MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domnring Structured version   Visualization version   GIF version

Theorem domnring 20592
Description: A domain is a ring. (Contributed by Mario Carneiro, 28-Mar-2015.)
Assertion
Ref Expression
domnring (𝑅 ∈ Domn → 𝑅 ∈ Ring)

Proof of Theorem domnring
StepHypRef Expression
1 domnnzr 20591 . 2 (𝑅 ∈ Domn → 𝑅 ∈ NzRing)
2 nzrring 20401 . 2 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
31, 2syl 17 1 (𝑅 ∈ Domn → 𝑅 ∈ Ring)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  Ringcrg 20118  NzRingcnzr 20397  Domncdomn 20577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-nul 5256
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rab 3403  df-v 3446  df-sbc 3751  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-iota 6452  df-fv 6507  df-ov 7372  df-nzr 20398  df-domn 20580
This theorem is referenced by:  domneq0  20593  isdomn4  20601  domneq0r  20609  fidomndrnglem  20657  fidomndrng  20658  abvtrivg  20718  domnchr  21418  znidomb  21447  deg1ldgdomn  25975  deg1mul  25996  ply1domn  26005  r1pid2  26043  domnprodn0  33199  r1peuqusdeg1  35603  deg1pow  42102  domnexpgn0cl  42484  fidomncyc  42496  proot1mul  43156  proot1hash  43157  deg1mhm  43162  lidldomn1  48192  uzlidlring  48196  domnmsuppn0  48330
  Copyright terms: Public domain W3C validator