Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uzlidlring Structured version   Visualization version   GIF version

Theorem uzlidlring 44194
Description: Only the zero (left) ideal or the unit (left) ideal of a domain is a unital ring. (Contributed by AV, 18-Feb-2020.)
Hypotheses
Ref Expression
lidlabl.l 𝐿 = (LIdeal‘𝑅)
lidlabl.i 𝐼 = (𝑅s 𝑈)
zlidlring.b 𝐵 = (Base‘𝑅)
zlidlring.0 0 = (0g𝑅)
Assertion
Ref Expression
uzlidlring ((𝑅 ∈ Domn ∧ 𝑈𝐿) → (𝐼 ∈ Ring ↔ (𝑈 = { 0 } ∨ 𝑈 = 𝐵)))

Proof of Theorem uzlidlring
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2821 . . 3 (Base‘𝐼) = (Base‘𝐼)
2 eqid 2821 . . 3 (.r𝐼) = (.r𝐼)
31, 2isringrng 44146 . 2 (𝐼 ∈ Ring ↔ (𝐼 ∈ Rng ∧ ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦)))
4 domnring 20063 . . . . 5 (𝑅 ∈ Domn → 𝑅 ∈ Ring)
54anim1i 616 . . . 4 ((𝑅 ∈ Domn ∧ 𝑈𝐿) → (𝑅 ∈ Ring ∧ 𝑈𝐿))
6 lidlabl.l . . . . 5 𝐿 = (LIdeal‘𝑅)
7 lidlabl.i . . . . 5 𝐼 = (𝑅s 𝑈)
86, 7lidlrng 44192 . . . 4 ((𝑅 ∈ Ring ∧ 𝑈𝐿) → 𝐼 ∈ Rng)
95, 8syl 17 . . 3 ((𝑅 ∈ Domn ∧ 𝑈𝐿) → 𝐼 ∈ Rng)
10 ibar 531 . . . . . 6 (𝐼 ∈ Rng → (∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦) ↔ (𝐼 ∈ Rng ∧ ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦))))
1110bicomd 225 . . . . 5 (𝐼 ∈ Rng → ((𝐼 ∈ Rng ∧ ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦)) ↔ ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦)))
1211adantl 484 . . . 4 (((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) → ((𝐼 ∈ Rng ∧ ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦)) ↔ ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦)))
13 eqid 2821 . . . . . . . . . . . . . . . . . . . . 21 (.r𝑅) = (.r𝑅)
147, 13ressmulr 16619 . . . . . . . . . . . . . . . . . . . 20 (𝑈𝐿 → (.r𝑅) = (.r𝐼))
1514eqcomd 2827 . . . . . . . . . . . . . . . . . . 19 (𝑈𝐿 → (.r𝐼) = (.r𝑅))
1615oveqd 7167 . . . . . . . . . . . . . . . . . 18 (𝑈𝐿 → (𝑥(.r𝐼)𝑦) = (𝑥(.r𝑅)𝑦))
1716eqeq1d 2823 . . . . . . . . . . . . . . . . 17 (𝑈𝐿 → ((𝑥(.r𝐼)𝑦) = 𝑦 ↔ (𝑥(.r𝑅)𝑦) = 𝑦))
1815oveqd 7167 . . . . . . . . . . . . . . . . . 18 (𝑈𝐿 → (𝑦(.r𝐼)𝑥) = (𝑦(.r𝑅)𝑥))
1918eqeq1d 2823 . . . . . . . . . . . . . . . . 17 (𝑈𝐿 → ((𝑦(.r𝐼)𝑥) = 𝑦 ↔ (𝑦(.r𝑅)𝑥) = 𝑦))
2017, 19anbi12d 632 . . . . . . . . . . . . . . . 16 (𝑈𝐿 → (((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦) ↔ ((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦)))
2120ad2antlr 725 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) → (((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦) ↔ ((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦)))
2221ad2antrr 724 . . . . . . . . . . . . . 14 (((((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) ∧ ¬ 𝑈 = { 0 }) ∧ 𝑥 ∈ (Base‘𝐼)) → (((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦) ↔ ((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦)))
2322ralbidv 3197 . . . . . . . . . . . . 13 (((((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) ∧ ¬ 𝑈 = { 0 }) ∧ 𝑥 ∈ (Base‘𝐼)) → (∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦) ↔ ∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦)))
24 simp-4l 781 . . . . . . . . . . . . . 14 (((((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) ∧ ¬ 𝑈 = { 0 }) ∧ 𝑥 ∈ (Base‘𝐼)) → 𝑅 ∈ Domn)
256, 7lidlbas 44188 . . . . . . . . . . . . . . . . . . 19 (𝑈𝐿 → (Base‘𝐼) = 𝑈)
2625eleq1d 2897 . . . . . . . . . . . . . . . . . 18 (𝑈𝐿 → ((Base‘𝐼) ∈ 𝐿𝑈𝐿))
2726ibir 270 . . . . . . . . . . . . . . . . 17 (𝑈𝐿 → (Base‘𝐼) ∈ 𝐿)
2827ad3antlr 729 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) ∧ ¬ 𝑈 = { 0 }) → (Base‘𝐼) ∈ 𝐿)
2925ad2antlr 725 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) → (Base‘𝐼) = 𝑈)
3029eqeq1d 2823 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) → ((Base‘𝐼) = { 0 } ↔ 𝑈 = { 0 }))
3130biimpd 231 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) → ((Base‘𝐼) = { 0 } → 𝑈 = { 0 }))
3231necon3bd 3030 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) → (¬ 𝑈 = { 0 } → (Base‘𝐼) ≠ { 0 }))
3332imp 409 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) ∧ ¬ 𝑈 = { 0 }) → (Base‘𝐼) ≠ { 0 })
3428, 33jca 514 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) ∧ ¬ 𝑈 = { 0 }) → ((Base‘𝐼) ∈ 𝐿 ∧ (Base‘𝐼) ≠ { 0 }))
