MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fidomndrnglem Structured version   Visualization version   GIF version

Theorem fidomndrnglem 20070
Description: Lemma for fidomndrng 20071. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypotheses
Ref Expression
fidomndrng.b 𝐵 = (Base‘𝑅)
fidomndrng.z 0 = (0g𝑅)
fidomndrng.o 1 = (1r𝑅)
fidomndrng.d = (∥r𝑅)
fidomndrng.t · = (.r𝑅)
fidomndrng.r (𝜑𝑅 ∈ Domn)
fidomndrng.x (𝜑𝐵 ∈ Fin)
fidomndrng.a (𝜑𝐴 ∈ (𝐵 ∖ { 0 }))
fidomndrng.f 𝐹 = (𝑥𝐵 ↦ (𝑥 · 𝐴))
Assertion
Ref Expression
fidomndrnglem (𝜑𝐴 1 )
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅   𝑥, ·
Allowed substitution hints:   𝜑(𝑥)   (𝑥)   1 (𝑥)   𝐹(𝑥)   0 (𝑥)

Proof of Theorem fidomndrnglem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fidomndrng.a . . . 4 (𝜑𝐴 ∈ (𝐵 ∖ { 0 }))
21eldifad 3920 . . 3 (𝜑𝐴𝐵)
3 eldifsni 4696 . . . . . . . . . . . 12 (𝐴 ∈ (𝐵 ∖ { 0 }) → 𝐴0 )
41, 3syl 17 . . . . . . . . . . 11 (𝜑𝐴0 )
54ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑦𝐵) ∧ (𝐹𝑦) = 0 ) → 𝐴0 )
6 oveq1 7147 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → (𝑥 · 𝐴) = (𝑦 · 𝐴))
7 fidomndrng.f . . . . . . . . . . . . . . . . 17 𝐹 = (𝑥𝐵 ↦ (𝑥 · 𝐴))
8 ovex 7173 . . . . . . . . . . . . . . . . 17 (𝑦 · 𝐴) ∈ V
96, 7, 8fvmpt 6750 . . . . . . . . . . . . . . . 16 (𝑦𝐵 → (𝐹𝑦) = (𝑦 · 𝐴))
109adantl 485 . . . . . . . . . . . . . . 15 ((𝜑𝑦𝐵) → (𝐹𝑦) = (𝑦 · 𝐴))
1110eqeq1d 2824 . . . . . . . . . . . . . 14 ((𝜑𝑦𝐵) → ((𝐹𝑦) = 0 ↔ (𝑦 · 𝐴) = 0 ))
12 fidomndrng.r . . . . . . . . . . . . . . . 16 (𝜑𝑅 ∈ Domn)
1312adantr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑦𝐵) → 𝑅 ∈ Domn)
14 simpr 488 . . . . . . . . . . . . . . 15 ((𝜑𝑦𝐵) → 𝑦𝐵)
152adantr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑦𝐵) → 𝐴𝐵)
16 fidomndrng.b . . . . . . . . . . . . . . . 16 𝐵 = (Base‘𝑅)
17 fidomndrng.t . . . . . . . . . . . . . . . 16 · = (.r𝑅)
18 fidomndrng.z . . . . . . . . . . . . . . . 16 0 = (0g𝑅)
1916, 17, 18domneq0 20061 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Domn ∧ 𝑦𝐵𝐴𝐵) → ((𝑦 · 𝐴) = 0 ↔ (𝑦 = 0𝐴 = 0 )))
2013, 14, 15, 19syl3anc 1368 . . . . . . . . . . . . . 14 ((𝜑𝑦𝐵) → ((𝑦 · 𝐴) = 0 ↔ (𝑦 = 0𝐴 = 0 )))
2111, 20bitrd 282 . . . . . . . . . . . . 13 ((𝜑𝑦𝐵) → ((𝐹𝑦) = 0 ↔ (𝑦 = 0𝐴 = 0 )))
2221biimpa 480 . . . . . . . . . . . 12 (((𝜑𝑦𝐵) ∧ (𝐹𝑦) = 0 ) → (𝑦 = 0𝐴 = 0 ))
2322ord 861 . . . . . . . . . . 11 (((𝜑𝑦𝐵) ∧ (𝐹𝑦) = 0 ) → (¬ 𝑦 = 0𝐴 = 0 ))
2423necon1ad 3028 . . . . . . . . . 10 (((𝜑𝑦𝐵) ∧ (𝐹𝑦) = 0 ) → (𝐴0𝑦 = 0 ))
255, 24mpd 15 . . . . . . . . 9 (((𝜑𝑦𝐵) ∧ (𝐹𝑦) = 0 ) → 𝑦 = 0 )
2625ex 416 . . . . . . . 8 ((𝜑𝑦𝐵) → ((𝐹𝑦) = 0𝑦 = 0 ))
2726ralrimiva 3174 . . . . . . 7 (𝜑 → ∀𝑦𝐵 ((𝐹𝑦) = 0𝑦 = 0 ))
28 domnring 20060 . . . . . . . . . . 11 (𝑅 ∈ Domn → 𝑅 ∈ Ring)
