Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uzlidlring Structured version   Visualization version   GIF version

Theorem uzlidlring 45375
Description: Only the zero (left) ideal or the unit (left) ideal of a domain is a unital ring. (Contributed by AV, 18-Feb-2020.)
Hypotheses
Ref Expression
lidlabl.l 𝐿 = (LIdeal‘𝑅)
lidlabl.i 𝐼 = (𝑅s 𝑈)
zlidlring.b 𝐵 = (Base‘𝑅)
zlidlring.0 0 = (0g𝑅)
Assertion
Ref Expression
uzlidlring ((𝑅 ∈ Domn ∧ 𝑈𝐿) → (𝐼 ∈ Ring ↔ (𝑈 = { 0 } ∨ 𝑈 = 𝐵)))

Proof of Theorem uzlidlring
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . 3 (Base‘𝐼) = (Base‘𝐼)
2 eqid 2738 . . 3 (.r𝐼) = (.r𝐼)
31, 2isringrng 45327 . 2 (𝐼 ∈ Ring ↔ (𝐼 ∈ Rng ∧ ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦)))
4 domnring 20480 . . . . 5 (𝑅 ∈ Domn → 𝑅 ∈ Ring)
54anim1i 614 . . . 4 ((𝑅 ∈ Domn ∧ 𝑈𝐿) → (𝑅 ∈ Ring ∧ 𝑈𝐿))
6 lidlabl.l . . . . 5 𝐿 = (LIdeal‘𝑅)
7 lidlabl.i . . . . 5 𝐼 = (𝑅s 𝑈)
86, 7lidlrng 45373 . . . 4 ((𝑅 ∈ Ring ∧ 𝑈𝐿) → 𝐼 ∈ Rng)
95, 8syl 17 . . 3 ((𝑅 ∈ Domn ∧ 𝑈𝐿) → 𝐼 ∈ Rng)
10 ibar 528 . . . . . 6 (𝐼 ∈ Rng → (∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦) ↔ (𝐼 ∈ Rng ∧ ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦))))
1110bicomd 222 . . . . 5 (𝐼 ∈ Rng → ((𝐼 ∈ Rng ∧ ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦)) ↔ ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦)))
1211adantl 481 . . . 4 (((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) → ((𝐼 ∈ Rng ∧ ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦)) ↔ ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦)))
13 eqid 2738 . . . . . . . . . . . . . . . . . . . . 21 (.r𝑅) = (.r𝑅)
147, 13ressmulr 16943 . . . . . . . . . . . . . . . . . . . 20 (𝑈𝐿 → (.r𝑅) = (.r𝐼))
1514eqcomd 2744 . . . . . . . . . . . . . . . . . . 19 (𝑈𝐿 → (.r𝐼) = (.r𝑅))
1615oveqd 7272 . . . . . . . . . . . . . . . . . 18 (𝑈𝐿 → (𝑥(.r𝐼)𝑦) = (𝑥(.r𝑅)𝑦))
1716eqeq1d 2740 . . . . . . . . . . . . . . . . 17 (𝑈𝐿 → ((𝑥(.r𝐼)𝑦) = 𝑦 ↔ (𝑥(.r𝑅)𝑦) = 𝑦))
1815oveqd 7272 . . . . . . . . . . . . . . . . . 18 (𝑈𝐿 → (𝑦(.r𝐼)𝑥) = (𝑦(.r𝑅)𝑥))
1918eqeq1d 2740 . . . . . . . . . . . . . . . . 17 (𝑈𝐿 → ((𝑦(.r𝐼)𝑥) = 𝑦 ↔ (𝑦(.r𝑅)𝑥) = 𝑦))
2017, 19anbi12d 630 . . . . . . . . . . . . . . . 16 (𝑈𝐿 → (((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦) ↔ ((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦)))
2120ad2antlr 723 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) → (((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦) ↔ ((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦)))
2221ad2antrr 722 . . . . . . . . . . . . . 14 (((((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) ∧ ¬ 𝑈 = { 0 }) ∧ 𝑥 ∈ (Base‘𝐼)) → (((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦) ↔ ((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦)))
2322ralbidv 3120 . . . . . . . . . . . . 13 (((((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) ∧ ¬ 𝑈 = { 0 }) ∧ 𝑥 ∈ (Base‘𝐼)) → (∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦) ↔ ∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦)))
24 simp-4l 779 . . . . . . . . . . . . . 14 (((((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) ∧ ¬ 𝑈 = { 0 }) ∧ 𝑥 ∈ (Base‘𝐼)) → 𝑅 ∈ Domn)
256, 7lidlbas 45369 . . . . . . . . . . . . . . . . . . 19 (𝑈𝐿 → (Base‘𝐼) = 𝑈)
2625eleq1d 2823 . . . . . . . . . . . . . . . . . 18 (𝑈𝐿 → ((Base‘𝐼) ∈ 𝐿𝑈𝐿))
2726ibir 267 . . . . . . . . . . . . . . . . 17 (𝑈𝐿 → (Base‘𝐼) ∈ 𝐿)
2827ad3antlr 727 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) ∧ ¬ 𝑈 = { 0 }) → (Base‘𝐼) ∈ 𝐿)
2925ad2antlr 723 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) → (Base‘𝐼) = 𝑈)
3029eqeq1d 2740 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) → ((Base‘𝐼) = { 0 } ↔ 𝑈 = { 0 }))
3130biimpd 228 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) → ((Base‘𝐼) = { 0 } → 𝑈 = { 0 }))
3231necon3bd 2956 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) → (¬ 𝑈 = { 0 } → (Base‘𝐼) ≠ { 0 }))
3332imp 406 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) ∧ ¬ 𝑈 = { 0 }) → (Base‘𝐼) ≠ { 0 })
