| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > domnnzr | Structured version Visualization version GIF version | ||
| Description: A domain is a nonzero ring. (Contributed by Mario Carneiro, 28-Mar-2015.) |
| Ref | Expression |
|---|---|
| domnnzr | ⊢ (𝑅 ∈ Domn → 𝑅 ∈ NzRing) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 2 | eqid 2730 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 3 | eqid 2730 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 4 | 1, 2, 3 | isdomn 20621 | . 2 ⊢ (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)𝑦) = (0g‘𝑅) → (𝑥 = (0g‘𝑅) ∨ 𝑦 = (0g‘𝑅))))) |
| 5 | 4 | simplbi 497 | 1 ⊢ (𝑅 ∈ Domn → 𝑅 ∈ NzRing) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 .rcmulr 17228 0gc0g 17409 NzRingcnzr 20428 Domncdomn 20608 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-nul 5264 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-ov 7393 df-domn 20611 |
| This theorem is referenced by: domnring 20623 isdomn4 20632 fidomndrng 20689 abvn0b 20752 domnchr 21449 znidomb 21478 nrgdomn 24566 ply1domn 26036 fta1glem1 26080 fta1glem2 26081 fta1b 26084 idomrootle 26085 lgsqrlem4 27267 domnprodn0 33233 subrdom 33242 fracfld 33265 qsidomlem1 33430 1arithufdlem1 33522 ply1dg1rt 33555 assafld 33640 idomnnzpownz 42127 idomnnzgmulnz 42128 deg1gprod 42135 deg1pow 42136 domnexpgn0cl 42518 fiabv 42531 deg1mhm 43196 |
| Copyright terms: Public domain | W3C validator |