝑅 ∈ Domn → 𝑅 ∈ NzRing) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 848 = wceq 1540 ∈ wcel 2108 ∀wral 3061 ‘cfv 6561 (class class class)co 7431 Basecbs 17247 .rcmulr 17298 0gc0g 17484 NzRingcnzr 20512 Domncdomn 20692 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-nul 5306 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rab 3437 df-v 3482 df-sbc 3789 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-iota 6514 df-fv 6569 df-ov 7434 df-domn 20695 |
| This theorem is referenced by: domnring 20707 isdomn4 20716 fidomndrng 20774 abvn0b 20837 domnchr 21547 znidomb 21580 nrgdomn 24692 ply1domn 26163 fta1glem1 26207 fta1glem2 26208 fta1b 26211 idomrootle 26212 lgsqrlem4 27393 domnprodn0 33279 subrdom 33288 fracfld 33310 qsidomlem1 33480 1arithufdlem1 33572 ply1dg1rt 33604 assafld 33688 idomnnzpownz 42133 idomnnzgmulnz 42134 deg1gprod 42141 deg1pow 42142 domnexpgn0cl 42533 fiabv 42546 deg1mhm 43212 |
| Copyright terms: Public domain | W3C validator |