MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domnchr Structured version   Visualization version   GIF version

Theorem domnchr 20842
Description: The characteristic of a domain can only be zero or a prime. (Contributed by Stefan O'Rear, 6-Sep-2015.)
Assertion
Ref Expression
domnchr (𝑅 ∈ Domn → ((chr‘𝑅) = 0 ∨ (chr‘𝑅) ∈ ℙ))

Proof of Theorem domnchr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ne 2941 . . 3 ((chr‘𝑅) ≠ 0 ↔ ¬ (chr‘𝑅) = 0)
2 domnring 20673 . . . . . . . . . 10 (𝑅 ∈ Domn → 𝑅 ∈ Ring)
3 eqid 2736 . . . . . . . . . . 11 (chr‘𝑅) = (chr‘𝑅)
43chrcl 20836 . . . . . . . . . 10 (𝑅 ∈ Ring → (chr‘𝑅) ∈ ℕ0)
52, 4syl 17 . . . . . . . . 9 (𝑅 ∈ Domn → (chr‘𝑅) ∈ ℕ0)
65adantr 481 . . . . . . . 8 ((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) → (chr‘𝑅) ∈ ℕ0)
7 simpr 485 . . . . . . . 8 ((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) → (chr‘𝑅) ≠ 0)
8 eldifsn 4734 . . . . . . . 8 ((chr‘𝑅) ∈ (ℕ0 ∖ {0}) ↔ ((chr‘𝑅) ∈ ℕ0 ∧ (chr‘𝑅) ≠ 0))
96, 7, 8sylanbrc 583 . . . . . . 7 ((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) → (chr‘𝑅) ∈ (ℕ0 ∖ {0}))
10 dfn2 12347 . . . . . . 7 ℕ = (ℕ0 ∖ {0})
119, 10eleqtrrdi 2848 . . . . . 6 ((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) → (chr‘𝑅) ∈ ℕ)
12 domnnzr 20672 . . . . . . . 8 (𝑅 ∈ Domn → 𝑅 ∈ NzRing)
13 nzrring 20638 . . . . . . . . . 10 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
14 chrnzr 20840 . . . . . . . . . 10 (𝑅 ∈ Ring → (𝑅 ∈ NzRing ↔ (chr‘𝑅) ≠ 1))
1513, 14syl 17 . . . . . . . . 9 (𝑅 ∈ NzRing → (𝑅 ∈ NzRing ↔ (chr‘𝑅) ≠ 1))
1615ibi 266 . . . . . . . 8 (𝑅 ∈ NzRing → (chr‘𝑅) ≠ 1)
1712, 16syl 17 . . . . . . 7 (𝑅 ∈ Domn → (chr‘𝑅) ≠ 1)
1817adantr 481 . . . . . 6 ((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) → (chr‘𝑅) ≠ 1)
19 eluz2b3 12763 . . . . . 6 ((chr‘𝑅) ∈ (ℤ‘2) ↔ ((chr‘𝑅) ∈ ℕ ∧ (chr‘𝑅) ≠ 1))
2011, 18, 19sylanbrc 583 . . . . 5 ((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) → (chr‘𝑅) ∈ (ℤ‘2))
212ad2antrr 723 . . . . . . . . . . . 12 (((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑅 ∈ Ring)
22 eqid 2736 . . . . . . . . . . . . 13 (ℤRHom‘𝑅) = (ℤRHom‘𝑅)
2322zrhrhm 20819 . . . . . . . . . . . 12 (𝑅 ∈ Ring → (ℤRHom‘𝑅) ∈ (ℤring RingHom 𝑅))
2421, 23syl 17 . . . . . . . . . . 11 (((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (ℤRHom‘𝑅) ∈ (ℤring RingHom 𝑅))
25 simprl 768 . . . . . . . . . . 11 (((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑥 ∈ ℤ)
26 simprr 770 . . . . . . . . . . 11 (((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑦 ∈ ℤ)
27 zringbas 20782 . . . . . . . . . . . 12 ℤ = (Base‘ℤring)
28 zringmulr 20785 . . . . . . . . . . . 12 · = (.r‘ℤring)
29 eqid 2736 . . . . . . . . . . . 12 (.r𝑅) = (.r𝑅)
3027, 28, 29rhmmul 20067 . . . . . . . . . . 11 (((ℤRHom‘𝑅) ∈ (ℤring RingHom 𝑅) ∧ 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((ℤRHom‘𝑅)‘(𝑥 · 𝑦)) = (((ℤRHom‘𝑅)‘𝑥)(.r𝑅)((ℤRHom‘𝑅)‘𝑦)))
3124, 25, 26, 30syl3anc 1370 . . . . . . . . . 10 (((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((ℤRHom‘𝑅)‘(𝑥 · 𝑦)) = (((ℤRHom‘𝑅)‘𝑥)(.r𝑅)((ℤRHom‘𝑅)‘𝑦)))