3534adantr 483 . . . . . . . . . . . . . 14 (((((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) ∧ ¬ 𝑈 = { 0 }) ∧ 𝑥 ∈ (Base‘𝐼)) → ((Base‘𝐼) ∈ 𝐿 ∧ (Base‘𝐼) ≠ { 0 }))
36 simpr 487 . . . . . . . . . . . . . 14 (((((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) ∧ ¬ 𝑈 = { 0 }) ∧ 𝑥 ∈ (Base‘𝐼)) → 𝑥 ∈ (Base‘𝐼))
37 eqid 2821 . . . . . . . . . . . . . . 15 (1r𝑅) = (1r𝑅)
38 zlidlring.0 . . . . . . . . . . . . . . 15 0 = (0g𝑅)
396, 13, 37, 38lidldomn1 44186 . . . . . . . . . . . . . 14 ((𝑅 ∈ Domn ∧ ((Base‘𝐼) ∈ 𝐿 ∧ (Base‘𝐼) ≠ { 0 }) ∧ 𝑥 ∈ (Base‘𝐼)) → (∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦) → 𝑥 = (1r𝑅)))
4024, 35, 36, 39syl3anc 1367 . . . . . . . . . . . . 13 (((((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) ∧ ¬ 𝑈 = { 0 }) ∧ 𝑥 ∈ (Base‘𝐼)) → (∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦) → 𝑥 = (1r𝑅)))
4123, 40sylbid 242 . . . . . . . . . . . 12 (((((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) ∧ ¬ 𝑈 = { 0 }) ∧ 𝑥 ∈ (Base‘𝐼)) → (∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦) → 𝑥 = (1r𝑅)))
4241imp 409 . . . . . . . . . . 11 ((((((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) ∧ ¬ 𝑈 = { 0 }) ∧ 𝑥 ∈ (Base‘𝐼)) ∧ ∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦)) → 𝑥 = (1r𝑅))
4325ad3antlr 729 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) ∧ ¬ 𝑈 = { 0 }) → (Base‘𝐼) = 𝑈)
4443eleq2d 2898 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) ∧ ¬ 𝑈 = { 0 }) → (𝑥 ∈ (Base‘𝐼) ↔ 𝑥𝑈))
4544biimpd 231 . . . . . . . . . . . . 13 ((((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) ∧ ¬ 𝑈 = { 0 }) → (𝑥 ∈ (Base‘𝐼) → 𝑥𝑈))
4645imp 409 . . . . . . . . . . . 12 (((((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) ∧ ¬ 𝑈 = { 0 }) ∧ 𝑥 ∈ (Base‘𝐼)) → 𝑥𝑈)
4746adantr 483 . . . . . . . . . . 11 ((((((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) ∧ ¬ 𝑈 = { 0 }) ∧ 𝑥 ∈ (Base‘𝐼)) ∧ ∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦)) → 𝑥𝑈)
4842, 47eqeltrrd 2914 . . . . . . . . . 10 ((((((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) ∧ ¬ 𝑈 = { 0 }) ∧ 𝑥 ∈ (Base‘𝐼)) ∧ ∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦)) → (1r𝑅) ∈ 𝑈)
4948rexlimdva2 3287 . . . . . . . . 9 ((((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) ∧ ¬ 𝑈 = { 0 }) → (∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦) → (1r𝑅) ∈ 𝑈))
5049impancom 454 . . . . . . . 8 ((((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) ∧ ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦)) → (¬ 𝑈 = { 0 } → (1r𝑅) ∈ 𝑈))
515adantr 483 . . . . . . . . . 10 (((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) → (𝑅 ∈ Ring ∧ 𝑈𝐿))
52 zlidlring.b . . . . . . . . . . 11 𝐵 = (Base‘𝑅)
536, 52, 37lidl1el 19985 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑈𝐿) → ((1r𝑅) ∈ 𝑈𝑈 = 𝐵))
5451, 53syl 17 . . . . . . . . 9 (((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) → ((1r𝑅) ∈ 𝑈𝑈 = 𝐵))
5554adantr 483 . . . . . . . 8 ((((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) ∧ ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦)) → ((1r𝑅) ∈ 𝑈𝑈 = 𝐵))
5650, 55sylibd 241 . . . . . . 7 ((((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) ∧ ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦)) → (¬ 𝑈 = { 0 } → 𝑈 = 𝐵))
5756orrd 859 . . . . . 6 ((((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) ∧ ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦)) → (𝑈 = { 0 } ∨ 𝑈 = 𝐵))
5857ex 415 . . . . 5 (((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) → (∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦) → (𝑈 = { 0 } ∨ 𝑈 = 𝐵)))
596, 7, 52, 38zlidlring 44193 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → 𝐼 ∈ Ring)
603simprbi 499 . . . . . . . . . 10 (𝐼 ∈ Ring → ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦))
6159, 60syl 17 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦))
6261ex 415 . . . . . . . 8 (𝑅 ∈ Ring → (𝑈 = { 0 } → ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦)))
634, 62syl 17 . . . . . . 7 (𝑅 ∈ Domn → (𝑈 = { 0 } → ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦)))
