MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domnchr Structured version   Visualization version   GIF version

Theorem domnchr 21457
Description: The characteristic of a domain can only be zero or a prime. (Contributed by Stefan O'Rear, 6-Sep-2015.)
Assertion
Ref Expression
domnchr (𝑅 ∈ Domn → ((chr‘𝑅) = 0 ∨ (chr‘𝑅) ∈ ℙ))

Proof of Theorem domnchr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ne 2926 . . 3 ((chr‘𝑅) ≠ 0 ↔ ¬ (chr‘𝑅) = 0)
2 domnring 20610 . . . . . . . . . 10 (𝑅 ∈ Domn → 𝑅 ∈ Ring)
3 eqid 2729 . . . . . . . . . . 11 (chr‘𝑅) = (chr‘𝑅)
43chrcl 21449 . . . . . . . . . 10 (𝑅 ∈ Ring → (chr‘𝑅) ∈ ℕ0)
52, 4syl 17 . . . . . . . . 9 (𝑅 ∈ Domn → (chr‘𝑅) ∈ ℕ0)
65adantr 480 . . . . . . . 8 ((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) → (chr‘𝑅) ∈ ℕ0)
7 simpr 484 . . . . . . . 8 ((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) → (chr‘𝑅) ≠ 0)
8 eldifsn 4740 . . . . . . . 8 ((chr‘𝑅) ∈ (ℕ0 ∖ {0}) ↔ ((chr‘𝑅) ∈ ℕ0 ∧ (chr‘𝑅) ≠ 0))
96, 7, 8sylanbrc 583 . . . . . . 7 ((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) → (chr‘𝑅) ∈ (ℕ0 ∖ {0}))
10 dfn2 12415 . . . . . . 7 ℕ = (ℕ0 ∖ {0})
119, 10eleqtrrdi 2839 . . . . . 6 ((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) → (chr‘𝑅) ∈ ℕ)
12 domnnzr 20609 . . . . . . . 8 (𝑅 ∈ Domn → 𝑅 ∈ NzRing)
13 nzrring 20419 . . . . . . . . . 10 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
14 chrnzr 21455 . . . . . . . . . 10 (𝑅 ∈ Ring → (𝑅 ∈ NzRing ↔ (chr‘𝑅) ≠ 1))
1513, 14syl 17 . . . . . . . . 9 (𝑅 ∈ NzRing → (𝑅 ∈ NzRing ↔ (chr‘𝑅) ≠ 1))
1615ibi 267 . . . . . . . 8 (𝑅 ∈ NzRing → (chr‘𝑅) ≠ 1)
1712, 16syl 17 . . . . . . 7 (𝑅 ∈ Domn → (chr‘𝑅) ≠ 1)
1817adantr 480 . . . . . 6 ((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) → (chr‘𝑅) ≠ 1)
19 eluz2b3 12841 . . . . . 6 ((chr‘𝑅) ∈ (ℤ‘2) ↔ ((chr‘𝑅) ∈ ℕ ∧ (chr‘𝑅) ≠ 1))
2011, 18, 19sylanbrc 583 . . . . 5 ((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) → (chr‘𝑅) ∈ (ℤ‘2))
212ad2antrr 726 . . . . . . . . . . . 12 (((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑅 ∈ Ring)
22 eqid 2729 . . . . . . . . . . . . 13 (ℤRHom‘𝑅) = (ℤRHom‘𝑅)
2322zrhrhm 21436 . . . . . . . . . . . 12 (𝑅 ∈ Ring → (ℤRHom‘𝑅) ∈ (ℤring RingHom 𝑅))
2421, 23syl 17 . . . . . . . . . . 11 (((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (ℤRHom‘𝑅) ∈ (ℤring RingHom 𝑅))
25 simprl 770 . . . . . . . . . . 11 (((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑥 ∈ ℤ)
26 simprr 772 . . . . . . . . . . 11 (((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑦 ∈ ℤ)
27 zringbas 21378 . . . . . . . . . . . 12 ℤ = (Base‘ℤring)
28 zringmulr 21382 . . . . . . . . . . . 12 · = (.r‘ℤring)
