MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domnring Structured version   Visualization version   GIF version

Theorem domnring 20667
Description: A domain is a ring. (Contributed by Mario Carneiro, 28-Mar-2015.)
Assertion
Ref Expression
domnring (𝑅 ∈ Domn → 𝑅 ∈ Ring)

Proof of Theorem domnring
StepHypRef Expression
1 domnnzr 20666 . 2 (𝑅 ∈ Domn → 𝑅 ∈ NzRing)
2 nzrring 20476 . 2 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
31, 2syl 17 1 (𝑅 ∈ Domn → 𝑅 ∈ Ring)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  Ringcrg 20193  NzRingcnzr 20472  Domncdomn 20652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-nul 5276
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-iota 6484  df-fv 6539  df-ov 7408  df-nzr 20473  df-domn 20655
This theorem is referenced by:  domneq0  20668  isdomn4  20676  domneq0r  20684  fidomndrnglem  20732  fidomndrng  20733  abvtrivg  20793  domnchr  21493  znidomb  21522  deg1ldgdomn  26051  deg1mul  26072  ply1domn  26081  r1pid2  26119  domnprodn0  33270  r1peuqusdeg1  35665  deg1pow  42154  domnexpgn0cl  42546  fidomncyc  42558  proot1mul  43218  proot1hash  43219  deg1mhm  43224  lidldomn1  48206  uzlidlring  48210  domnmsuppn0  48344
  Copyright terms: Public domain W3C validator