![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > domnring | Structured version Visualization version GIF version |
Description: A domain is a ring. (Contributed by Mario Carneiro, 28-Mar-2015.) |
Ref | Expression |
---|---|
domnring | ⊢ (𝑅 ∈ Domn → 𝑅 ∈ Ring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | domnnzr 19792 | . 2 ⊢ (𝑅 ∈ Domn → 𝑅 ∈ NzRing) | |
2 | nzrring 19758 | . 2 ⊢ (𝑅 ∈ NzRing → 𝑅 ∈ Ring) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝑅 ∈ Domn → 𝑅 ∈ Ring) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2050 Ringcrg 19023 NzRingcnzr 19754 Domncdomn 19777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-ext 2750 ax-nul 5068 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2583 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-ral 3093 df-rex 3094 df-rab 3097 df-v 3417 df-sbc 3684 df-dif 3834 df-un 3836 df-in 3838 df-ss 3845 df-nul 4181 df-if 4352 df-sn 4443 df-pr 4445 df-op 4449 df-uni 4714 df-br 4931 df-iota 6154 df-fv 6198 df-ov 6981 df-nzr 19755 df-domn 19781 |
This theorem is referenced by: domneq0 19794 abvn0b 19799 fidomndrnglem 19803 fidomndrng 19804 domnchr 20384 znidomb 20413 deg1ldgdomn 24394 ply1domn 24423 proot1mul 39195 proot1hash 39196 deg1mhm 39203 lidldomn1 43557 uzlidlring 43565 domnmsuppn0 43784 |
Copyright terms: Public domain | W3C validator |