MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fidomndrng Structured version   Visualization version   GIF version

Theorem fidomndrng 20073
Description: A finite domain is a division ring. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypothesis
Ref Expression
fidomndrng.b 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
fidomndrng (𝐵 ∈ Fin → (𝑅 ∈ Domn ↔ 𝑅 ∈ DivRing))

Proof of Theorem fidomndrng
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 domnring 20062 . . . . 5 (𝑅 ∈ Domn → 𝑅 ∈ Ring)
21adantl 485 . . . 4 ((𝐵 ∈ Fin ∧ 𝑅 ∈ Domn) → 𝑅 ∈ Ring)
3 domnnzr 20061 . . . . . . . . . . 11 (𝑅 ∈ Domn → 𝑅 ∈ NzRing)
43adantl 485 . . . . . . . . . 10 ((𝐵 ∈ Fin ∧ 𝑅 ∈ Domn) → 𝑅 ∈ NzRing)
5 eqid 2798 . . . . . . . . . . 11 (1r𝑅) = (1r𝑅)
6 eqid 2798 . . . . . . . . . . 11 (0g𝑅) = (0g𝑅)
75, 6nzrnz 20026 . . . . . . . . . 10 (𝑅 ∈ NzRing → (1r𝑅) ≠ (0g𝑅))
84, 7syl 17 . . . . . . . . 9 ((𝐵 ∈ Fin ∧ 𝑅 ∈ Domn) → (1r𝑅) ≠ (0g𝑅))
98neneqd 2992 . . . . . . . 8 ((𝐵 ∈ Fin ∧ 𝑅 ∈ Domn) → ¬ (1r𝑅) = (0g𝑅))
10 eqid 2798 . . . . . . . . . 10 (Unit‘𝑅) = (Unit‘𝑅)
1110, 6, 50unit 19426 . . . . . . . . 9 (𝑅 ∈ Ring → ((0g𝑅) ∈ (Unit‘𝑅) ↔ (1r𝑅) = (0g𝑅)))
122, 11syl 17 . . . . . . . 8 ((𝐵 ∈ Fin ∧ 𝑅 ∈ Domn) → ((0g𝑅) ∈ (Unit‘𝑅) ↔ (1r𝑅) = (0g𝑅)))
139, 12mtbird 328 . . . . . . 7 ((𝐵 ∈ Fin ∧ 𝑅 ∈ Domn) → ¬ (0g𝑅) ∈ (Unit‘𝑅))
14 disjsn 4607 . . . . . . 7 (((Unit‘𝑅) ∩ {(0g𝑅)}) = ∅ ↔ ¬ (0g𝑅) ∈ (Unit‘𝑅))
1513, 14sylibr 237 . . . . . 6 ((𝐵 ∈ Fin ∧ 𝑅 ∈ Domn) → ((Unit‘𝑅) ∩ {(0g𝑅)}) = ∅)
16 fidomndrng.b . . . . . . . 8 𝐵 = (Base‘𝑅)
1716, 10unitss 19406 . . . . . . 7 (Unit‘𝑅) ⊆ 𝐵
18 reldisj 4359 . . . . . . 7 ((Unit‘𝑅) ⊆ 𝐵 → (((Unit‘𝑅) ∩ {(0g𝑅)}) = ∅ ↔ (Unit‘𝑅) ⊆ (𝐵 ∖ {(0g𝑅)})))
1917, 18ax-mp 5 . . . . . 6 (((Unit‘𝑅) ∩ {(0g𝑅)}) = ∅ ↔ (Unit‘𝑅) ⊆ (𝐵 ∖ {(0g𝑅)}))
2015, 19sylib 221 . . . . 5 ((𝐵 ∈ Fin ∧ 𝑅 ∈ Domn) → (Unit‘𝑅) ⊆ (𝐵 ∖ {(0g𝑅)}))
21 eqid 2798 . . . . . . 7 (∥r𝑅) = (∥r𝑅)
22 eqid 2798 . . . . . . 7 (.r𝑅) = (.r𝑅)
23 simplr 768 . . . . . . 7 (((𝐵 ∈ Fin ∧ 𝑅 ∈ Domn) ∧ 𝑥 ∈ (𝐵 ∖ {(0g𝑅)})) → 𝑅 ∈ Domn)
24 simpll 766 . . . . . . 7 (((𝐵 ∈ Fin ∧ 𝑅 ∈ Domn) ∧ 𝑥 ∈ (𝐵 ∖ {(0g𝑅)})) → 𝐵 ∈ Fin)
25 simpr 488 . . . . . . 7 (((𝐵 ∈ Fin ∧ 𝑅 ∈ Domn) ∧ 𝑥 ∈ (𝐵 ∖ {(0g𝑅)})) → 𝑥 ∈ (𝐵 ∖ {(0g𝑅)}))
26 eqid 2798 . . . . . . 7 (𝑦𝐵 ↦ (𝑦(.r𝑅)𝑥)) = (𝑦𝐵 ↦ (𝑦(.r𝑅)𝑥))
