MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fidomndrnglem Structured version   Visualization version   GIF version

Theorem fidomndrnglem 20689
Description: Lemma for fidomndrng 20690. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypotheses
Ref Expression
fidomndrng.b 𝐵 = (Base‘𝑅)
fidomndrng.z 0 = (0g𝑅)
fidomndrng.o 1 = (1r𝑅)
fidomndrng.d = (∥r𝑅)
fidomndrng.t · = (.r𝑅)
fidomndrng.r (𝜑𝑅 ∈ Domn)
fidomndrng.x (𝜑𝐵 ∈ Fin)
fidomndrng.a (𝜑𝐴 ∈ (𝐵 ∖ { 0 }))
fidomndrng.f 𝐹 = (𝑥𝐵 ↦ (𝑥 · 𝐴))
Assertion
Ref Expression
fidomndrnglem (𝜑𝐴 1 )
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅   𝑥, ·
Allowed substitution hints:   𝜑(𝑥)   (𝑥)   1 (𝑥)   𝐹(𝑥)   0 (𝑥)

Proof of Theorem fidomndrnglem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fidomndrng.a . . . 4 (𝜑𝐴 ∈ (𝐵 ∖ { 0 }))
21eldifad 3910 . . 3 (𝜑𝐴𝐵)
3 eldifsni 4741 . . . . . . . . . . . 12 (𝐴 ∈ (𝐵 ∖ { 0 }) → 𝐴0 )
41, 3syl 17 . . . . . . . . . . 11 (𝜑𝐴0 )
54ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑦𝐵) ∧ (𝐹𝑦) = 0 ) → 𝐴0 )
6 oveq1 7359 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → (𝑥 · 𝐴) = (𝑦 · 𝐴))
7 fidomndrng.f . . . . . . . . . . . . . . . . 17 𝐹 = (𝑥𝐵 ↦ (𝑥 · 𝐴))
8 ovex 7385 . . . . . . . . . . . . . . . . 17 (𝑦 · 𝐴) ∈ V
96, 7, 8fvmpt 6935 . . . . . . . . . . . . . . . 16 (𝑦𝐵 → (𝐹𝑦) = (𝑦 · 𝐴))
109adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑦𝐵) → (𝐹𝑦) = (𝑦 · 𝐴))
1110eqeq1d 2735 . . . . . . . . . . . . . 14 ((𝜑𝑦𝐵) → ((𝐹𝑦) = 0 ↔ (𝑦 · 𝐴) = 0 ))
12 fidomndrng.r . . . . . . . . . . . . . . . 16 (𝜑𝑅 ∈ Domn)
1312adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑦𝐵) → 𝑅 ∈ Domn)
14 simpr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑦𝐵) → 𝑦𝐵)
152adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑦𝐵) → 𝐴𝐵)
16 fidomndrng.b . . . . . . . . . . . . . . . 16 𝐵 = (Base‘𝑅)
17 fidomndrng.t . . . . . . . . . . . . . . . 16 · = (.r𝑅)
18 fidomndrng.z . . . . . . . . . . . . . . . 16 0 = (0g𝑅)
1916, 17, 18domneq0 20625 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Domn ∧ 𝑦𝐵𝐴𝐵) → ((𝑦 · 𝐴) = 0 ↔ (𝑦 = 0𝐴 = 0 )))
2013, 14, 15, 19syl3anc 1373 . . . . . . . . . . . . . 14 ((𝜑𝑦𝐵) → ((𝑦 · 𝐴) = 0 ↔ (𝑦 = 0𝐴 = 0 )))
2111, 20bitrd 279 . . . . . . . . . . . . 13 ((𝜑𝑦𝐵) → ((𝐹𝑦) = 0 ↔ (𝑦 = 0𝐴 = 0 )))
2221biimpa 476 . . . . . . . . . . . 12 (((𝜑𝑦𝐵) ∧ (𝐹𝑦) = 0 ) → (𝑦 = 0𝐴 = 0 ))
2322ord 864 . . . . . . . . . . 11 (((𝜑𝑦𝐵) ∧ (𝐹𝑦) = 0 ) → (¬ 𝑦 = 0𝐴 = 0 ))
2423necon1ad 2946 . . . . . . . . . 10 (((𝜑𝑦𝐵) ∧ (𝐹𝑦) = 0 ) → (𝐴0𝑦 = 0 ))
255, 24mpd 15 . . . . . . . . 9 (((𝜑𝑦𝐵) ∧ (𝐹𝑦) = 0 ) → 𝑦 = 0 )
2625ex 412 . . . . . . . 8 ((𝜑𝑦𝐵) → ((𝐹𝑦) = 0𝑦 = 0 ))
2726ralrimiva 3125 . . . . . . 7 (𝜑 → ∀𝑦𝐵 ((𝐹𝑦) = 0𝑦 = 0 ))