3428, 33jca 511 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) ∧ ¬ 𝑈 = { 0 }) → ((Base‘𝐼) ∈ 𝐿 ∧ (Base‘𝐼) ≠ { 0 }))
3534adantr 480 . . . . . . . . . . . . . 14 (((((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) ∧ ¬ 𝑈 = { 0 }) ∧ 𝑥 ∈ (Base‘𝐼)) → ((Base‘𝐼) ∈ 𝐿 ∧ (Base‘𝐼) ≠ { 0 }))
36 simpr 484 . . . . . . . . . . . . . 14 (((((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) ∧ ¬ 𝑈 = { 0 }) ∧ 𝑥 ∈ (Base‘𝐼)) → 𝑥 ∈ (Base‘𝐼))
37 eqid 2738 . . . . . . . . . . . . . . 15 (1r𝑅) = (1r𝑅)
38 zlidlring.0 . . . . . . . . . . . . . . 15 0 = (0g𝑅)
396, 13, 37, 38lidldomn1 45367 . . . . . . . . . . . . . 14 ((𝑅 ∈ Domn ∧ ((Base‘𝐼) ∈ 𝐿 ∧ (Base‘𝐼) ≠ { 0 }) ∧ 𝑥 ∈ (Base‘𝐼)) → (∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦) → 𝑥 = (1r𝑅)))
4024, 35, 36, 39syl3anc 1369 . . . . . . . . . . . . 13 (((((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) ∧ ¬ 𝑈 = { 0 }) ∧ 𝑥 ∈ (Base‘𝐼)) → (∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦) → 𝑥 = (1r𝑅)))
4123, 40sylbid 239 . . . . . . . . . . . 12 (((((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) ∧ ¬ 𝑈 = { 0 }) ∧ 𝑥 ∈ (Base‘𝐼)) → (∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦) → 𝑥 = (1r𝑅)))
4241imp 406 . . . . . . . . . . 11 ((((((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) ∧ ¬ 𝑈 = { 0 }) ∧ 𝑥 ∈ (Base‘𝐼)) ∧ ∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦)) → 𝑥 = (1r𝑅))
4325ad3antlr 727 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) ∧ ¬ 𝑈 = { 0 }) → (Base‘𝐼) = 𝑈)
4443eleq2d 2824 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) ∧ ¬ 𝑈 = { 0 }) → (𝑥 ∈ (Base‘𝐼) ↔ 𝑥𝑈))
4544biimpd 228 . . . . . . . . . . . . 13 ((((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) ∧ ¬ 𝑈 = { 0 }) → (𝑥 ∈ (Base‘𝐼) → 𝑥𝑈))
4645imp 406 . . . . . . . . . . . 12 (((((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) ∧ ¬ 𝑈 = { 0 }) ∧ 𝑥 ∈ (Base‘𝐼)) → 𝑥𝑈)
4746adantr 480 . . . . . . . . . . 11 ((((((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) ∧ ¬ 𝑈 = { 0 }) ∧ 𝑥 ∈ (Base‘𝐼)) ∧ ∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦)) → 𝑥𝑈)
4842, 47eqeltrrd 2840 . . . . . . . . . 10 ((((((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) ∧ ¬ 𝑈 = { 0 }) ∧ 𝑥 ∈ (Base‘𝐼)) ∧ ∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦)) → (1r𝑅) ∈ 𝑈)
4948rexlimdva2 3215 . . . . . . . . 9 ((((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) ∧ ¬ 𝑈 = { 0 }) → (∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦) → (1r𝑅) ∈ 𝑈))
5049impancom 451 . . . . . . . 8 ((((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) ∧ ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦)) → (¬ 𝑈 = { 0 } → (1r𝑅) ∈ 𝑈))
515adantr 480 . . . . . . . . . 10 (((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) → (𝑅 ∈ Ring ∧ 𝑈𝐿))
52 zlidlring.b . . . . . . . . . . 11 𝐵 = (Base‘𝑅)
536, 52, 37lidl1el 20402 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑈𝐿) → ((1r𝑅) ∈ 𝑈𝑈 = 𝐵))
5451, 53syl 17 . . . . . . . . 9 (((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) → ((1r𝑅) ∈ 𝑈𝑈 = 𝐵))
5554adantr 480 . . . . . . . 8 ((((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) ∧ ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦)) → ((1r𝑅) ∈ 𝑈𝑈 = 𝐵))
5650, 55sylibd 238 . . . . . . 7 ((((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) ∧ ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦)) → (¬ 𝑈 = { 0 } → 𝑈 = 𝐵))
5756orrd 859 . . . . . 6 ((((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) ∧ ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦)) → (𝑈 = { 0 } ∨ 𝑈 = 𝐵))
5857ex 412 . . . . 5 (((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) → (∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦) → (𝑈 = { 0 } ∨ 𝑈 = 𝐵)))
596, 7, 52, 38zlidlring 45374 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → 𝐼 ∈ Ring)
603simprbi 496 . . . . . . . . . 10 (𝐼 ∈ Ring → ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦))
6159, 60syl 17 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦))
6261ex 412 . . . . . . . 8 (𝑅 ∈ Ring → (𝑈 = { 0 } → ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦)))
