Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fidomndrng Structured version   Visualization version   GIF version

Theorem fidomndrng 20082
 Description: A finite domain is a division ring. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypothesis
Ref Expression
fidomndrng.b 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
fidomndrng (𝐵 ∈ Fin → (𝑅 ∈ Domn ↔ 𝑅 ∈ DivRing))

Proof of Theorem fidomndrng
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 domnring 20071 . . . . 5 (𝑅 ∈ Domn → 𝑅 ∈ Ring)
21adantl 484 . . . 4 ((𝐵 ∈ Fin ∧ 𝑅 ∈ Domn) → 𝑅 ∈ Ring)
3 domnnzr 20070 . . . . . . . . . . 11 (𝑅 ∈ Domn → 𝑅 ∈ NzRing)
43adantl 484 . . . . . . . . . 10 ((𝐵 ∈ Fin ∧ 𝑅 ∈ Domn) → 𝑅 ∈ NzRing)
5 eqid 2823 . . . . . . . . . . 11 (1r𝑅) = (1r𝑅)
6 eqid 2823 . . . . . . . . . . 11 (0g𝑅) = (0g𝑅)
75, 6nzrnz 20035 . . . . . . . . . 10 (𝑅 ∈ NzRing → (1r𝑅) ≠ (0g𝑅))
84, 7syl 17 . . . . . . . . 9 ((𝐵 ∈ Fin ∧ 𝑅 ∈ Domn) → (1r𝑅) ≠ (0g𝑅))
98neneqd 3023 . . . . . . . 8 ((𝐵 ∈ Fin ∧ 𝑅 ∈ Domn) → ¬ (1r𝑅) = (0g𝑅))
10 eqid 2823 . . . . . . . . . 10 (Unit‘𝑅) = (Unit‘𝑅)
1110, 6, 50unit 19432 . . . . . . . . 9 (𝑅 ∈ Ring → ((0g𝑅) ∈ (Unit‘𝑅) ↔ (1r𝑅) = (0g𝑅)))
122, 11syl 17 . . . . . . . 8 ((𝐵 ∈ Fin ∧ 𝑅 ∈ Domn) → ((0g𝑅) ∈ (Unit‘𝑅) ↔ (1r𝑅) = (0g𝑅)))
139, 12mtbird 327 . . . . . . 7 ((𝐵 ∈ Fin ∧ 𝑅 ∈ Domn) → ¬ (0g𝑅) ∈ (Unit‘𝑅))
14 disjsn 4649 . . . . . . 7 (((Unit‘𝑅) ∩ {(0g𝑅)}) = ∅ ↔ ¬ (0g𝑅) ∈ (Unit‘𝑅))
1513, 14sylibr 236 . . . . . 6 ((𝐵 ∈ Fin ∧ 𝑅 ∈ Domn) → ((Unit‘𝑅) ∩ {(0g𝑅)}) = ∅)
16 fidomndrng.b . . . . . . . 8 𝐵 = (Base‘𝑅)
1716, 10unitss 19412 . . . . . . 7 (Unit‘𝑅) ⊆ 𝐵
18 reldisj 4404 . . . . . . 7 ((Unit‘𝑅) ⊆ 𝐵 → (((Unit‘𝑅) ∩ {(0g𝑅)}) = ∅ ↔ (Unit‘𝑅) ⊆ (𝐵 ∖ {(0g𝑅)})))
1917, 18ax-mp 5 . . . . . 6 (((Unit‘𝑅) ∩ {(0g𝑅)}) = ∅ ↔ (Unit‘𝑅) ⊆ (𝐵 ∖ {(0g𝑅)}))
2015, 19sylib 220 . . . . 5 ((𝐵 ∈ Fin ∧ 𝑅 ∈ Domn) → (Unit‘𝑅) ⊆ (𝐵 ∖ {(0g𝑅)}))
21 eqid 2823 . . . . . . 7 (∥r𝑅) = (∥r𝑅)
22 eqid 2823 . . . . . . 7 (.r𝑅) = (.r𝑅)
23 simplr 767 . . . . . . 7 (((𝐵 ∈ Fin ∧ 𝑅 ∈ Domn) ∧ 𝑥 ∈ (𝐵 ∖ {(0g𝑅)})) → 𝑅 ∈ Domn)
24 simpll 765 . . . . . . 7 (((𝐵 ∈ Fin ∧ 𝑅 ∈ Domn) ∧ 𝑥 ∈ (𝐵 ∖ {(0g𝑅)})) → 𝐵 ∈ Fin)
25 simpr 487 . . . . . . 7 (((𝐵 ∈ Fin ∧ 𝑅 ∈ Domn) ∧ 𝑥 ∈ (𝐵 ∖ {(0g𝑅)})) → 𝑥 ∈ (𝐵 ∖ {(0g𝑅)}))
26 eqid 2823 . . . . . . 7 (𝑦𝐵 ↦ (𝑦(.r𝑅)𝑥)) = (𝑦𝐵 ↦ (𝑦(.r𝑅)𝑥))
2716, 6, 5, 21, 22, 23, 24, 25, 26fidomndrnglem 20081 . . . . . 6 (((𝐵 ∈ Fin ∧ 𝑅 ∈ Domn) ∧ 𝑥 ∈ (𝐵 ∖ {(0g𝑅)})) → 𝑥(∥r𝑅)(1r𝑅))
