Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uzlidlring Structured version   Visualization version   GIF version

Theorem uzlidlring 48220
Description: Only the zero (left) ideal or the unit (left) ideal of a domain is a unital ring. (Contributed by AV, 18-Feb-2020.)
Hypotheses
Ref Expression
lidlabl.l 𝐿 = (LIdeal‘𝑅)
lidlabl.i 𝐼 = (𝑅s 𝑈)
zlidlring.b 𝐵 = (Base‘𝑅)
zlidlring.0 0 = (0g𝑅)
Assertion
Ref Expression
uzlidlring ((𝑅 ∈ Domn ∧ 𝑈𝐿) → (𝐼 ∈ Ring ↔ (𝑈 = { 0 } ∨ 𝑈 = 𝐵)))

Proof of Theorem uzlidlring
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . 3 (Base‘𝐼) = (Base‘𝐼)
2 eqid 2729 . . 3 (.r𝐼) = (.r𝐼)
31, 2isringrng 20190 . 2 (𝐼 ∈ Ring ↔ (𝐼 ∈ Rng ∧ ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦)))
4 domnring 20610 . . . . 5 (𝑅 ∈ Domn → 𝑅 ∈ Ring)
54anim1i 615 . . . 4 ((𝑅 ∈ Domn ∧ 𝑈𝐿) → (𝑅 ∈ Ring ∧ 𝑈𝐿))
6 lidlabl.l . . . . 5 𝐿 = (LIdeal‘𝑅)
7 lidlabl.i . . . . 5 𝐼 = (𝑅s 𝑈)
86, 7lidlrng 48218 . . . 4 ((𝑅 ∈ Ring ∧ 𝑈𝐿) → 𝐼 ∈ Rng)
95, 8syl 17 . . 3 ((𝑅 ∈ Domn ∧ 𝑈𝐿) → 𝐼 ∈ Rng)
10 ibar 528 . . . . . 6 (𝐼 ∈ Rng → (∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦) ↔ (𝐼 ∈ Rng ∧ ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦))))
1110bicomd 223 . . . . 5 (𝐼 ∈ Rng → ((𝐼 ∈ Rng ∧ ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦)) ↔ ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦)))
1211adantl 481 . . . 4 (((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) → ((𝐼 ∈ Rng ∧ ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦)) ↔ ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦)))
13 eqid 2729 . . . . . . . . . . . . . . . . . . . . 21 (.r𝑅) = (.r𝑅)
147, 13ressmulr 17229 . . . . . . . . . . . . . . . . . . . 20 (𝑈𝐿 → (.r𝑅) = (.r𝐼))
1514eqcomd 2735 . . . . . . . . . . . . . . . . . . 19 (𝑈𝐿 → (.r𝐼) = (.r𝑅))
1615oveqd 7370 . . . . . . . . . . . . . . . . . 18 (𝑈𝐿 → (𝑥(.r𝐼)𝑦) = (𝑥(.r𝑅)𝑦))
1716eqeq1d 2731 . . . . . . . . . . . . . . . . 17 (𝑈𝐿 → ((𝑥(.r𝐼)𝑦) = 𝑦 ↔ (𝑥(.r𝑅)𝑦) = 𝑦))
1815oveqd 7370 . . . . . . . . . . . . . . . . . 18 (𝑈𝐿 → (𝑦(.r𝐼)𝑥) = (𝑦(.r𝑅)𝑥))
1918eqeq1d 2731 . . . . . . . . . . . . . . . . 17 (𝑈𝐿 → ((𝑦(.r𝐼)𝑥) = 𝑦 ↔ (𝑦(.r𝑅)𝑥) = 𝑦))
2017, 19anbi12d 632 . . . . . . . . . . . . . . . 16 (𝑈𝐿 → (((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦) ↔ ((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦)))
2120ad2antlr 727 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) → (((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦) ↔ ((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦)))
2221ad2antrr 726 . . . . . . . . . . . . . 14 (((((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) ∧ ¬ 𝑈 = { 0 }) ∧ 𝑥 ∈ (Base‘𝐼)) → (((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦) ↔ ((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦)))
