MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fidomndrnglem Structured version   Visualization version   GIF version

Theorem fidomndrnglem 20576
Description: Lemma for fidomndrng 20577. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypotheses
Ref Expression
fidomndrng.b 𝐵 = (Base‘𝑅)
fidomndrng.z 0 = (0g𝑅)
fidomndrng.o 1 = (1r𝑅)
fidomndrng.d = (∥r𝑅)
fidomndrng.t · = (.r𝑅)
fidomndrng.r (𝜑𝑅 ∈ Domn)
fidomndrng.x (𝜑𝐵 ∈ Fin)
fidomndrng.a (𝜑𝐴 ∈ (𝐵 ∖ { 0 }))
fidomndrng.f 𝐹 = (𝑥𝐵 ↦ (𝑥 · 𝐴))
Assertion
Ref Expression
fidomndrnglem (𝜑𝐴 1 )
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅   𝑥, ·
Allowed substitution hints:   𝜑(𝑥)   (𝑥)   1 (𝑥)   𝐹(𝑥)   0 (𝑥)

Proof of Theorem fidomndrnglem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fidomndrng.a . . . 4 (𝜑𝐴 ∈ (𝐵 ∖ { 0 }))
21eldifad 3904 . . 3 (𝜑𝐴𝐵)
3 eldifsni 4729 . . . . . . . . . . . 12 (𝐴 ∈ (𝐵 ∖ { 0 }) → 𝐴0 )
41, 3syl 17 . . . . . . . . . . 11 (𝜑𝐴0 )
54ad2antrr 723 . . . . . . . . . 10 (((𝜑𝑦𝐵) ∧ (𝐹𝑦) = 0 ) → 𝐴0 )
6 oveq1 7278 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → (𝑥 · 𝐴) = (𝑦 · 𝐴))
7 fidomndrng.f . . . . . . . . . . . . . . . . 17 𝐹 = (𝑥𝐵 ↦ (𝑥 · 𝐴))
8 ovex 7304 . . . . . . . . . . . . . . . . 17 (𝑦 · 𝐴) ∈ V
96, 7, 8fvmpt 6872 . . . . . . . . . . . . . . . 16 (𝑦𝐵 → (𝐹𝑦) = (𝑦 · 𝐴))
109adantl 482 . . . . . . . . . . . . . . 15 ((𝜑𝑦𝐵) → (𝐹𝑦) = (𝑦 · 𝐴))
1110eqeq1d 2742 . . . . . . . . . . . . . 14 ((𝜑𝑦𝐵) → ((𝐹𝑦) = 0 ↔ (𝑦 · 𝐴) = 0 ))
12 fidomndrng.r . . . . . . . . . . . . . . . 16 (𝜑𝑅 ∈ Domn)
1312adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑦𝐵) → 𝑅 ∈ Domn)
14 simpr 485 . . . . . . . . . . . . . . 15 ((𝜑𝑦𝐵) → 𝑦𝐵)
152adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑦𝐵) → 𝐴𝐵)
16 fidomndrng.b . . . . . . . . . . . . . . . 16 𝐵 = (Base‘𝑅)
17 fidomndrng.t . . . . . . . . . . . . . . . 16 · = (.r𝑅)
18 fidomndrng.z . . . . . . . . . . . . . . . 16 0 = (0g𝑅)
1916, 17, 18domneq0 20566 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Domn ∧ 𝑦𝐵𝐴𝐵) → ((𝑦 · 𝐴) = 0 ↔ (𝑦 = 0𝐴 = 0 )))
2013, 14, 15, 19syl3anc 1370 . . . . . . . . . . . . . 14 ((𝜑𝑦𝐵) → ((𝑦 · 𝐴) = 0 ↔ (𝑦 = 0𝐴 = 0 )))
2111, 20bitrd 278 . . . . . . . . . . . . 13 ((𝜑𝑦𝐵) → ((𝐹𝑦) = 0 ↔ (𝑦 = 0𝐴 = 0 )))
2221biimpa 477 . . . . . . . . . . . 12 (((𝜑𝑦𝐵) ∧ (𝐹𝑦) = 0 ) → (𝑦 = 0𝐴 = 0 ))
2322ord 861 . . . . . . . . . . 11 (((𝜑𝑦𝐵) ∧ (𝐹𝑦) = 0 ) → (¬ 𝑦 = 0𝐴 = 0 ))
2423necon1ad 2962 . . . . . . . . . 10 (((𝜑𝑦𝐵) ∧ (𝐹𝑦) = 0 ) → (𝐴0𝑦 = 0 ))
255, 24mpd 15 . . . . . . . . 9 (((𝜑𝑦𝐵) ∧ (𝐹𝑦) = 0 ) → 𝑦 = 0 )
2625ex 413 . . . . . . . 8 ((𝜑𝑦𝐵) → ((𝐹𝑦) = 0𝑦 = 0 ))
2726ralrimiva 3110 . . . . . . 7 (𝜑 → ∀𝑦𝐵 ((𝐹𝑦) = 0𝑦 = 0 ))
28 domnring 20565 . . . . . . . . . . 11 (𝑅 ∈ Domn → 𝑅 ∈ Ring)
2912, 28syl 17 . . . . . . . . . 10 (𝜑𝑅 ∈ Ring)