2716, 6, 5, 21, 22, 23, 24, 25, 26fidomndrnglem 20072 . . . . . 6 (((𝐵 ∈ Fin ∧ 𝑅 ∈ Domn) ∧ 𝑥 ∈ (𝐵 ∖ {(0g𝑅)})) → 𝑥(∥r𝑅)(1r𝑅))
28 eqid 2798 . . . . . . . 8 (oppr𝑅) = (oppr𝑅)
2928, 16opprbas 19375 . . . . . . 7 𝐵 = (Base‘(oppr𝑅))
3028, 6oppr0 19379 . . . . . . 7 (0g𝑅) = (0g‘(oppr𝑅))
3128, 5oppr1 19380 . . . . . . 7 (1r𝑅) = (1r‘(oppr𝑅))
32 eqid 2798 . . . . . . 7 (∥r‘(oppr𝑅)) = (∥r‘(oppr𝑅))
33 eqid 2798 . . . . . . 7 (.r‘(oppr𝑅)) = (.r‘(oppr𝑅))
3428opprdomn 20067 . . . . . . . 8 (𝑅 ∈ Domn → (oppr𝑅) ∈ Domn)
3523, 34syl 17 . . . . . . 7 (((𝐵 ∈ Fin ∧ 𝑅 ∈ Domn) ∧ 𝑥 ∈ (𝐵 ∖ {(0g𝑅)})) → (oppr𝑅) ∈ Domn)
36 eqid 2798 . . . . . . 7 (𝑦𝐵 ↦ (𝑦(.r‘(oppr𝑅))𝑥)) = (𝑦𝐵 ↦ (𝑦(.r‘(oppr𝑅))𝑥))
3729, 30, 31, 32, 33, 35, 24, 25, 36fidomndrnglem 20072 . . . . . 6 (((𝐵 ∈ Fin ∧ 𝑅 ∈ Domn) ∧ 𝑥 ∈ (𝐵 ∖ {(0g𝑅)})) → 𝑥(∥r‘(oppr𝑅))(1r𝑅))
3810, 5, 21, 28, 32isunit 19403 . . . . . 6 (𝑥 ∈ (Unit‘𝑅) ↔ (𝑥(∥r𝑅)(1r𝑅) ∧ 𝑥(∥r‘(oppr𝑅))(1r𝑅)))
3927, 37, 38sylanbrc 586 . . . . 5 (((𝐵 ∈ Fin ∧ 𝑅 ∈ Domn) ∧ 𝑥 ∈ (𝐵 ∖ {(0g𝑅)})) → 𝑥 ∈ (Unit‘𝑅))
4020, 39eqelssd 3936 . . . 4 ((𝐵 ∈ Fin ∧ 𝑅 ∈ Domn) → (Unit‘𝑅) = (𝐵 ∖ {(0g𝑅)}))
4116, 10, 6isdrng 19499 . . . 4 (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ (Unit‘𝑅) = (𝐵 ∖ {(0g𝑅)})))
422, 40, 41sylanbrc 586 . . 3 ((𝐵 ∈ Fin ∧ 𝑅 ∈ Domn) → 𝑅 ∈ DivRing)
4342ex 416 . 2 (𝐵 ∈ Fin → (𝑅 ∈ Domn → 𝑅 ∈ DivRing))
44 drngdomn 20069 . 2 (𝑅 ∈ DivRing → 𝑅 ∈ Domn)
4543, 44impbid1 228 1 (𝐵 ∈ Fin → (𝑅 ∈ Domn ↔ 𝑅 ∈ DivRing))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wne 2987  cdif 3878  cin 3880  wss 3881  c0 4243  {csn 4525   class class class wbr 5030  cmpt 5110  cfv 6324  (class class class)co 7135  Fincfn 8492  Basecbs 16475  .rcmulr 16558  0gc0g 16705  1rcur 19244  Ringcrg 19290  opprcoppr 19368  rcdsr 19384  Unitcui 19385  DivRingcdr 19495  NzRingcnzr 20023  Domncdomn 20046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-tpos 7875  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-minusg 18099  df-sbg 18100  df-ghm 18348  df-mgp 19233  df-ur 19245  df-ring 19292  df-oppr 19369  df-dvdsr 19387  df-unit 19388  df-invr 19418  df-drng 19497  df-nzr 20024  df-rlreg 20049  df-domn 20050
This theorem is referenced by:  fiidomfld  20074
  Copyright terms: Public domain W3C validator