MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fidomndrnglem Structured version   Visualization version   GIF version

Theorem fidomndrnglem 20685
Description: Lemma for fidomndrng 20686. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypotheses
Ref Expression
fidomndrng.b 𝐵 = (Base‘𝑅)
fidomndrng.z 0 = (0g𝑅)
fidomndrng.o 1 = (1r𝑅)
fidomndrng.d = (∥r𝑅)
fidomndrng.t · = (.r𝑅)
fidomndrng.r (𝜑𝑅 ∈ Domn)
fidomndrng.x (𝜑𝐵 ∈ Fin)
fidomndrng.a (𝜑𝐴 ∈ (𝐵 ∖ { 0 }))
fidomndrng.f 𝐹 = (𝑥𝐵 ↦ (𝑥 · 𝐴))
Assertion
Ref Expression
fidomndrnglem (𝜑𝐴 1 )
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅   𝑥, ·
Allowed substitution hints:   𝜑(𝑥)   (𝑥)   1 (𝑥)   𝐹(𝑥)   0 (𝑥)

Proof of Theorem fidomndrnglem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fidomndrng.a . . . 4 (𝜑𝐴 ∈ (𝐵 ∖ { 0 }))
21eldifad 3914 . . 3 (𝜑𝐴𝐵)
3 eldifsni 4742 . . . . . . . . . . . 12 (𝐴 ∈ (𝐵 ∖ { 0 }) → 𝐴0 )
41, 3syl 17 . . . . . . . . . . 11 (𝜑𝐴0 )
54ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑦𝐵) ∧ (𝐹𝑦) = 0 ) → 𝐴0 )
6 oveq1 7353 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → (𝑥 · 𝐴) = (𝑦 · 𝐴))
7 fidomndrng.f . . . . . . . . . . . . . . . . 17 𝐹 = (𝑥𝐵 ↦ (𝑥 · 𝐴))
8 ovex 7379 . . . . . . . . . . . . . . . . 17 (𝑦 · 𝐴) ∈ V
96, 7, 8fvmpt 6929 . . . . . . . . . . . . . . . 16 (𝑦𝐵 → (𝐹𝑦) = (𝑦 · 𝐴))
109adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑦𝐵) → (𝐹𝑦) = (𝑦 · 𝐴))
1110eqeq1d 2733 . . . . . . . . . . . . . 14 ((𝜑𝑦𝐵) → ((𝐹𝑦) = 0 ↔ (𝑦 · 𝐴) = 0 ))
12 fidomndrng.r . . . . . . . . . . . . . . . 16 (𝜑𝑅 ∈ Domn)
1312adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑦𝐵) → 𝑅 ∈ Domn)
14 simpr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑦𝐵) → 𝑦𝐵)
152adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑦𝐵) → 𝐴𝐵)
16 fidomndrng.b . . . . . . . . . . . . . . . 16 𝐵 = (Base‘𝑅)
17 fidomndrng.t . . . . . . . . . . . . . . . 16 · = (.r𝑅)
18 fidomndrng.z . . . . . . . . . . . . . . . 16 0 = (0g𝑅)
1916, 17, 18domneq0 20621 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Domn ∧ 𝑦𝐵𝐴𝐵) → ((𝑦 · 𝐴) = 0 ↔ (𝑦 = 0𝐴 = 0 )))
2013, 14, 15, 19syl3anc 1373 . . . . . . . . . . . . . 14 ((𝜑𝑦𝐵) → ((𝑦 · 𝐴) = 0 ↔ (𝑦 = 0𝐴 = 0 )))
2111, 20bitrd 279 . . . . . . . . . . . . 13 ((𝜑𝑦𝐵) → ((𝐹𝑦) = 0 ↔ (𝑦 = 0𝐴 = 0 )))
2221biimpa 476 . . . . . . . . . . . 12 (((𝜑𝑦𝐵) ∧ (𝐹𝑦) = 0 ) → (𝑦 = 0𝐴 = 0 ))
2322ord 864 . . . . . . . . . . 11 (((𝜑𝑦𝐵) ∧ (𝐹𝑦) = 0 ) → (¬ 𝑦 = 0𝐴 = 0 ))
2423necon1ad 2945 . . . . . . . . . 10 (((𝜑𝑦𝐵) ∧ (𝐹𝑦) = 0 ) → (𝐴0𝑦 = 0 ))
255, 24mpd 15 . . . . . . . . 9 (((𝜑𝑦𝐵) ∧ (𝐹𝑦) = 0 ) → 𝑦 = 0 )
2625ex 412 . . . . . . . 8 ((𝜑𝑦𝐵) → ((𝐹𝑦) = 0𝑦 = 0 ))
2726ralrimiva 3124 . . . . . . 7 (𝜑 → ∀𝑦𝐵 ((𝐹𝑦) = 0𝑦 = 0 ))
