Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > domnring | Structured version Visualization version GIF version |
Description: A domain is a ring. (Contributed by Mario Carneiro, 28-Mar-2015.) |
Ref | Expression |
---|---|
domnring | ⊢ (𝑅 ∈ Domn → 𝑅 ∈ Ring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | domnnzr 20479 | . 2 ⊢ (𝑅 ∈ Domn → 𝑅 ∈ NzRing) | |
2 | nzrring 20445 | . 2 ⊢ (𝑅 ∈ NzRing → 𝑅 ∈ Ring) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝑅 ∈ Domn → 𝑅 ∈ Ring) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Ringcrg 19698 NzRingcnzr 20441 Domncdomn 20464 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-nul 5225 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 df-nzr 20442 df-domn 20468 |
This theorem is referenced by: domneq0 20481 abvn0b 20486 fidomndrnglem 20491 fidomndrng 20492 domnchr 20648 znidomb 20681 deg1ldgdomn 25164 ply1domn 25193 isdomn4 40100 proot1mul 40940 proot1hash 40941 deg1mhm 40948 lidldomn1 45367 uzlidlring 45375 domnmsuppn0 45593 |
Copyright terms: Public domain | W3C validator |