Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > domnnzr | Structured version Visualization version GIF version |
Description: A domain is a nonzero ring. (Contributed by Mario Carneiro, 28-Mar-2015.) |
Ref | Expression |
---|---|
domnnzr | ⊢ (𝑅 ∈ Domn → 𝑅 ∈ NzRing) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
2 | eqid 2738 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
3 | eqid 2738 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
4 | 1, 2, 3 | isdomn 20478 | . 2 ⊢ (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)𝑦) = (0g‘𝑅) → (𝑥 = (0g‘𝑅) ∨ 𝑦 = (0g‘𝑅))))) |
5 | 4 | simplbi 497 | 1 ⊢ (𝑅 ∈ Domn → 𝑅 ∈ NzRing) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 843 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 .rcmulr 16889 0gc0g 17067 NzRingcnzr 20441 Domncdomn 20464 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-nul 5225 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 df-domn 20468 |
This theorem is referenced by: domnring 20480 opprdomn 20485 abvn0b 20486 fidomndrng 20492 domnchr 20648 znidomb 20681 nrgdomn 23741 ply1domn 25193 fta1glem1 25235 fta1glem2 25236 fta1b 25239 lgsqrlem4 26402 qsidomlem1 31530 isdomn4 40100 idomrootle 40936 deg1mhm 40948 |
Copyright terms: Public domain | W3C validator |