| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > domnring | Structured version Visualization version GIF version | ||
| Description: A domain is a ring. (Contributed by Mario Carneiro, 28-Mar-2015.) |
| Ref | Expression |
|---|---|
| domnring | ⊢ (𝑅 ∈ Domn → 𝑅 ∈ Ring) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | domnnzr 20610 | . 2 ⊢ (𝑅 ∈ Domn → 𝑅 ∈ NzRing) | |
| 2 | nzrring 20420 | . 2 ⊢ (𝑅 ∈ NzRing → 𝑅 ∈ Ring) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝑅 ∈ Domn → 𝑅 ∈ Ring) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Ringcrg 20137 NzRingcnzr 20416 Domncdomn 20596 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5248 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-iota 6442 df-fv 6494 df-ov 7356 df-nzr 20417 df-domn 20599 |
| This theorem is referenced by: domneq0 20612 isdomn4 20620 domneq0r 20628 fidomndrnglem 20676 fidomndrng 20677 abvtrivg 20737 domnchr 21458 znidomb 21487 deg1ldgdomn 26016 deg1mul 26037 ply1domn 26046 r1pid2 26084 domnprodn0 33234 r1peuqusdeg1 35635 deg1pow 42134 domnexpgn0cl 42516 fidomncyc 42528 proot1mul 43187 proot1hash 43188 deg1mhm 43193 lidldomn1 48235 uzlidlring 48239 domnmsuppn0 48373 |
| Copyright terms: Public domain | W3C validator |