![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > deg1ldgdomn | Structured version Visualization version GIF version |
Description: A nonzero univariate polynomial over a domain always has a nonzero-divisor leading coefficient. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
Ref | Expression |
---|---|
deg1z.d | ⊢ 𝐷 = ( deg1 ‘𝑅) |
deg1z.p | ⊢ 𝑃 = (Poly1‘𝑅) |
deg1z.z | ⊢ 0 = (0g‘𝑃) |
deg1nn0cl.b | ⊢ 𝐵 = (Base‘𝑃) |
deg1ldgdomn.e | ⊢ 𝐸 = (RLReg‘𝑅) |
deg1ldgdomn.a | ⊢ 𝐴 = (coe1‘𝐹) |
Ref | Expression |
---|---|
deg1ldgdomn | ⊢ ((𝑅 ∈ Domn ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → (𝐴‘(𝐷‘𝐹)) ∈ 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1136 | . 2 ⊢ ((𝑅 ∈ Domn ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → 𝑅 ∈ Domn) | |
2 | deg1ldgdomn.a | . . . . 5 ⊢ 𝐴 = (coe1‘𝐹) | |
3 | deg1nn0cl.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑃) | |
4 | deg1z.p | . . . . 5 ⊢ 𝑃 = (Poly1‘𝑅) | |
5 | eqid 2731 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
6 | 2, 3, 4, 5 | coe1f 21664 | . . . 4 ⊢ (𝐹 ∈ 𝐵 → 𝐴:ℕ0⟶(Base‘𝑅)) |
7 | 6 | 3ad2ant2 1134 | . . 3 ⊢ ((𝑅 ∈ Domn ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → 𝐴:ℕ0⟶(Base‘𝑅)) |
8 | domnring 20848 | . . . 4 ⊢ (𝑅 ∈ Domn → 𝑅 ∈ Ring) | |
9 | deg1z.d | . . . . 5 ⊢ 𝐷 = ( deg1 ‘𝑅) | |
10 | deg1z.z | . . . . 5 ⊢ 0 = (0g‘𝑃) | |
11 | 9, 4, 10, 3 | deg1nn0cl 25535 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → (𝐷‘𝐹) ∈ ℕ0) |
12 | 8, 11 | syl3an1 1163 | . . 3 ⊢ ((𝑅 ∈ Domn ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → (𝐷‘𝐹) ∈ ℕ0) |
13 | 7, 12 | ffvelcdmd 7072 | . 2 ⊢ ((𝑅 ∈ Domn ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → (𝐴‘(𝐷‘𝐹)) ∈ (Base‘𝑅)) |
14 | eqid 2731 | . . . 4 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
15 | 9, 4, 10, 3, 14, 2 | deg1ldg 25539 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → (𝐴‘(𝐷‘𝐹)) ≠ (0g‘𝑅)) |
16 | 8, 15 | syl3an1 1163 | . 2 ⊢ ((𝑅 ∈ Domn ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → (𝐴‘(𝐷‘𝐹)) ≠ (0g‘𝑅)) |
17 | deg1ldgdomn.e | . . 3 ⊢ 𝐸 = (RLReg‘𝑅) | |
18 | 5, 17, 14 | domnrrg 20852 | . 2 ⊢ ((𝑅 ∈ Domn ∧ (𝐴‘(𝐷‘𝐹)) ∈ (Base‘𝑅) ∧ (𝐴‘(𝐷‘𝐹)) ≠ (0g‘𝑅)) → (𝐴‘(𝐷‘𝐹)) ∈ 𝐸) |
19 | 1, 13, 16, 18 | syl3anc 1371 | 1 ⊢ ((𝑅 ∈ Domn ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → (𝐴‘(𝐷‘𝐹)) ∈ 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ≠ wne 2939 ⟶wf 6528 ‘cfv 6532 ℕ0cn0 12454 Basecbs 17126 0gc0g 17367 Ringcrg 20014 RLRegcrlreg 20831 Domncdomn 20832 Poly1cpl1 21630 coe1cco1 21631 deg1 cdg1 25498 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7708 ax-cnex 11148 ax-resscn 11149 ax-1cn 11150 ax-icn 11151 ax-addcl 11152 ax-addrcl 11153 ax-mulcl 11154 ax-mulrcl 11155 ax-mulcom 11156 ax-addass 11157 ax-mulass 11158 ax-distr 11159 ax-i2m1 11160 ax-1ne0 11161 ax-1rid 11162 ax-rnegex 11163 ax-rrecex 11164 ax-cnre 11165 ax-pre-lttri 11166 ax-pre-lttrn 11167 ax-pre-ltadd 11168 ax-pre-mulgt0 11169 ax-addf 11171 ax-mulf 11172 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-tp 4627 df-op 4629 df-uni 4902 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-se 5625 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6289 df-ord 6356 df-on 6357 df-lim 6358 df-suc 6359 df-iota 6484 df-fun 6534 df-fn 6535 df-f 6536 df-f1 6537 df-fo 6538 df-f1o 6539 df-fv 6540 df-isom 6541 df-riota 7349 df-ov 7396 df-oprab 7397 df-mpo 7398 df-of 7653 df-om 7839 df-1st 7957 df-2nd 7958 df-supp 8129 df-frecs 8248 df-wrecs 8279 df-recs 8353 df-rdg 8392 df-1o 8448 df-er 8686 df-map 8805 df-ixp 8875 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-fsupp 9345 df-sup 9419 df-oi 9487 df-card 9916 df-pnf 11232 df-mnf 11233 df-xr 11234 df-ltxr 11235 df-le 11236 df-sub 11428 df-neg 11429 df-nn 12195 df-2 12257 df-3 12258 df-4 12259 df-5 12260 df-6 12261 df-7 12262 df-8 12263 df-9 12264 df-n0 12455 df-z 12541 df-dec 12660 df-uz 12805 df-fz 13467 df-fzo 13610 df-seq 13949 df-hash 14273 df-struct 17062 df-sets 17079 df-slot 17097 df-ndx 17109 df-base 17127 df-ress 17156 df-plusg 17192 df-mulr 17193 df-starv 17194 df-sca 17195 df-vsca 17196 df-ip 17197 df-tset 17198 df-ple 17199 df-ds 17201 df-unif 17202 df-hom 17203 df-cco 17204 df-0g 17369 df-gsum 17370 df-prds 17375 df-pws 17377 df-mgm 18543 df-sgrp 18592 df-mnd 18603 df-submnd 18648 df-grp 18797 df-minusg 18798 df-mulg 18923 df-subg 18975 df-cntz 19147 df-cmn 19614 df-abl 19615 df-mgp 19947 df-ur 19964 df-ring 20016 df-cring 20017 df-nzr 20242 df-rlreg 20835 df-domn 20836 df-cnfld 20879 df-psr 21393 df-mpl 21395 df-opsr 21397 df-psr1 21633 df-ply1 21635 df-coe1 21636 df-mdeg 25499 df-deg1 25500 |
This theorem is referenced by: ply1domn 25570 deg1mhm 41720 |
Copyright terms: Public domain | W3C validator |