| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > domnring | Structured version Visualization version GIF version | ||
| Description: A domain is a ring. (Contributed by Mario Carneiro, 28-Mar-2015.) |
| Ref | Expression |
|---|---|
| domnring | ⊢ (𝑅 ∈ Domn → 𝑅 ∈ Ring) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | domnnzr 20616 | . 2 ⊢ (𝑅 ∈ Domn → 𝑅 ∈ NzRing) | |
| 2 | nzrring 20426 | . 2 ⊢ (𝑅 ∈ NzRing → 𝑅 ∈ Ring) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝑅 ∈ Domn → 𝑅 ∈ Ring) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 Ringcrg 20146 NzRingcnzr 20422 Domncdomn 20602 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5239 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-iota 6432 df-fv 6484 df-ov 7344 df-nzr 20423 df-domn 20605 |
| This theorem is referenced by: domneq0 20618 isdomn4 20626 domneq0r 20634 fidomndrnglem 20682 fidomndrng 20683 abvtrivg 20743 domnchr 21464 znidomb 21493 deg1ldgdomn 26021 deg1mul 26042 ply1domn 26051 r1pid2 26089 domnprodn0 33234 r1peuqusdeg1 35679 deg1pow 42174 domnexpgn0cl 42556 fidomncyc 42568 proot1mul 43227 proot1hash 43228 deg1mhm 43233 lidldomn1 48262 uzlidlring 48266 domnmsuppn0 48400 |
| Copyright terms: Public domain | W3C validator |