MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domnnzr Structured version   Visualization version   GIF version

Theorem domnnzr 20609
Description: A domain is a nonzero ring. (Contributed by Mario Carneiro, 28-Mar-2015.)
Assertion
Ref Expression
domnnzr (𝑅 ∈ Domn → 𝑅 ∈ NzRing)

Proof of Theorem domnnzr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . 3 (Base‘𝑅) = (Base‘𝑅)
2 eqid 2729 . . 3 (.r𝑅) = (.r𝑅)
3 eqid 2729 . . 3 (0g𝑅) = (0g𝑅)
41, 2, 3isdomn 20608 . 2 (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = (0g𝑅) → (𝑥 = (0g𝑅) ∨ 𝑦 = (0g𝑅)))))
54simplbi 497 1 (𝑅 ∈ Domn → 𝑅 ∈ NzRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847   = wceq 1540  wcel 2109  wral 3044  cfv 6486  (class class class)co 7353  Basecbs 17138  .rcmulr 17180  0gc0g 17361  NzRingcnzr 20415  Domncdomn 20595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-nul 5248
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-iota 6442  df-fv 6494  df-ov 7356  df-domn 20598
This theorem is referenced by:  domnring  20610  isdomn4  20619  fidomndrng  20676  abvn0b  20739  domnchr  21457  znidomb  21486  nrgdomn  24575  ply1domn  26045  fta1glem1  26089  fta1glem2  26090  fta1b  26093  idomrootle  26094  lgsqrlem4  27276  domnprodn0  33228  subrdom  33237  fracfld  33260  qsidomlem1  33402  1arithufdlem1  33494  ply1dg1rt  33527  assafld  33612  idomnnzpownz  42108  idomnnzgmulnz  42109  deg1gprod  42116  deg1pow  42117  domnexpgn0cl  42499  fiabv  42512  deg1mhm  43176
  Copyright terms: Public domain W3C validator