| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > domnring | Structured version Visualization version GIF version | ||
| Description: A domain is a ring. (Contributed by Mario Carneiro, 28-Mar-2015.) |
| Ref | Expression |
|---|---|
| domnring | ⊢ (𝑅 ∈ Domn → 𝑅 ∈ Ring) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | domnnzr 20666 | . 2 ⊢ (𝑅 ∈ Domn → 𝑅 ∈ NzRing) | |
| 2 | nzrring 20476 | . 2 ⊢ (𝑅 ∈ NzRing → 𝑅 ∈ Ring) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝑅 ∈ Domn → 𝑅 ∈ Ring) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 Ringcrg 20193 NzRingcnzr 20472 Domncdomn 20652 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-nul 5276 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-iota 6484 df-fv 6539 df-ov 7408 df-nzr 20473 df-domn 20655 |
| This theorem is referenced by: domneq0 20668 isdomn4 20676 domneq0r 20684 fidomndrnglem 20732 fidomndrng 20733 abvtrivg 20793 domnchr 21493 znidomb 21522 deg1ldgdomn 26051 deg1mul 26072 ply1domn 26081 r1pid2 26119 domnprodn0 33270 r1peuqusdeg1 35665 deg1pow 42154 domnexpgn0cl 42546 fidomncyc 42558 proot1mul 43218 proot1hash 43219 deg1mhm 43224 lidldomn1 48206 uzlidlring 48210 domnmsuppn0 48344 |
| Copyright terms: Public domain | W3C validator |