28 domnring 20624 . . . . . . . . . . 11 (𝑅 ∈ Domn → 𝑅 ∈ Ring)
2912, 28syl 17 . . . . . . . . . 10 (𝜑𝑅 ∈ Ring)
3016, 17ringrghm 20233 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐴𝐵) → (𝑥𝐵 ↦ (𝑥 · 𝐴)) ∈ (𝑅 GrpHom 𝑅))
3129, 2, 30syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑥𝐵 ↦ (𝑥 · 𝐴)) ∈ (𝑅 GrpHom 𝑅))
327, 31eqeltrid 2837 . . . . . . . 8 (𝜑𝐹 ∈ (𝑅 GrpHom 𝑅))
3316, 16, 18, 18ghmf1 19160 . . . . . . . 8 (𝐹 ∈ (𝑅 GrpHom 𝑅) → (𝐹:𝐵1-1𝐵 ↔ ∀𝑦𝐵 ((𝐹𝑦) = 0𝑦 = 0 )))
3432, 33syl 17 . . . . . . 7 (𝜑 → (𝐹:𝐵1-1𝐵 ↔ ∀𝑦𝐵 ((𝐹𝑦) = 0𝑦 = 0 )))
3527, 34mpbird 257 . . . . . 6 (𝜑𝐹:𝐵1-1𝐵)
36 fidomndrng.x . . . . . . . 8 (𝜑𝐵 ∈ Fin)
37 enreffi 9099 . . . . . . . 8 (𝐵 ∈ Fin → 𝐵𝐵)
3836, 37syl 17 . . . . . . 7 (𝜑𝐵𝐵)
39 f1finf1o 9164 . . . . . . 7 ((𝐵𝐵𝐵 ∈ Fin) → (𝐹:𝐵1-1𝐵𝐹:𝐵1-1-onto𝐵))
4038, 36, 39syl2anc 584 . . . . . 6 (𝜑 → (𝐹:𝐵1-1𝐵𝐹:𝐵1-1-onto𝐵))
4135, 40mpbid 232 . . . . 5 (𝜑𝐹:𝐵1-1-onto𝐵)
42 f1ocnv 6780 . . . . 5 (𝐹:𝐵1-1-onto𝐵𝐹:𝐵1-1-onto𝐵)
43 f1of 6768 . . . . 5 (𝐹:𝐵1-1-onto𝐵𝐹:𝐵𝐵)
4441, 42, 433syl 18 . . . 4 (𝜑𝐹:𝐵𝐵)
45 fidomndrng.o . . . . . 6 1 = (1r𝑅)
4616, 45ringidcl 20185 . . . . 5 (𝑅 ∈ Ring → 1𝐵)
4729, 46syl 17 . . . 4 (𝜑1𝐵)
4844, 47ffvelcdmd 7024 . . 3 (𝜑 → (𝐹1 ) ∈ 𝐵)
49 fidomndrng.d . . . 4 = (∥r𝑅)
5016, 49, 17dvdsrmul 20284 . . 3 ((𝐴𝐵 ∧ (𝐹1 ) ∈ 𝐵) → 𝐴 ((𝐹1 ) · 𝐴))
512, 48, 50syl2anc 584 . 2 (𝜑𝐴 ((𝐹1 ) · 𝐴))
52 oveq1 7359 . . . . 5 (𝑦 = (𝐹1 ) → (𝑦 · 𝐴) = ((𝐹1 ) · 𝐴))
536cbvmptv 5197 . . . . . 6 (𝑥𝐵 ↦ (𝑥 · 𝐴)) = (𝑦𝐵 ↦ (𝑦 · 𝐴))
547, 53eqtri 2756 . . . . 5 𝐹 = (𝑦𝐵 ↦ (𝑦 · 𝐴))
55 ovex 7385 . . . . 5 ((𝐹1 ) · 𝐴) ∈ V
5652, 54, 55fvmpt 6935 . . . 4 ((𝐹1 ) ∈ 𝐵 → (𝐹‘(𝐹1 )) = ((𝐹1 ) · 𝐴))
5748, 56syl 17 . . 3 (𝜑 → (𝐹‘(𝐹1 )) = ((𝐹1 ) · 𝐴))
58 f1ocnvfv2 7217 . . . 4 ((𝐹:𝐵1-1-onto𝐵1𝐵) → (𝐹‘(𝐹1 )) = 1 )
5941, 47, 58syl2anc 584 . . 3 (𝜑 → (𝐹‘(𝐹1 )) = 1 )
6057, 59eqtr3d 2770 . 2 (𝜑 → ((𝐹1 ) · 𝐴) = 1 )
6151, 60breqtrd 5119 1 (𝜑𝐴 1 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2113  wne 2929  wral 3048  cdif 3895  {csn 4575   class class class wbr 5093  cmpt 5174  ccnv 5618  wf 6482  1-1wf1 6483  1-1-ontowf1o 6485  cfv 6486  (class class class)co 7352  cen 8872  Fincfn 8875  Basecbs 17122  .rcmulr 17164  0gc0g 17345   GrpHom cghm 19126  1rcur 20101  Ringcrg 20153  rcdsr 20274  Domncdomn 20609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-plusg 17176  df-0g 17347  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-grp 18851  df-minusg 18852  df-sbg 18853  df-ghm 19127  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-dvdsr 20277  df-nzr 20430  df-domn 20612
This theorem is referenced by:  fidomndrng  20690
  Copyright terms: Public domain W3C validator