2912, 28syl 17 . . . . . . . . . 10 (𝜑𝑅 ∈ Ring)
3016, 17ringrghm 19349 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐴𝐵) → (𝑥𝐵 ↦ (𝑥 · 𝐴)) ∈ (𝑅 GrpHom 𝑅))
3129, 2, 30syl2anc 587 . . . . . . . . 9 (𝜑 → (𝑥𝐵 ↦ (𝑥 · 𝐴)) ∈ (𝑅 GrpHom 𝑅))
327, 31eqeltrid 2918 . . . . . . . 8 (𝜑𝐹 ∈ (𝑅 GrpHom 𝑅))
3316, 16, 18, 18ghmf1 18378 . . . . . . . 8 (𝐹 ∈ (𝑅 GrpHom 𝑅) → (𝐹:𝐵1-1𝐵 ↔ ∀𝑦𝐵 ((𝐹𝑦) = 0𝑦 = 0 )))
3432, 33syl 17 . . . . . . 7 (𝜑 → (𝐹:𝐵1-1𝐵 ↔ ∀𝑦𝐵 ((𝐹𝑦) = 0𝑦 = 0 )))
3527, 34mpbird 260 . . . . . 6 (𝜑𝐹:𝐵1-1𝐵)
36 fidomndrng.x . . . . . . . 8 (𝜑𝐵 ∈ Fin)
37 enrefg 8528 . . . . . . . 8 (𝐵 ∈ Fin → 𝐵𝐵)
3836, 37syl 17 . . . . . . 7 (𝜑𝐵𝐵)
39 f1finf1o 8733 . . . . . . 7 ((𝐵𝐵𝐵 ∈ Fin) → (𝐹:𝐵1-1𝐵𝐹:𝐵1-1-onto𝐵))
4038, 36, 39syl2anc 587 . . . . . 6 (𝜑 → (𝐹:𝐵1-1𝐵𝐹:𝐵1-1-onto𝐵))
4135, 40mpbid 235 . . . . 5 (𝜑𝐹:𝐵1-1-onto𝐵)
42 f1ocnv 6609 . . . . 5 (𝐹:𝐵1-1-onto𝐵𝐹:𝐵1-1-onto𝐵)
43 f1of 6597 . . . . 5 (𝐹:𝐵1-1-onto𝐵𝐹:𝐵𝐵)
4441, 42, 433syl 18 . . . 4 (𝜑𝐹:𝐵𝐵)
45 fidomndrng.o . . . . . 6 1 = (1r𝑅)
4616, 45ringidcl 19312 . . . . 5 (𝑅 ∈ Ring → 1𝐵)
4729, 46syl 17 . . . 4 (𝜑1𝐵)
4844, 47ffvelrnd 6834 . . 3 (𝜑 → (𝐹1 ) ∈ 𝐵)
49 fidomndrng.d . . . 4 = (∥r𝑅)
5016, 49, 17dvdsrmul 19392 . . 3 ((𝐴𝐵 ∧ (𝐹1 ) ∈ 𝐵) → 𝐴 ((𝐹1 ) · 𝐴))
512, 48, 50syl2anc 587 . 2 (𝜑𝐴 ((𝐹1 ) · 𝐴))
52 oveq1 7147 . . . . 5 (𝑦 = (𝐹1 ) → (𝑦 · 𝐴) = ((𝐹1 ) · 𝐴))
536cbvmptv 5145 . . . . . 6 (𝑥𝐵 ↦ (𝑥 · 𝐴)) = (𝑦𝐵 ↦ (𝑦 · 𝐴))
547, 53eqtri 2845 . . . . 5 𝐹 = (𝑦𝐵 ↦ (𝑦 · 𝐴))
55 ovex 7173 . . . . 5 ((𝐹1 ) · 𝐴) ∈ V
5652, 54, 55fvmpt 6750 . . . 4 ((𝐹1 ) ∈ 𝐵 → (𝐹‘(𝐹1 )) = ((𝐹1 ) · 𝐴))
5748, 56syl 17 . . 3 (𝜑 → (𝐹‘(𝐹1 )) = ((𝐹1 ) · 𝐴))
58 f1ocnvfv2 7017 . . . 4 ((𝐹:𝐵1-1-onto𝐵1𝐵) → (𝐹‘(𝐹1 )) = 1 )
5941, 47, 58syl2anc 587 . . 3 (𝜑 → (𝐹‘(𝐹1 )) = 1 )
6057, 59eqtr3d 2859 . 2 (𝜑 → ((𝐹1 ) · 𝐴) = 1 )
6151, 60breqtrd 5068 1 (𝜑𝐴 1 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 844   = wceq 1538  wcel 2114  wne 3011  wral 3130  cdif 3905  {csn 4539   class class class wbr 5042  cmpt 5122  ccnv 5531  wf 6330  1-1wf1 6331  1-1-ontowf1o 6333  cfv 6334  (class class class)co 7140  cen 8493  Fincfn 8496  Basecbs 16474  .rcmulr 16557  0gc0g 16704   GrpHom cghm 18346  1rcur 19242  Ringcrg 19288  rcdsr 19382  Domncdomn 20044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-map 8395  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-ndx 16477  df-slot 16478  df-base 16480  df-sets 16481  df-plusg 16569  df-0g 16706  df-mgm 17843  df-sgrp 17892  df-mnd 17903  df-grp 18097  df-minusg 18098  df-sbg 18099  df-ghm 18347  df-mgp 19231  df-ur 19243  df-ring 19290  df-dvdsr 19385  df-nzr 20022  df-domn 20048
This theorem is referenced by:  fidomndrng  20071
  Copyright terms: Public domain W3C validator