| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > domnring | Structured version Visualization version GIF version | ||
| Description: A domain is a ring. (Contributed by Mario Carneiro, 28-Mar-2015.) |
| Ref | Expression |
|---|---|
| domnring | ⊢ (𝑅 ∈ Domn → 𝑅 ∈ Ring) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | domnnzr 20591 | . 2 ⊢ (𝑅 ∈ Domn → 𝑅 ∈ NzRing) | |
| 2 | nzrring 20401 | . 2 ⊢ (𝑅 ∈ NzRing → 𝑅 ∈ Ring) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝑅 ∈ Domn → 𝑅 ∈ Ring) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Ringcrg 20118 NzRingcnzr 20397 Domncdomn 20577 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5256 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-iota 6452 df-fv 6507 df-ov 7372 df-nzr 20398 df-domn 20580 |
| This theorem is referenced by: domneq0 20593 isdomn4 20601 domneq0r 20609 fidomndrnglem 20657 fidomndrng 20658 abvtrivg 20718 domnchr 21418 znidomb 21447 deg1ldgdomn 25975 deg1mul 25996 ply1domn 26005 r1pid2 26043 domnprodn0 33199 r1peuqusdeg1 35603 deg1pow 42102 domnexpgn0cl 42484 fidomncyc 42496 proot1mul 43156 proot1hash 43157 deg1mhm 43162 lidldomn1 48192 uzlidlring 48196 domnmsuppn0 48330 |
| Copyright terms: Public domain | W3C validator |