3231eqeq1d 2738 . . . . . . . . 9 (((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((ℤRHom‘𝑅)‘(𝑥 · 𝑦)) = (0g𝑅) ↔ (((ℤRHom‘𝑅)‘𝑥)(.r𝑅)((ℤRHom‘𝑅)‘𝑦)) = (0g𝑅)))
33 simpll 764 . . . . . . . . . 10 (((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑅 ∈ Domn)
34 eqid 2736 . . . . . . . . . . . . 13 (Base‘𝑅) = (Base‘𝑅)
3527, 34rhmf 20066 . . . . . . . . . . . 12 ((ℤRHom‘𝑅) ∈ (ℤring RingHom 𝑅) → (ℤRHom‘𝑅):ℤ⟶(Base‘𝑅))
3624, 35syl 17 . . . . . . . . . . 11 (((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (ℤRHom‘𝑅):ℤ⟶(Base‘𝑅))
3736, 25ffvelcdmd 7018 . . . . . . . . . 10 (((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((ℤRHom‘𝑅)‘𝑥) ∈ (Base‘𝑅))
3836, 26ffvelcdmd 7018 . . . . . . . . . 10 (((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((ℤRHom‘𝑅)‘𝑦) ∈ (Base‘𝑅))
39 eqid 2736 . . . . . . . . . . 11 (0g𝑅) = (0g𝑅)
4034, 29, 39domneq0 20674 . . . . . . . . . 10 ((𝑅 ∈ Domn ∧ ((ℤRHom‘𝑅)‘𝑥) ∈ (Base‘𝑅) ∧ ((ℤRHom‘𝑅)‘𝑦) ∈ (Base‘𝑅)) → ((((ℤRHom‘𝑅)‘𝑥)(.r𝑅)((ℤRHom‘𝑅)‘𝑦)) = (0g𝑅) ↔ (((ℤRHom‘𝑅)‘𝑥) = (0g𝑅) ∨ ((ℤRHom‘𝑅)‘𝑦) = (0g𝑅))))
4133, 37, 38, 40syl3anc 1370 . . . . . . . . 9 (((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((((ℤRHom‘𝑅)‘𝑥)(.r𝑅)((ℤRHom‘𝑅)‘𝑦)) = (0g𝑅) ↔ (((ℤRHom‘𝑅)‘𝑥) = (0g𝑅) ∨ ((ℤRHom‘𝑅)‘𝑦) = (0g𝑅))))
4232, 41bitrd 278 . . . . . . . 8 (((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((ℤRHom‘𝑅)‘(𝑥 · 𝑦)) = (0g𝑅) ↔ (((ℤRHom‘𝑅)‘𝑥) = (0g𝑅) ∨ ((ℤRHom‘𝑅)‘𝑦) = (0g𝑅))))
4342biimpd 228 . . . . . . 7 (((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((ℤRHom‘𝑅)‘(𝑥 · 𝑦)) = (0g𝑅) → (((ℤRHom‘𝑅)‘𝑥) = (0g𝑅) ∨ ((ℤRHom‘𝑅)‘𝑦) = (0g𝑅))))
44 zmulcl 12470 . . . . . . . . 9 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 · 𝑦) ∈ ℤ)
4544adantl 482 . . . . . . . 8 (((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 · 𝑦) ∈ ℤ)
463, 22, 39chrdvds 20838 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑥 · 𝑦) ∈ ℤ) → ((chr‘𝑅) ∥ (𝑥 · 𝑦) ↔ ((ℤRHom‘𝑅)‘(𝑥 · 𝑦)) = (0g𝑅)))
4721, 45, 46syl2anc 584 . . . . . . 7 (((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((chr‘𝑅) ∥ (𝑥 · 𝑦) ↔ ((ℤRHom‘𝑅)‘(𝑥 · 𝑦)) = (0g𝑅)))
483, 22, 39chrdvds 20838 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑥 ∈ ℤ) → ((chr‘𝑅) ∥ 𝑥 ↔ ((ℤRHom‘𝑅)‘𝑥) = (0g𝑅)))
4921, 25, 48syl2anc 584 . . . . . . . 8 (((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((chr‘𝑅) ∥ 𝑥 ↔ ((ℤRHom‘𝑅)‘𝑥) = (0g𝑅)))
503, 22, 39chrdvds 20838 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑦 ∈ ℤ) → ((chr‘𝑅) ∥ 𝑦 ↔ ((ℤRHom‘𝑅)‘𝑦) = (0g𝑅)))
5121, 26, 50syl2anc 584 . . . . . . . 8 (((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((chr‘𝑅) ∥ 𝑦 ↔ ((ℤRHom‘𝑅)‘𝑦) = (0g𝑅)))
5249, 51orbi12d 916 . . . . . . 7 (((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((chr‘𝑅) ∥ 𝑥 ∨ (chr‘𝑅) ∥ 𝑦) ↔ (((ℤRHom‘𝑅)‘𝑥) = (0g𝑅) ∨ ((ℤRHom‘𝑅)‘𝑦) = (0g𝑅))))
5343, 47, 523imtr4d 293 . . . . . 6 (((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((chr‘𝑅) ∥ (𝑥 · 𝑦) → ((chr‘𝑅) ∥ 𝑥 ∨ (chr‘𝑅) ∥ 𝑦)))
5453ralrimivva 3193 . . . . 5 ((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) → ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ ((chr‘𝑅) ∥ (𝑥 · 𝑦) → ((chr‘𝑅) ∥ 𝑥 ∨ (chr‘𝑅) ∥ 𝑦)))