6463ad2antrr 724 . . . . . 6 (((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) → (𝑈 = { 0 } → ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦)))
655anim1i 616 . . . . . . 7 (((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) → ((𝑅 ∈ Ring ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng))
6652, 13ringideu 19309 . . . . . . . . . . . 12 (𝑅 ∈ Ring → ∃!𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦))
67 reurex 3431 . . . . . . . . . . . 12 (∃!𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦) → ∃𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦))
6866, 67syl 17 . . . . . . . . . . 11 (𝑅 ∈ Ring → ∃𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦))
6968adantr 483 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑈𝐿) → ∃𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦))
7069ad2antrr 724 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) ∧ 𝑈 = 𝐵) → ∃𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦))
717, 52ressbas 16548 . . . . . . . . . . . 12 (𝑈𝐿 → (𝑈𝐵) = (Base‘𝐼))
7271ad3antlr 729 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) ∧ 𝑈 = 𝐵) → (𝑈𝐵) = (Base‘𝐼))
73 ineq1 4180 . . . . . . . . . . . . 13 (𝑈 = 𝐵 → (𝑈𝐵) = (𝐵𝐵))
74 inidm 4194 . . . . . . . . . . . . 13 (𝐵𝐵) = 𝐵
7573, 74syl6eq 2872 . . . . . . . . . . . 12 (𝑈 = 𝐵 → (𝑈𝐵) = 𝐵)
7675adantl 484 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) ∧ 𝑈 = 𝐵) → (𝑈𝐵) = 𝐵)
7772, 76eqtr3d 2858 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) ∧ 𝑈 = 𝐵) → (Base‘𝐼) = 𝐵)
7820ad3antlr 729 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) ∧ 𝑈 = 𝐵) → (((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦) ↔ ((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦)))
7977, 78raleqbidv 3401 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) ∧ 𝑈 = 𝐵) → (∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦) ↔ ∀𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦)))
8077, 79rexeqbidv 3402 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) ∧ 𝑈 = 𝐵) → (∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦) ↔ ∃𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦)))
8170, 80mpbird 259 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) ∧ 𝑈 = 𝐵) → ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦))
8281ex 415 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) → (𝑈 = 𝐵 → ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦)))
8365, 82syl 17 . . . . . 6 (((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) → (𝑈 = 𝐵 → ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦)))
8464, 83jaod 855 . . . . 5 (((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) → ((𝑈 = { 0 } ∨ 𝑈 = 𝐵) → ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦)))
8558, 84impbid 214 . . . 4 (((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) → (∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦) ↔ (𝑈 = { 0 } ∨ 𝑈 = 𝐵)))
8612, 85bitrd 281 . . 3 (((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) → ((𝐼 ∈ Rng ∧ ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦)) ↔ (𝑈 = { 0 } ∨ 𝑈 = 𝐵)))
879, 86mpdan 685 . 2 ((𝑅 ∈ Domn ∧ 𝑈𝐿) → ((𝐼 ∈ Rng ∧ ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦)) ↔ (𝑈 = { 0 } ∨ 𝑈 = 𝐵)))
883, 87syl5bb 285 1 ((𝑅 ∈ Domn ∧ 𝑈𝐿) → (𝐼 ∈ Ring ↔ (𝑈 = { 0 } ∨ 𝑈 = 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843   = wceq 1533  wcel 2110  wne 3016  wral 3138  wrex 3139  ∃!wreu 3140  cin 3934  {csn 4560  cfv 6349  (class class class)co 7150  Basecbs 16477  s cress 16478  .rcmulr 16560  0gc0g 16707  1rcur 19245  Ringcrg 19291  LIdealclidl 19936  Domncdomn 20047  Rngcrng 44139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-sca 16575  df-vsca 16576  df-ip 16577  df-0g 16709  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-grp 18100  df-minusg 18101  df-sbg 18102  df-subg 18270  df-cmn 18902  df-abl 18903  df-mgp 19234  df-ur 19246  df-ring 19293  df-subrg 19527  df-lmod 19630  df-lss 19698  df-sra 19938  df-rgmod 19939  df-lidl 19940  df-nzr 20025  df-domn 20051  df-rng0 44140
This theorem is referenced by:  lidldomnnring  44195
  Copyright terms: Public domain W3C validator