| Step | Hyp | Ref
| Expression |
| 1 | | df-ne 2941 |
. . 3
⊢
((chr‘𝑅) ≠
0 ↔ ¬ (chr‘𝑅) = 0) |
| 2 | | domnring 20707 |
. . . . . . . . . 10
⊢ (𝑅 ∈ Domn → 𝑅 ∈ Ring) |
| 3 | | eqid 2737 |
. . . . . . . . . . 11
⊢
(chr‘𝑅) =
(chr‘𝑅) |
| 4 | 3 | chrcl 21539 |
. . . . . . . . . 10
⊢ (𝑅 ∈ Ring →
(chr‘𝑅) ∈
ℕ0) |
| 5 | 2, 4 | syl 17 |
. . . . . . . . 9
⊢ (𝑅 ∈ Domn →
(chr‘𝑅) ∈
ℕ0) |
| 6 | 5 | adantr 480 |
. . . . . . . 8
⊢ ((𝑅 ∈ Domn ∧
(chr‘𝑅) ≠ 0)
→ (chr‘𝑅) ∈
ℕ0) |
| 7 | | simpr 484 |
. . . . . . . 8
⊢ ((𝑅 ∈ Domn ∧
(chr‘𝑅) ≠ 0)
→ (chr‘𝑅) ≠
0) |
| 8 | | eldifsn 4786 |
. . . . . . . 8
⊢
((chr‘𝑅)
∈ (ℕ0 ∖ {0}) ↔ ((chr‘𝑅) ∈ ℕ0 ∧
(chr‘𝑅) ≠
0)) |
| 9 | 6, 7, 8 | sylanbrc 583 |
. . . . . . 7
⊢ ((𝑅 ∈ Domn ∧
(chr‘𝑅) ≠ 0)
→ (chr‘𝑅) ∈
(ℕ0 ∖ {0})) |
| 10 | | dfn2 12539 |
. . . . . . 7
⊢ ℕ =
(ℕ0 ∖ {0}) |
| 11 | 9, 10 | eleqtrrdi 2852 |
. . . . . 6
⊢ ((𝑅 ∈ Domn ∧
(chr‘𝑅) ≠ 0)
→ (chr‘𝑅) ∈
ℕ) |
| 12 | | domnnzr 20706 |
. . . . . . . 8
⊢ (𝑅 ∈ Domn → 𝑅 ∈ NzRing) |
| 13 | | nzrring 20516 |
. . . . . . . . . 10
⊢ (𝑅 ∈ NzRing → 𝑅 ∈ Ring) |
| 14 | | chrnzr 21545 |
. . . . . . . . . 10
⊢ (𝑅 ∈ Ring → (𝑅 ∈ NzRing ↔
(chr‘𝑅) ≠
1)) |
| 15 | 13, 14 | syl 17 |
. . . . . . . . 9
⊢ (𝑅 ∈ NzRing → (𝑅 ∈ NzRing ↔
(chr‘𝑅) ≠
1)) |
| 16 | 15 | ibi 267 |
. . . . . . . 8
⊢ (𝑅 ∈ NzRing →
(chr‘𝑅) ≠
1) |
| 17 | 12, 16 | syl 17 |
. . . . . . 7
⊢ (𝑅 ∈ Domn →
(chr‘𝑅) ≠
1) |
| 18 | 17 | adantr 480 |
. . . . . 6
⊢ ((𝑅 ∈ Domn ∧
(chr‘𝑅) ≠ 0)
→ (chr‘𝑅) ≠
1) |
| 19 | | eluz2b3 12964 |
. . . . . 6
⊢
((chr‘𝑅)
∈ (ℤ≥‘2) ↔ ((chr‘𝑅) ∈ ℕ ∧ (chr‘𝑅) ≠ 1)) |
| 20 | 11, 18, 19 | sylanbrc 583 |
. . . . 5
⊢ ((𝑅 ∈ Domn ∧
(chr‘𝑅) ≠ 0)
→ (chr‘𝑅) ∈
(ℤ≥‘2)) |
| 21 | 2 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ Domn ∧
(chr‘𝑅) ≠ 0) ∧
(𝑥 ∈ ℤ ∧