55 isprm6 16516 . . . . 5 ((chr‘𝑅) ∈ ℙ ↔ ((chr‘𝑅) ∈ (ℤ‘2) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ ((chr‘𝑅) ∥ (𝑥 · 𝑦) → ((chr‘𝑅) ∥ 𝑥 ∨ (chr‘𝑅) ∥ 𝑦))))
5620, 54, 55sylanbrc 583 . . . 4 ((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) → (chr‘𝑅) ∈ ℙ)
5756ex 413 . . 3 (𝑅 ∈ Domn → ((chr‘𝑅) ≠ 0 → (chr‘𝑅) ∈ ℙ))
581, 57syl5bir 242 . 2 (𝑅 ∈ Domn → (¬ (chr‘𝑅) = 0 → (chr‘𝑅) ∈ ℙ))
5958orrd 860 1 (𝑅 ∈ Domn → ((chr‘𝑅) = 0 ∨ (chr‘𝑅) ∈ ℙ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844   = wceq 1540  wcel 2105  wne 2940  wral 3061  cdif 3895  {csn 4573   class class class wbr 5092  wf 6475  cfv 6479  (class class class)co 7337  0cc0 10972  1c1 10973   · cmul 10977  cn 12074  2c2 12129  0cn0 12334  cz 12420  cuz 12683  cdvds 16062  cprime 16473  Basecbs 17009  .rcmulr 17060  0gc0g 17247  Ringcrg 19878   RingHom crh 20051  NzRingcnzr 20634  Domncdomn 20657  ringczring 20776  ℤRHomczrh 20807  chrcchr 20809
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5229  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650  ax-cnex 11028  ax-resscn 11029  ax-1cn 11030  ax-icn 11031  ax-addcl 11032  ax-addrcl 11033  ax-mulcl 11034  ax-mulrcl 11035  ax-mulcom 11036  ax-addass 11037  ax-mulass 11038  ax-distr 11039  ax-i2m1 11040  ax-1ne0 11041  ax-1rid 11042  ax-rnegex 11043  ax-rrecex 11044  ax-cnre 11045  ax-pre-lttri 11046  ax-pre-lttrn 11047  ax-pre-ltadd 11048  ax-pre-mulgt0 11049  ax-pre-sup 11050  ax-addf 11051  ax-mulf 11052
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4853  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5176  df-tr 5210  df-id 5518  df-eprel 5524  df-po 5532  df-so 5533  df-fr 5575  df-we 5577  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-pred 6238  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-riota 7293  df-ov 7340  df-oprab 7341  df-mpo 7342  df-om 7781  df-1st 7899  df-2nd 7900  df-frecs 8167  df-wrecs 8198  df-recs 8272  df-rdg 8311  df-1o 8367  df-2o 8368  df-er 8569  df-map 8688  df-en 8805  df-dom 8806  df-sdom 8807  df-fin 8808  df-sup 9299  df-inf 9300  df-pnf 11112  df-mnf 11113  df-xr 11114  df-ltxr 11115  df-le 11116  df-sub 11308  df-neg 11309  df-div 11734  df-nn 12075  df-2 12137  df-3 12138  df-4 12139  df-5 12140  df-6 12141  df-7 12142  df-8 12143  df-9 12144  df-n0 12335  df-z 12421  df-dec 12539  df-uz 12684  df-rp 12832  df-fz 13341  df-fl 13613  df-mod 13691  df-seq 13823  df-exp 13884  df-cj 14909  df-re 14910  df-im 14911  df-sqrt 15045  df-abs 15046  df-dvds 16063  df-gcd 16301  df-prm 16474  df-struct 16945  df-sets 16962  df-slot 16980  df-ndx 16992  df-base 17010  df-ress 17039  df-plusg 17072  df-mulr 17073  df-starv 17074  df-tset 17078  df-ple 17079  df-ds 17081  df-unif 17082  df-0g 17249  df-mgm 18423  df-sgrp 18472  df-mnd 18483  df-mhm 18527  df-grp 18676  df-minusg 18677  df-sbg 18678  df-mulg 18797  df-subg 18848  df-ghm 18928  df-od 19232  df-cmn 19483  df-mgp 19816  df-ur 19833  df-ring 19880  df-cring 19881  df-rnghom 20054  df-subrg 20127  df-nzr 20635  df-domn 20661  df-cnfld 20704  df-zring 20777  df-zrh 20811  df-chr 20813
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator