MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opprdomn Structured version   Visualization version   GIF version

Theorem opprdomn 20911
Description: The opposite of a domain is also a domain. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypothesis
Ref Expression
opprdomn.1 𝑂 = (oppr𝑅)
Assertion
Ref Expression
opprdomn (𝑅 ∈ Domn → 𝑂 ∈ Domn)

Proof of Theorem opprdomn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 domnnzr 20903 . . 3 (𝑅 ∈ Domn → 𝑅 ∈ NzRing)
2 opprdomn.1 . . . 4 𝑂 = (oppr𝑅)
32opprnzr 20291 . . 3 (𝑅 ∈ NzRing → 𝑂 ∈ NzRing)
41, 3syl 17 . 2 (𝑅 ∈ Domn → 𝑂 ∈ NzRing)
5 eqid 2732 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
6 eqid 2732 . . . . . . . 8 (.r𝑅) = (.r𝑅)
7 eqid 2732 . . . . . . . 8 (0g𝑅) = (0g𝑅)
85, 6, 7domneq0 20905 . . . . . . 7 ((𝑅 ∈ Domn ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅)) → ((𝑦(.r𝑅)𝑥) = (0g𝑅) ↔ (𝑦 = (0g𝑅) ∨ 𝑥 = (0g𝑅))))
983com23 1126 . . . . . 6 ((𝑅 ∈ Domn ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → ((𝑦(.r𝑅)𝑥) = (0g𝑅) ↔ (𝑦 = (0g𝑅) ∨ 𝑥 = (0g𝑅))))
10 eqid 2732 . . . . . . . 8 (.r𝑂) = (.r𝑂)
115, 6, 2, 10opprmul 20145 . . . . . . 7 (𝑥(.r𝑂)𝑦) = (𝑦(.r𝑅)𝑥)
1211eqeq1i 2737 . . . . . 6 ((𝑥(.r𝑂)𝑦) = (0g𝑅) ↔ (𝑦(.r𝑅)𝑥) = (0g𝑅))
13 orcom 868 . . . . . 6 ((𝑥 = (0g𝑅) ∨ 𝑦 = (0g𝑅)) ↔ (𝑦 = (0g𝑅) ∨ 𝑥 = (0g𝑅)))
149, 12, 133bitr4g 313 . . . . 5 ((𝑅 ∈ Domn ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → ((𝑥(.r𝑂)𝑦) = (0g𝑅) ↔ (𝑥 = (0g𝑅) ∨ 𝑦 = (0g𝑅))))
1514biimpd 228 . . . 4 ((𝑅 ∈ Domn ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → ((𝑥(.r𝑂)𝑦) = (0g𝑅) → (𝑥 = (0g𝑅) ∨ 𝑦 = (0g𝑅))))
16153expb 1120 . . 3 ((𝑅 ∈ Domn ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → ((𝑥(.r𝑂)𝑦) = (0g𝑅) → (𝑥 = (0g𝑅) ∨ 𝑦 = (0g𝑅))))
1716ralrimivva 3200 . 2 (𝑅 ∈ Domn → ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑂)𝑦) = (0g𝑅) → (𝑥 = (0g𝑅) ∨ 𝑦 = (0g𝑅))))
182, 5opprbas 20149 . . 3 (Base‘𝑅) = (Base‘𝑂)
192, 7oppr0 20155 . . 3 (0g𝑅) = (0g𝑂)
2018, 10, 19isdomn 20902 . 2 (𝑂 ∈ Domn ↔ (𝑂 ∈ NzRing ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑂)𝑦) = (0g𝑅) → (𝑥 = (0g𝑅) ∨ 𝑦 = (0g𝑅)))))
214, 17, 20sylanbrc 583 1 (𝑅 ∈ Domn → 𝑂 ∈ Domn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wo 845  w3a 1087   = wceq 1541  wcel 2106  wral 3061  cfv 6540  (class class class)co 7405  Basecbs 17140  .rcmulr 17194  0gc0g 17381  opprcoppr 20141  NzRingcnzr 20283  Domncdomn 20888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-2nd 7972  df-tpos 8207  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-plusg 17206  df-mulr 17207  df-0g 17383  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-grp 18818  df-minusg 18819  df-mgp 19982  df-ur 19999  df-ring 20051  df-oppr 20142  df-nzr 20284  df-domn 20892
This theorem is referenced by:  fidomndrng  20918
  Copyright terms: Public domain W3C validator