𝑦 ∈ ℤ)) →
𝑅 ∈
Ring) |
| 22 | | eqid 2737 |
. . . . . . . . . . . . 13
⊢
(ℤRHom‘𝑅) = (ℤRHom‘𝑅) |
| 23 | 22 | zrhrhm 21522 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ Ring →
(ℤRHom‘𝑅)
∈ (ℤring RingHom 𝑅)) |
| 24 | 21, 23 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ Domn ∧
(chr‘𝑅) ≠ 0) ∧
(𝑥 ∈ ℤ ∧
𝑦 ∈ ℤ)) →
(ℤRHom‘𝑅)
∈ (ℤring RingHom 𝑅)) |
| 25 | | simprl 771 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ Domn ∧
(chr‘𝑅) ≠ 0) ∧
(𝑥 ∈ ℤ ∧
𝑦 ∈ ℤ)) →
𝑥 ∈
ℤ) |
| 26 | | simprr 773 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ Domn ∧
(chr‘𝑅) ≠ 0) ∧
(𝑥 ∈ ℤ ∧
𝑦 ∈ ℤ)) →
𝑦 ∈
ℤ) |
| 27 | | zringbas 21464 |
. . . . . . . . . . . 12
⊢ ℤ =
(Base‘ℤring) |
| 28 | | zringmulr 21468 |
. . . . . . . . . . . 12
⊢ ·
= (.r‘ℤring) |
| 29 | | eqid 2737 |
. . . . . . . . . . . 12
⊢
(.r‘𝑅) = (.r‘𝑅) |
| 30 | 27, 28, 29 | rhmmul 20486 |
. . . . . . . . . . 11
⊢
(((ℤRHom‘𝑅) ∈ (ℤring RingHom
𝑅) ∧ 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) →
((ℤRHom‘𝑅)‘(𝑥 · 𝑦)) = (((ℤRHom‘𝑅)‘𝑥)(.r‘𝑅)((ℤRHom‘𝑅)‘𝑦))) |
| 31 | 24, 25, 26, 30 | syl3anc 1373 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Domn ∧
(chr‘𝑅) ≠ 0) ∧
(𝑥 ∈ ℤ ∧
𝑦 ∈ ℤ)) →
((ℤRHom‘𝑅)‘(𝑥 · 𝑦)) = (((ℤRHom‘𝑅)‘𝑥)(.r‘𝑅)((ℤRHom‘𝑅)‘𝑦))) |
| 32 | 31 | eqeq1d 2739 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Domn ∧
(chr‘𝑅) ≠ 0) ∧
(𝑥 ∈ ℤ ∧
𝑦 ∈ ℤ)) →
(((ℤRHom‘𝑅)‘(𝑥 · 𝑦)) = (0g‘𝑅) ↔ (((ℤRHom‘𝑅)‘𝑥)(.r‘𝑅)((ℤRHom‘𝑅)‘𝑦)) = (0g‘𝑅))) |
| 33 | | simpll 767 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Domn ∧
(chr‘𝑅) ≠ 0) ∧
(𝑥 ∈ ℤ ∧
𝑦 ∈ ℤ)) →
𝑅 ∈
Domn) |
| 34 | | eqid 2737 |
. . . . . . . . . . . . 13
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 35 | 27, 34 | rhmf 20485 |
. . . . . . . . . . . 12
⊢
