![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > domnring | Structured version Visualization version GIF version |
Description: A domain is a ring. (Contributed by Mario Carneiro, 28-Mar-2015.) |
Ref | Expression |
---|---|
domnring | ⊢ (𝑅 ∈ Domn → 𝑅 ∈ Ring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | domnnzr 20728 | . 2 ⊢ (𝑅 ∈ Domn → 𝑅 ∈ NzRing) | |
2 | nzrring 20542 | . 2 ⊢ (𝑅 ∈ NzRing → 𝑅 ∈ Ring) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝑅 ∈ Domn → 𝑅 ∈ Ring) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Ringcrg 20260 NzRingcnzr 20538 Domncdomn 20714 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 df-nzr 20539 df-domn 20717 |
This theorem is referenced by: domneq0 20730 isdomn4 20738 domneq0r 20746 fidomndrnglem 20795 fidomndrng 20796 abvtrivg 20856 domnchr 21570 znidomb 21603 deg1ldgdomn 26153 deg1mul 26174 ply1domn 26183 r1pid2 26221 domnprodn0 33247 r1peuqusdeg1 35611 deg1pow 42098 domnexpgn0cl 42478 fidomncyc 42490 proot1mul 43155 proot1hash 43156 deg1mhm 43161 lidldomn1 47954 uzlidlring 47958 domnmsuppn0 48094 |
Copyright terms: Public domain | W3C validator |