634, 62syl 17 . . . . . . 7 (𝑅 ∈ Domn → (𝑈 = { 0 } → ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦)))
6463ad2antrr 722 . . . . . 6 (((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) → (𝑈 = { 0 } → ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦)))
655anim1i 614 . . . . . . 7 (((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) → ((𝑅 ∈ Ring ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng))
6652, 13ringideu 19719 . . . . . . . . . . . 12 (𝑅 ∈ Ring → ∃!𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦))
67 reurex 3352 . . . . . . . . . . . 12 (∃!𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦) → ∃𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦))
6866, 67syl 17 . . . . . . . . . . 11 (𝑅 ∈ Ring → ∃𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦))
6968adantr 480 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑈𝐿) → ∃𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦))
7069ad2antrr 722 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) ∧ 𝑈 = 𝐵) → ∃𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦))
717, 52ressbas 16873 . . . . . . . . . . . 12 (𝑈𝐿 → (𝑈𝐵) = (Base‘𝐼))
7271ad3antlr 727 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) ∧ 𝑈 = 𝐵) → (𝑈𝐵) = (Base‘𝐼))
73 ineq1 4136 . . . . . . . . . . . . 13 (𝑈 = 𝐵 → (𝑈𝐵) = (𝐵𝐵))
74 inidm 4149 . . . . . . . . . . . . 13 (𝐵𝐵) = 𝐵
7573, 74eqtrdi 2795 . . . . . . . . . . . 12 (𝑈 = 𝐵 → (𝑈𝐵) = 𝐵)
7675adantl 481 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) ∧ 𝑈 = 𝐵) → (𝑈𝐵) = 𝐵)
7772, 76eqtr3d 2780 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) ∧ 𝑈 = 𝐵) → (Base‘𝐼) = 𝐵)
7820ad3antlr 727 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) ∧ 𝑈 = 𝐵) → (((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦) ↔ ((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦)))
7977, 78raleqbidv 3327 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) ∧ 𝑈 = 𝐵) → (∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦) ↔ ∀𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦)))
8077, 79rexeqbidv 3328 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) ∧ 𝑈 = 𝐵) → (∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦) ↔ ∃𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦)))
8170, 80mpbird 256 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) ∧ 𝑈 = 𝐵) → ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦))
8281ex 412 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) → (𝑈 = 𝐵 → ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦)))
8365, 82syl 17 . . . . . 6 (((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) → (𝑈 = 𝐵 → ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦)))
8464, 83jaod 855 . . . . 5 (((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) → ((𝑈 = { 0 } ∨ 𝑈 = 𝐵) → ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦)))
8558, 84impbid 211 . . . 4 (((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) → (∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦) ↔ (𝑈 = { 0 } ∨ 𝑈 = 𝐵)))
8612, 85bitrd 278 . . 3 (((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) → ((𝐼 ∈ Rng ∧ ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦)) ↔ (𝑈 = { 0 } ∨ 𝑈 = 𝐵)))
879, 86mpdan 683 . 2 ((𝑅 ∈ Domn ∧ 𝑈𝐿) → ((𝐼 ∈ Rng ∧ ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦)) ↔ (𝑈 = { 0 } ∨ 𝑈 = 𝐵)))
883, 87syl5bb 282 1 ((𝑅 ∈ Domn ∧ 𝑈𝐿) → (𝐼 ∈ Ring ↔ (𝑈 = { 0 } ∨ 𝑈 = 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  ∃!wreu 3065  cin 3882  {csn 4558  cfv 6418  (class class class)co 7255  Basecbs 16840  s cress 16867  .rcmulr 16889  0gc0g 17067  1rcur 19652  Ringcrg 19698  LIdealclidl 20347  Domncdomn 20464  Rngcrng 45320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-ip 16906  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-sbg 18497  df-subg 18667  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-subrg 19937  df-lmod 20040  df-lss 20109  df-sra 20349  df-rgmod 20350  df-lidl 20351  df-nzr 20442  df-domn 20468  df-rng0 45321
This theorem is referenced by:  lidldomnnring  45376
  Copyright terms: Public domain W3C validator