MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domnring Structured version   Visualization version   GIF version

Theorem domnring 20623
Description: A domain is a ring. (Contributed by Mario Carneiro, 28-Mar-2015.)
Assertion
Ref Expression
domnring (𝑅 ∈ Domn → 𝑅 ∈ Ring)

Proof of Theorem domnring
StepHypRef Expression
1 domnnzr 20622 . 2 (𝑅 ∈ Domn → 𝑅 ∈ NzRing)
2 nzrring 20432 . 2 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
31, 2syl 17 1 (𝑅 ∈ Domn → 𝑅 ∈ Ring)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  Ringcrg 20149  NzRingcnzr 20428  Domncdomn 20608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-nul 5264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-iota 6467  df-fv 6522  df-ov 7393  df-nzr 20429  df-domn 20611
This theorem is referenced by:  domneq0  20624  isdomn4  20632  domneq0r  20640  fidomndrnglem  20688  fidomndrng  20689  abvtrivg  20749  domnchr  21449  znidomb  21478  deg1ldgdomn  26006  deg1mul  26027  ply1domn  26036  r1pid2  26074  domnprodn0  33233  r1peuqusdeg1  35637  deg1pow  42136  domnexpgn0cl  42518  fidomncyc  42530  proot1mul  43190  proot1hash  43191  deg1mhm  43196  lidldomn1  48223  uzlidlring  48227  domnmsuppn0  48361
  Copyright terms: Public domain W3C validator