Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > domnring | Structured version Visualization version GIF version |
Description: A domain is a ring. (Contributed by Mario Carneiro, 28-Mar-2015.) |
Ref | Expression |
---|---|
domnring | ⊢ (𝑅 ∈ Domn → 𝑅 ∈ Ring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | domnnzr 20566 | . 2 ⊢ (𝑅 ∈ Domn → 𝑅 ∈ NzRing) | |
2 | nzrring 20532 | . 2 ⊢ (𝑅 ∈ NzRing → 𝑅 ∈ Ring) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝑅 ∈ Domn → 𝑅 ∈ Ring) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 Ringcrg 19783 NzRingcnzr 20528 Domncdomn 20551 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-nul 5230 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-ov 7278 df-nzr 20529 df-domn 20555 |
This theorem is referenced by: domneq0 20568 abvn0b 20573 fidomndrnglem 20578 fidomndrng 20579 domnchr 20736 znidomb 20769 deg1ldgdomn 25259 ply1domn 25288 isdomn4 40172 proot1mul 41024 proot1hash 41025 deg1mhm 41032 lidldomn1 45479 uzlidlring 45487 domnmsuppn0 45705 |
Copyright terms: Public domain | W3C validator |