MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domnnzr Structured version   Visualization version   GIF version

Theorem domnnzr 20126
Description: A domain is a nonzero ring. (Contributed by Mario Carneiro, 28-Mar-2015.)
Assertion
Ref Expression
domnnzr (𝑅 ∈ Domn → 𝑅 ∈ NzRing)

Proof of Theorem domnnzr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2759 . . 3 (Base‘𝑅) = (Base‘𝑅)
2 eqid 2759 . . 3 (.r𝑅) = (.r𝑅)
3 eqid 2759 . . 3 (0g𝑅) = (0g𝑅)
41, 2, 3isdomn 20125 . 2 (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = (0g𝑅) → (𝑥 = (0g𝑅) ∨ 𝑦 = (0g𝑅)))))
54simplbi 502 1 (𝑅 ∈ Domn → 𝑅 ∈ NzRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 845   = wceq 1539  wcel 2112  wral 3071  cfv 6333  (class class class)co 7148  Basecbs 16531  .rcmulr 16614  0gc0g 16761  NzRingcnzr 20088  Domncdomn 20111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-nul 5174
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3an 1087  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ral 3076  df-rex 3077  df-rab 3080  df-v 3412  df-sbc 3698  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-nul 4227  df-sn 4521  df-pr 4523  df-op 4527  df-uni 4797  df-br 5031  df-iota 6292  df-fv 6341  df-ov 7151  df-domn 20115
This theorem is referenced by:  domnring  20127  opprdomn  20132  abvn0b  20133  fidomndrng  20138  domnchr  20290  znidomb  20319  nrgdomn  23363  ply1domn  24813  fta1glem1  24855  fta1glem2  24856  fta1b  24859  lgsqrlem4  26022  qsidomlem1  31139  idomrootle  40502  deg1mhm  40514
  Copyright terms: Public domain W3C validator