((ℤRHom‘𝑅) ∈ (ℤring RingHom
𝑅) →
(ℤRHom‘𝑅):ℤ⟶(Base‘𝑅)) |
| 36 | 24, 35 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ Domn ∧
(chr‘𝑅) ≠ 0) ∧
(𝑥 ∈ ℤ ∧
𝑦 ∈ ℤ)) →
(ℤRHom‘𝑅):ℤ⟶(Base‘𝑅)) |
| 37 | 36, 25 | ffvelcdmd 7105 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Domn ∧
(chr‘𝑅) ≠ 0) ∧
(𝑥 ∈ ℤ ∧
𝑦 ∈ ℤ)) →
((ℤRHom‘𝑅)‘𝑥) ∈ (Base‘𝑅)) |
| 38 | 36, 26 | ffvelcdmd 7105 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Domn ∧
(chr‘𝑅) ≠ 0) ∧
(𝑥 ∈ ℤ ∧
𝑦 ∈ ℤ)) →
((ℤRHom‘𝑅)‘𝑦) ∈ (Base‘𝑅)) |
| 39 | | eqid 2737 |
. . . . . . . . . . 11
⊢
(0g‘𝑅) = (0g‘𝑅) |
| 40 | 34, 29, 39 | domneq0 20708 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Domn ∧
((ℤRHom‘𝑅)‘𝑥) ∈ (Base‘𝑅) ∧ ((ℤRHom‘𝑅)‘𝑦) ∈ (Base‘𝑅)) → ((((ℤRHom‘𝑅)‘𝑥)(.r‘𝑅)((ℤRHom‘𝑅)‘𝑦)) = (0g‘𝑅) ↔ (((ℤRHom‘𝑅)‘𝑥) = (0g‘𝑅) ∨ ((ℤRHom‘𝑅)‘𝑦) = (0g‘𝑅)))) |
| 41 | 33, 37, 38, 40 | syl3anc 1373 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Domn ∧
(chr‘𝑅) ≠ 0) ∧
(𝑥 ∈ ℤ ∧
𝑦 ∈ ℤ)) →
((((ℤRHom‘𝑅)‘𝑥)(.r‘𝑅)((ℤRHom‘𝑅)‘𝑦)) = (0g‘𝑅) ↔ (((ℤRHom‘𝑅)‘𝑥) = (0g‘𝑅) ∨ ((ℤRHom‘𝑅)‘𝑦) = (0g‘𝑅)))) |
| 42 | 32, 41 | bitrd 279 |
. . . . . . . 8
⊢ (((𝑅 ∈ Domn ∧
(chr‘𝑅) ≠ 0) ∧
(𝑥 ∈ ℤ ∧
𝑦 ∈ ℤ)) →
(((ℤRHom‘𝑅)‘(𝑥 · 𝑦)) = (0g‘𝑅) ↔ (((ℤRHom‘𝑅)‘𝑥) = (0g‘𝑅) ∨ ((ℤRHom‘𝑅)‘𝑦) = (0g‘𝑅)))) |
| 43 | 42 | biimpd 229 |
. . . . . . 7
⊢ (((𝑅 ∈ Domn ∧
(chr‘𝑅) ≠ 0) ∧
(𝑥 ∈ ℤ ∧
𝑦 ∈ ℤ)) →
(((ℤRHom‘𝑅)‘(𝑥 · 𝑦)) = (0g‘𝑅) → (((ℤRHom‘𝑅)‘𝑥) = (0g‘𝑅) ∨ ((ℤRHom‘𝑅)‘𝑦) = (0g‘𝑅)))) |
| 44 | | zmulcl 12666 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 · 𝑦) ∈ ℤ) |
| 45 | 44 | adantl 481 |
. . . . . . . 8
⊢ (((𝑅 ∈ Domn ∧
(chr‘𝑅) ≠ 0) ∧
(𝑥 ∈ ℤ ∧
𝑦 ∈ ℤ)) →
(𝑥 · 𝑦) ∈
ℤ) |
| 46 | 3, 22, 39 | chrdvds 21541 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ (𝑥 · 𝑦) ∈ ℤ) → ((chr‘𝑅) ∥ (𝑥 · 𝑦) ↔ ((ℤRHom‘𝑅)‘(𝑥 · 𝑦)) = (0g‘𝑅))) |