28 domnring 20620 . . . . . . . . . . 11 (𝑅 ∈ Domn → 𝑅 ∈ Ring)
2912, 28syl 17 . . . . . . . . . 10 (𝜑𝑅 ∈ Ring)
3016, 17ringrghm 20229 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐴𝐵) → (𝑥𝐵 ↦ (𝑥 · 𝐴)) ∈ (𝑅 GrpHom 𝑅))
3129, 2, 30syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑥𝐵 ↦ (𝑥 · 𝐴)) ∈ (𝑅 GrpHom 𝑅))
327, 31eqeltrid 2835 . . . . . . . 8 (𝜑𝐹 ∈ (𝑅 GrpHom 𝑅))
3316, 16, 18, 18ghmf1 19156 . . . . . . . 8 (𝐹 ∈ (𝑅 GrpHom 𝑅) → (𝐹:𝐵1-1𝐵 ↔ ∀𝑦𝐵 ((𝐹𝑦) = 0𝑦 = 0 )))
3432, 33syl 17 . . . . . . 7 (𝜑 → (𝐹:𝐵1-1𝐵 ↔ ∀𝑦𝐵 ((𝐹𝑦) = 0𝑦 = 0 )))
3527, 34mpbird 257 . . . . . 6 (𝜑𝐹:𝐵1-1𝐵)
36 fidomndrng.x . . . . . . . 8 (𝜑𝐵 ∈ Fin)
37 enreffi 9092 . . . . . . . 8 (𝐵 ∈ Fin → 𝐵𝐵)
3836, 37syl 17 . . . . . . 7 (𝜑𝐵𝐵)
39 f1finf1o 9157 . . . . . . 7 ((𝐵𝐵𝐵 ∈ Fin) → (𝐹:𝐵1-1𝐵𝐹:𝐵1-1-onto𝐵))
4038, 36, 39syl2anc 584 . . . . . 6 (𝜑 → (𝐹:𝐵1-1𝐵𝐹:𝐵1-1-onto𝐵))
4135, 40mpbid 232 . . . . 5 (𝜑𝐹:𝐵1-1-onto𝐵)
42 f1ocnv 6775 . . . . 5 (𝐹:𝐵1-1-onto𝐵𝐹:𝐵1-1-onto𝐵)
43 f1of 6763 . . . . 5 (𝐹:𝐵1-1-onto𝐵𝐹:𝐵𝐵)
4441, 42, 433syl 18 . . . 4 (𝜑𝐹:𝐵𝐵)
45 fidomndrng.o . . . . . 6 1 = (1r𝑅)
4616, 45ringidcl 20181 . . . . 5 (𝑅 ∈ Ring → 1𝐵)
4729, 46syl 17 . . . 4 (𝜑1𝐵)
4844, 47ffvelcdmd 7018 . . 3 (𝜑 → (𝐹1 ) ∈ 𝐵)
49 fidomndrng.d . . . 4 = (∥r𝑅)
5016, 49, 17dvdsrmul 20280 . . 3 ((𝐴𝐵 ∧ (𝐹1 ) ∈ 𝐵) → 𝐴 ((𝐹1 ) · 𝐴))
512, 48, 50syl2anc 584 . 2 (𝜑𝐴 ((𝐹1 ) · 𝐴))
52 oveq1 7353 . . . . 5 (𝑦 = (𝐹1 ) → (𝑦 · 𝐴) = ((𝐹1 ) · 𝐴))
536cbvmptv 5195 . . . . . 6 (𝑥𝐵 ↦ (𝑥 · 𝐴)) = (𝑦𝐵 ↦ (𝑦 · 𝐴))
547, 53eqtri 2754 . . . . 5 𝐹 = (𝑦𝐵 ↦ (𝑦 · 𝐴))
55 ovex 7379 . . . . 5 ((𝐹1 ) · 𝐴) ∈ V
5652, 54, 55fvmpt 6929 . . . 4 ((𝐹1 ) ∈ 𝐵 → (𝐹‘(𝐹1 )) = ((𝐹1 ) · 𝐴))
5748, 56syl 17 . . 3 (𝜑 → (𝐹‘(𝐹1 )) = ((𝐹1 ) · 𝐴))
58 f1ocnvfv2 7211 . . . 4 ((𝐹:𝐵1-1-onto𝐵1𝐵) → (𝐹‘(𝐹1 )) = 1 )
5941, 47, 58syl2anc 584 . . 3 (𝜑 → (𝐹‘(𝐹1 )) = 1 )
6057, 59eqtr3d 2768 . 2 (𝜑 → ((𝐹1 ) · 𝐴) = 1 )
6151, 60breqtrd 5117 1 (𝜑𝐴 1 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2111  wne 2928  wral 3047  cdif 3899  {csn 4576   class class class wbr 5091  cmpt 5172  ccnv 5615  wf 6477  1-1wf1 6478  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  cen 8866  Fincfn 8869  Basecbs 17117  .rcmulr 17159  0gc0g 17340   GrpHom cghm 19122  1rcur 20097  Ringcrg 20149  rcdsr 20270  Domncdomn 20605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-2 12185  df-sets 17072  df-slot 17090  df-ndx 17102  df-base 17118  df-plusg 17171  df-0g 17342  df-mgm 18545  df-sgrp 18624  df-mnd 18640  df-grp 18846  df-minusg 18847  df-sbg 18848  df-ghm 19123  df-cmn 19692  df-abl 19693  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-dvdsr 20273  df-nzr 20426  df-domn 20608
This theorem is referenced by:  fidomndrng  20686
  Copyright terms: Public domain W3C validator