29 eqid 2729 . . . . . . . . . . . 12 (.r𝑅) = (.r𝑅)
3027, 28, 29rhmmul 20389 . . . . . . . . . . 11 (((ℤRHom‘𝑅) ∈ (ℤring RingHom 𝑅) ∧ 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((ℤRHom‘𝑅)‘(𝑥 · 𝑦)) = (((ℤRHom‘𝑅)‘𝑥)(.r𝑅)((ℤRHom‘𝑅)‘𝑦)))
3124, 25, 26, 30syl3anc 1373 . . . . . . . . . 10 (((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((ℤRHom‘𝑅)‘(𝑥 · 𝑦)) = (((ℤRHom‘𝑅)‘𝑥)(.r𝑅)((ℤRHom‘𝑅)‘𝑦)))
3231eqeq1d 2731 . . . . . . . . 9 (((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((ℤRHom‘𝑅)‘(𝑥 · 𝑦)) = (0g𝑅) ↔ (((ℤRHom‘𝑅)‘𝑥)(.r𝑅)((ℤRHom‘𝑅)‘𝑦)) = (0g𝑅)))
33 simpll 766 . . . . . . . . . 10 (((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑅 ∈ Domn)
34 eqid 2729 . . . . . . . . . . . . 13 (Base‘𝑅) = (Base‘𝑅)
3527, 34rhmf 20388 . . . . . . . . . . . 12 ((ℤRHom‘𝑅) ∈ (ℤring RingHom 𝑅) → (ℤRHom‘𝑅):ℤ⟶(Base‘𝑅))
3624, 35syl 17 . . . . . . . . . . 11 (((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (ℤRHom‘𝑅):ℤ⟶(Base‘𝑅))
3736, 25ffvelcdmd 7023 . . . . . . . . . 10 (((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((ℤRHom‘𝑅)‘𝑥) ∈ (Base‘𝑅))
3836, 26ffvelcdmd 7023 . . . . . . . . . 10 (((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((ℤRHom‘𝑅)‘𝑦) ∈ (Base‘𝑅))
39 eqid 2729 . . . . . . . . . . 11 (0g𝑅) = (0g𝑅)
4034, 29, 39domneq0 20611 . . . . . . . . . 10 ((𝑅 ∈ Domn ∧ ((ℤRHom‘𝑅)‘𝑥) ∈ (Base‘𝑅) ∧ ((ℤRHom‘𝑅)‘𝑦) ∈ (Base‘𝑅)) → ((((ℤRHom‘𝑅)‘𝑥)(.r𝑅)((ℤRHom‘𝑅)‘𝑦)) = (0g𝑅) ↔ (((ℤRHom‘𝑅)‘𝑥) = (0g𝑅) ∨ ((ℤRHom‘𝑅)‘𝑦) = (0g𝑅))))
4133, 37, 38, 40syl3anc 1373 . . . . . . . . 9 (((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((((ℤRHom‘𝑅)‘𝑥)(.r𝑅)((ℤRHom‘𝑅)‘𝑦)) = (0g𝑅) ↔ (((ℤRHom‘𝑅)‘𝑥) = (0g𝑅) ∨ ((ℤRHom‘𝑅)‘𝑦) = (0g𝑅))))
4232, 41bitrd 279 . . . . . . . 8 (((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((ℤRHom‘𝑅)‘(𝑥 · 𝑦)) = (0g𝑅) ↔ (((ℤRHom‘𝑅)‘𝑥) = (0g𝑅) ∨ ((ℤRHom‘𝑅)‘𝑦) = (0g𝑅))))
4342biimpd 229 . . . . . . 7 (((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((ℤRHom‘𝑅)‘(𝑥 · 𝑦)) = (0g𝑅) → (((ℤRHom‘𝑅)‘𝑥) = (0g𝑅) ∨ ((ℤRHom‘𝑅)‘𝑦) = (0g𝑅))))
44 zmulcl 12542 . . . . . . . . 9 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 · 𝑦) ∈ ℤ)
4544adantl 481 . . . . . . . 8 (((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 · 𝑦) ∈ ℤ)
463, 22, 39chrdvds 21451 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑥 · 𝑦) ∈ ℤ) → ((chr‘𝑅) ∥ (𝑥 · 𝑦) ↔ ((ℤRHom‘𝑅)‘(𝑥 · 𝑦)) = (0g𝑅)))
4721, 45, 46syl2anc 584 . . . . . . 7 (((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((chr‘𝑅) ∥ (𝑥 · 𝑦) ↔ ((ℤRHom‘𝑅)‘(𝑥 · 𝑦)) = (0g𝑅)))
483, 22, 39chrdvds 21451 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑥 ∈ ℤ) → ((chr‘𝑅) ∥ 𝑥 ↔ ((ℤRHom‘𝑅)‘𝑥) = (0g𝑅)))