28 eqid 2823 . . . . . . . 8 (oppr𝑅) = (oppr𝑅)
2928, 16opprbas 19381 . . . . . . 7 𝐵 = (Base‘(oppr𝑅))
3028, 6oppr0 19385 . . . . . . 7 (0g𝑅) = (0g‘(oppr𝑅))
3128, 5oppr1 19386 . . . . . . 7 (1r𝑅) = (1r‘(oppr𝑅))
32 eqid 2823 . . . . . . 7 (∥r‘(oppr𝑅)) = (∥r‘(oppr𝑅))
33 eqid 2823 . . . . . . 7 (.r‘(oppr𝑅)) = (.r‘(oppr𝑅))
3428opprdomn 20076 . . . . . . . 8 (𝑅 ∈ Domn → (oppr𝑅) ∈ Domn)
3523, 34syl 17 . . . . . . 7 (((𝐵 ∈ Fin ∧ 𝑅 ∈ Domn) ∧ 𝑥 ∈ (𝐵 ∖ {(0g𝑅)})) → (oppr𝑅) ∈ Domn)
36 eqid 2823 . . . . . . 7 (𝑦𝐵 ↦ (𝑦(.r‘(oppr𝑅))𝑥)) = (𝑦𝐵 ↦ (𝑦(.r‘(oppr𝑅))𝑥))
3729, 30, 31, 32, 33, 35, 24, 25, 36fidomndrnglem 20081 . . . . . 6 (((𝐵 ∈ Fin ∧ 𝑅 ∈ Domn) ∧ 𝑥 ∈ (𝐵 ∖ {(0g𝑅)})) → 𝑥(∥r‘(oppr𝑅))(1r𝑅))
3810, 5, 21, 28, 32isunit 19409 . . . . . 6 (𝑥 ∈ (Unit‘𝑅) ↔ (𝑥(∥r𝑅)(1r𝑅) ∧ 𝑥(∥r‘(oppr𝑅))(1r𝑅)))
3927, 37, 38sylanbrc 585 . . . . 5 (((𝐵 ∈ Fin ∧ 𝑅 ∈ Domn) ∧ 𝑥 ∈ (𝐵 ∖ {(0g𝑅)})) → 𝑥 ∈ (Unit‘𝑅))
4020, 39eqelssd 3990 . . . 4 ((𝐵 ∈ Fin ∧ 𝑅 ∈ Domn) → (Unit‘𝑅) = (𝐵 ∖ {(0g𝑅)}))
4116, 10, 6isdrng 19508 . . . 4 (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ (Unit‘𝑅) = (𝐵 ∖ {(0g𝑅)})))
422, 40, 41sylanbrc 585 . . 3 ((𝐵 ∈ Fin ∧ 𝑅 ∈ Domn) → 𝑅 ∈ DivRing)
4342ex 415 . 2 (𝐵 ∈ Fin → (𝑅 ∈ Domn → 𝑅 ∈ DivRing))
44 drngdomn 20078 . 2 (𝑅 ∈ DivRing → 𝑅 ∈ Domn)
4543, 44impbid1 227 1 (𝐵 ∈ Fin → (𝑅 ∈ Domn ↔ 𝑅 ∈ DivRing))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 208   ∧ wa 398   = wceq 1537   ∈ wcel 2114   ≠ wne 3018   ∖ cdif 3935   ∩ cin 3937   ⊆ wss 3938  ∅c0 4293  {csn 4569   class class class wbr 5068   ↦ cmpt 5148  ‘cfv 6357  (class class class)co 7158  Fincfn 8511  Basecbs 16485  .rcmulr 16568  0gc0g 16715  1rcur 19253  Ringcrg 19299  opprcoppr 19374  ∥rcdsr 19390  Unitcui 19391  DivRingcdr 19504  NzRingcnzr 20032  Domncdomn 20055 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-tpos 7894  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-3 11704  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-0g 16717  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-grp 18108  df-minusg 18109  df-sbg 18110  df-ghm 18358  df-mgp 19242  df-ur 19254  df-ring 19301  df-oppr 19375  df-dvdsr 19393  df-unit 19394  df-invr 19424  df-drng 19506  df-nzr 20033  df-rlreg 20058  df-domn 20059 This theorem is referenced by:  fiidomfld  20083
 Copyright terms: Public domain W3C validator