3016, 17ringrghm 19842 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐴𝐵) → (𝑥𝐵 ↦ (𝑥 · 𝐴)) ∈ (𝑅 GrpHom 𝑅))
3129, 2, 30syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑥𝐵 ↦ (𝑥 · 𝐴)) ∈ (𝑅 GrpHom 𝑅))
327, 31eqeltrid 2845 . . . . . . . 8 (𝜑𝐹 ∈ (𝑅 GrpHom 𝑅))
3316, 16, 18, 18ghmf1 18861 . . . . . . . 8 (𝐹 ∈ (𝑅 GrpHom 𝑅) → (𝐹:𝐵1-1𝐵 ↔ ∀𝑦𝐵 ((𝐹𝑦) = 0𝑦 = 0 )))
3432, 33syl 17 . . . . . . 7 (𝜑 → (𝐹:𝐵1-1𝐵 ↔ ∀𝑦𝐵 ((𝐹𝑦) = 0𝑦 = 0 )))
3527, 34mpbird 256 . . . . . 6 (𝜑𝐹:𝐵1-1𝐵)
36 fidomndrng.x . . . . . . . 8 (𝜑𝐵 ∈ Fin)
37 enrefg 8755 . . . . . . . 8 (𝐵 ∈ Fin → 𝐵𝐵)
3836, 37syl 17 . . . . . . 7 (𝜑𝐵𝐵)
39 f1finf1o 9024 . . . . . . 7 ((𝐵𝐵𝐵 ∈ Fin) → (𝐹:𝐵1-1𝐵𝐹:𝐵1-1-onto𝐵))
4038, 36, 39syl2anc 584 . . . . . 6 (𝜑 → (𝐹:𝐵1-1𝐵𝐹:𝐵1-1-onto𝐵))
4135, 40mpbid 231 . . . . 5 (𝜑𝐹:𝐵1-1-onto𝐵)
42 f1ocnv 6726 . . . . 5 (𝐹:𝐵1-1-onto𝐵𝐹:𝐵1-1-onto𝐵)
43 f1of 6714 . . . . 5 (𝐹:𝐵1-1-onto𝐵𝐹:𝐵𝐵)
4441, 42, 433syl 18 . . . 4 (𝜑𝐹:𝐵𝐵)
45 fidomndrng.o . . . . . 6 1 = (1r𝑅)
4616, 45ringidcl 19805 . . . . 5 (𝑅 ∈ Ring → 1𝐵)
4729, 46syl 17 . . . 4 (𝜑1𝐵)
4844, 47ffvelrnd 6959 . . 3 (𝜑 → (𝐹1 ) ∈ 𝐵)
49 fidomndrng.d . . . 4 = (∥r𝑅)
5016, 49, 17dvdsrmul 19888 . . 3 ((𝐴𝐵 ∧ (𝐹1 ) ∈ 𝐵) → 𝐴 ((𝐹1 ) · 𝐴))
512, 48, 50syl2anc 584 . 2 (𝜑𝐴 ((𝐹1 ) · 𝐴))
52 oveq1 7278 . . . . 5 (𝑦 = (𝐹1 ) → (𝑦 · 𝐴) = ((𝐹1 ) · 𝐴))
536cbvmptv 5192 . . . . . 6 (𝑥𝐵 ↦ (𝑥 · 𝐴)) = (𝑦𝐵 ↦ (𝑦 · 𝐴))
547, 53eqtri 2768 . . . . 5 𝐹 = (𝑦𝐵 ↦ (𝑦 · 𝐴))
55 ovex 7304 . . . . 5 ((𝐹1 ) · 𝐴) ∈ V
5652, 54, 55fvmpt 6872 . . . 4 ((𝐹1 ) ∈ 𝐵 → (𝐹‘(𝐹1 )) = ((𝐹1 ) · 𝐴))
5748, 56syl 17 . . 3 (𝜑 → (𝐹‘(𝐹1 )) = ((𝐹1 ) · 𝐴))
58 f1ocnvfv2 7146 . . . 4 ((𝐹:𝐵1-1-onto𝐵1𝐵) → (𝐹‘(𝐹1 )) = 1 )
5941, 47, 58syl2anc 584 . . 3 (𝜑 → (𝐹‘(𝐹1 )) = 1 )
6057, 59eqtr3d 2782 . 2 (𝜑 → ((𝐹1 ) · 𝐴) = 1 )
6151, 60breqtrd 5105 1 (𝜑𝐴 1 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844   = wceq 1542  wcel 2110  wne 2945  wral 3066  cdif 3889  {csn 4567   class class class wbr 5079  cmpt 5162  ccnv 5589  wf 6428  1-1wf1 6429  1-1-ontowf1o 6431  cfv 6432  (class class class)co 7271  cen 8713  Fincfn 8716  Basecbs 16910  .rcmulr 16961  0gc0g 17148   GrpHom cghm 18829  1rcur 19735  Ringcrg 19781  rcdsr 19878  Domncdomn 20549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-om 7707  df-1st 7824  df-2nd 7825  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-1o 8288  df-er 8481  df-map 8600  df-en 8717  df-dom 8718  df-sdom 8719  df-fin 8720  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-sets 16863  df-slot 16881  df-ndx 16893  df-base 16911  df-plusg 16973  df-0g 17150  df-mgm 18324  df-sgrp 18373  df-mnd 18384  df-grp 18578  df-minusg 18579  df-sbg 18580  df-ghm 18830  df-mgp 19719  df-ur 19736  df-ring 19783  df-dvdsr 19881  df-nzr 20527  df-domn 20553
This theorem is referenced by:  fidomndrng  20577
  Copyright terms: Public domain W3C validator