4921, 25, 48syl2anc 584 . . . . . . . 8 (((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((chr‘𝑅) ∥ 𝑥 ↔ ((ℤRHom‘𝑅)‘𝑥) = (0g𝑅)))
503, 22, 39chrdvds 21451 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑦 ∈ ℤ) → ((chr‘𝑅) ∥ 𝑦 ↔ ((ℤRHom‘𝑅)‘𝑦) = (0g𝑅)))
5121, 26, 50syl2anc 584 . . . . . . . 8 (((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((chr‘𝑅) ∥ 𝑦 ↔ ((ℤRHom‘𝑅)‘𝑦) = (0g𝑅)))
5249, 51orbi12d 918 . . . . . . 7 (((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((chr‘𝑅) ∥ 𝑥 ∨ (chr‘𝑅) ∥ 𝑦) ↔ (((ℤRHom‘𝑅)‘𝑥) = (0g𝑅) ∨ ((ℤRHom‘𝑅)‘𝑦) = (0g𝑅))))
5343, 47, 523imtr4d 294 . . . . . 6 (((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((chr‘𝑅) ∥ (𝑥 · 𝑦) → ((chr‘𝑅) ∥ 𝑥 ∨ (chr‘𝑅) ∥ 𝑦)))
5453ralrimivva 3172 . . . . 5 ((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) → ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ ((chr‘𝑅) ∥ (𝑥 · 𝑦) → ((chr‘𝑅) ∥ 𝑥 ∨ (chr‘𝑅) ∥ 𝑦)))
55 isprm6 16643 . . . . 5 ((chr‘𝑅) ∈ ℙ ↔ ((chr‘𝑅) ∈ (ℤ‘2) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ ((chr‘𝑅) ∥ (𝑥 · 𝑦) → ((chr‘𝑅) ∥ 𝑥 ∨ (chr‘𝑅) ∥ 𝑦))))
5620, 54, 55sylanbrc 583 . . . 4 ((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) → (chr‘𝑅) ∈ ℙ)
5756ex 412 . . 3 (𝑅 ∈ Domn → ((chr‘𝑅) ≠ 0 → (chr‘𝑅) ∈ ℙ))
581, 57biimtrrid 243 . 2 (𝑅 ∈ Domn → (¬ (chr‘𝑅) = 0 → (chr‘𝑅) ∈ ℙ))
5958orrd 863 1 (𝑅 ∈ Domn → ((chr‘𝑅) = 0 ∨ (chr‘𝑅) ∈ ℙ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  wral 3044  cdif 3902  {csn 4579   class class class wbr 5095  wf 6482  cfv 6486  (class class class)co 7353  0cc0 11028  1c1 11029   · cmul 11033  cn 12146  2c2 12201  0cn0 12402  cz 12489  cuz 12753  cdvds 16181  cprime 16600  Basecbs 17138  .rcmulr 17180  0gc0g 17361  Ringcrg 20136   RingHom crh 20372  NzRingcnzr 20415  Domncdomn 20595  ringczring 21371  ℤRHomczrh 21424  chrcchr 21426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107  ax-mulf 11108
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-rp 12912  df-fz 13429  df-fl 13714  df-mod 13792  df-seq 13927  df-exp 13987  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-dvds 16182  df-gcd 16424  df-prm 16601  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-0g 17363  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-mhm 18675  df-grp 18833  df-minusg 18834  df-sbg 18835  df-mulg 18965  df-subg 19020  df-ghm 19110  df-od 19425  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-ring 20138  df-cring 20139  df-rhm 20375  df-nzr 20416  df-subrng 20449  df-subrg 20473  df-domn 20598  df-cnfld 21280  df-zring 21372  df-zrh 21428  df-chr 21430
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator