MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domnnzr Structured version   Visualization version   GIF version

Theorem domnnzr 20671
Description: A domain is a nonzero ring. (Contributed by Mario Carneiro, 28-Mar-2015.)
Assertion
Ref Expression
domnnzr (𝑅 ∈ Domn → 𝑅 ∈ NzRing)

Proof of Theorem domnnzr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . 3 (Base‘𝑅) = (Base‘𝑅)
2 eqid 2736 . . 3 (.r𝑅) = (.r𝑅)
3 eqid 2736 . . 3 (0g𝑅) = (0g𝑅)
41, 2, 3isdomn 20670 . 2 (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = (0g𝑅) → (𝑥 = (0g𝑅) ∨ 𝑦 = (0g𝑅)))))
54simplbi 497 1 (𝑅 ∈ Domn → 𝑅 ∈ NzRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847   = wceq 1540  wcel 2109  wral 3052  cfv 6536  (class class class)co 7410  Basecbs 17233  .rcmulr 17277  0gc0g 17458  NzRingcnzr 20477  Domncdomn 20657
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-nul 5281
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ne 2934  df-ral 3053  df-rab 3421  df-v 3466  df-sbc 3771  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-iota 6489  df-fv 6544  df-ov 7413  df-domn 20660
This theorem is referenced by:  domnring  20672  isdomn4  20681  fidomndrng  20738  abvn0b  20801  domnchr  21498  znidomb  21527  nrgdomn  24615  ply1domn  26086  fta1glem1  26130  fta1glem2  26131  fta1b  26134  idomrootle  26135  lgsqrlem4  27317  domnprodn0  33275  subrdom  33284  fracfld  33307  qsidomlem1  33472  1arithufdlem1  33564  ply1dg1rt  33597  assafld  33682  idomnnzpownz  42150  idomnnzgmulnz  42151  deg1gprod  42158  deg1pow  42159  domnexpgn0cl  42513  fiabv  42526  deg1mhm  43191
  Copyright terms: Public domain W3C validator