| 47 | 21, 45, 46 | syl2anc 584 |
. . . . . . 7
⊢ (((𝑅 ∈ Domn ∧
(chr‘𝑅) ≠ 0) ∧
(𝑥 ∈ ℤ ∧
𝑦 ∈ ℤ)) →
((chr‘𝑅) ∥
(𝑥 · 𝑦) ↔
((ℤRHom‘𝑅)‘(𝑥 · 𝑦)) = (0g‘𝑅))) |
| 48 | 3, 22, 39 | chrdvds 21541 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ ℤ) →
((chr‘𝑅) ∥
𝑥 ↔
((ℤRHom‘𝑅)‘𝑥) = (0g‘𝑅))) |
| 49 | 21, 25, 48 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝑅 ∈ Domn ∧
(chr‘𝑅) ≠ 0) ∧
(𝑥 ∈ ℤ ∧
𝑦 ∈ ℤ)) →
((chr‘𝑅) ∥
𝑥 ↔
((ℤRHom‘𝑅)‘𝑥) = (0g‘𝑅))) |
| 50 | 3, 22, 39 | chrdvds 21541 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ 𝑦 ∈ ℤ) →
((chr‘𝑅) ∥
𝑦 ↔
((ℤRHom‘𝑅)‘𝑦) = (0g‘𝑅))) |
| 51 | 21, 26, 50 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝑅 ∈ Domn ∧
(chr‘𝑅) ≠ 0) ∧
(𝑥 ∈ ℤ ∧
𝑦 ∈ ℤ)) →
((chr‘𝑅) ∥
𝑦 ↔
((ℤRHom‘𝑅)‘𝑦) = (0g‘𝑅))) |
| 52 | 49, 51 | orbi12d 919 |
. . . . . . 7
⊢ (((𝑅 ∈ Domn ∧
(chr‘𝑅) ≠ 0) ∧
(𝑥 ∈ ℤ ∧
𝑦 ∈ ℤ)) →
(((chr‘𝑅) ∥
𝑥 ∨ (chr‘𝑅) ∥ 𝑦) ↔ (((ℤRHom‘𝑅)‘𝑥) = (0g‘𝑅) ∨ ((ℤRHom‘𝑅)‘𝑦) = (0g‘𝑅)))) |
| 53 | 43, 47, 52 | 3imtr4d 294 |
. . . . . 6
⊢ (((𝑅 ∈ Domn ∧
(chr‘𝑅) ≠ 0) ∧
(𝑥 ∈ ℤ ∧
𝑦 ∈ ℤ)) →
((chr‘𝑅) ∥
(𝑥 · 𝑦) → ((chr‘𝑅) ∥ 𝑥 ∨ (chr‘𝑅) ∥ 𝑦))) |
| 54 | 53 | ralrimivva 3202 |
. . . . 5
⊢ ((𝑅 ∈ Domn ∧
(chr‘𝑅) ≠ 0)
→ ∀𝑥 ∈
ℤ ∀𝑦 ∈
ℤ ((chr‘𝑅)
∥ (𝑥 · 𝑦) → ((chr‘𝑅) ∥ 𝑥 ∨ (chr‘𝑅) ∥ 𝑦))) |
| 55 | | isprm6 16751 |
. . . . 5
⊢
((chr‘𝑅)
∈ ℙ ↔ ((chr‘𝑅) ∈ (ℤ≥‘2)
∧ ∀𝑥 ∈
ℤ ∀𝑦 ∈
ℤ ((chr‘𝑅)
∥ (𝑥 · 𝑦) → ((chr‘𝑅) ∥ 𝑥 ∨ (chr‘𝑅) ∥ 𝑦)))) |
| 56 | 20, 54, 55 | sylanbrc 583 |
. . . 4
⊢ ((𝑅 ∈ Domn ∧
(chr‘𝑅) ≠ 0)
→ (chr‘𝑅) ∈
ℙ) |
| 57 | 56 | ex 412 |
. . 3
⊢ (𝑅 ∈ Domn →
((chr‘𝑅) ≠ 0
→ (chr‘𝑅) ∈
ℙ)) |
| 58 | 1, 57 | biimtrrid 243 |
. 2
⊢ (𝑅 ∈ Domn → (¬
(chr‘𝑅) = 0 →
(chr‘𝑅) ∈
ℙ)) |
| 59 | 58 | orrd 864 |
1
⊢ (𝑅 ∈ Domn →
((chr‘𝑅) = 0 ∨
(chr‘𝑅) ∈
ℙ)) |