MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domnring Structured version   Visualization version   GIF version

Theorem domnring 20631
Description: A domain is a ring. (Contributed by Mario Carneiro, 28-Mar-2015.)
Assertion
Ref Expression
domnring (𝑅 ∈ Domn → 𝑅 ∈ Ring)

Proof of Theorem domnring
StepHypRef Expression
1 domnnzr 20630 . 2 (𝑅 ∈ Domn → 𝑅 ∈ NzRing)
2 nzrring 20440 . 2 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
31, 2syl 17 1 (𝑅 ∈ Domn → 𝑅 ∈ Ring)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2113  Ringcrg 20159  NzRingcnzr 20436  Domncdomn 20616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-nul 5248
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-iota 6445  df-fv 6497  df-ov 7358  df-nzr 20437  df-domn 20619
This theorem is referenced by:  domneq0  20632  isdomn4  20640  domneq0r  20648  fidomndrnglem  20696  fidomndrng  20697  abvtrivg  20757  domnchr  21478  znidomb  21507  deg1ldgdomn  26046  deg1mul  26067  ply1domn  26076  r1pid2  26114  domnprodn0  33285  deg1prod  33592  r1peuqusdeg1  35759  deg1pow  42307  domnexpgn0cl  42693  fidomncyc  42705  proot1mul  43351  proot1hash  43352  deg1mhm  43357  lidldomn1  48393  uzlidlring  48397  domnmsuppn0  48531
  Copyright terms: Public domain W3C validator