2322ralbidv 3152 . . . . . . . . . . . . 13 (((((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) ∧ ¬ 𝑈 = { 0 }) ∧ 𝑥 ∈ (Base‘𝐼)) → (∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦) ↔ ∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦)))
24 simp-4l 782 . . . . . . . . . . . . . 14 (((((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) ∧ ¬ 𝑈 = { 0 }) ∧ 𝑥 ∈ (Base‘𝐼)) → 𝑅 ∈ Domn)
256, 7lidlbas 21139 . . . . . . . . . . . . . . . . . . 19 (𝑈𝐿 → (Base‘𝐼) = 𝑈)
2625eleq1d 2813 . . . . . . . . . . . . . . . . . 18 (𝑈𝐿 → ((Base‘𝐼) ∈ 𝐿𝑈𝐿))
2726ibir 268 . . . . . . . . . . . . . . . . 17 (𝑈𝐿 → (Base‘𝐼) ∈ 𝐿)
2827ad3antlr 731 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) ∧ ¬ 𝑈 = { 0 }) → (Base‘𝐼) ∈ 𝐿)
2925ad2antlr 727 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) → (Base‘𝐼) = 𝑈)
3029eqeq1d 2731 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) → ((Base‘𝐼) = { 0 } ↔ 𝑈 = { 0 }))
3130biimpd 229 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) → ((Base‘𝐼) = { 0 } → 𝑈 = { 0 }))
3231necon3bd 2939 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) → (¬ 𝑈 = { 0 } → (Base‘𝐼) ≠ { 0 }))
3332imp 406 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) ∧ ¬ 𝑈 = { 0 }) → (Base‘𝐼) ≠ { 0 })
3428, 33jca 511 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) ∧ ¬ 𝑈 = { 0 }) → ((Base‘𝐼) ∈ 𝐿 ∧ (Base‘𝐼) ≠ { 0 }))
3534adantr 480 . . . . . . . . . . . . . 14 (((((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) ∧ ¬ 𝑈 = { 0 }) ∧ 𝑥 ∈ (Base‘𝐼)) → ((Base‘𝐼) ∈ 𝐿 ∧ (Base‘𝐼) ≠ { 0 }))
36 simpr 484 . . . . . . . . . . . . . 14 (((((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) ∧ ¬ 𝑈 = { 0 }) ∧ 𝑥 ∈ (Base‘𝐼)) → 𝑥 ∈ (Base‘𝐼))
37 eqid 2729 . . . . . . . . . . . . . . 15 (1r𝑅) = (1r𝑅)
38 zlidlring.0 . . . . . . . . . . . . . . 15 0 = (0g𝑅)
396, 13, 37, 38lidldomn1 48216 . . . . . . . . . . . . . 14 ((𝑅 ∈ Domn ∧ ((Base‘𝐼) ∈ 𝐿 ∧ (Base‘𝐼) ≠ { 0 }) ∧ 𝑥 ∈ (Base‘𝐼)) → (∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦) → 𝑥 = (1r𝑅)))
4024, 35, 36, 39syl3anc 1373 . . . . . . . . . . . . 13 (((((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) ∧ ¬ 𝑈 = { 0 }) ∧ 𝑥 ∈ (Base‘𝐼)) → (∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦) → 𝑥 = (1r𝑅)))
4123, 40sylbid 240 . . . . . . . . . . . 12 (((((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) ∧ ¬ 𝑈 = { 0 }) ∧ 𝑥 ∈ (Base‘𝐼)) → (∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦) → 𝑥 = (1r𝑅)))
4241imp 406 . . . . . . . . . . 11 ((((((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) ∧ ¬ 𝑈 = { 0 }) ∧ 𝑥 ∈ (Base‘𝐼)) ∧ ∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦)) → 𝑥 = (1r𝑅))
4325ad3antlr 731 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) ∧ ¬ 𝑈 = { 0 }) → (Base‘𝐼) = 𝑈)
4443eleq2d 2814 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) ∧ ¬ 𝑈 = { 0 }) → (𝑥 ∈ (Base‘𝐼) ↔ 𝑥𝑈))
4544biimpd 229 . . . . . . . . . . . . 13 ((((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) ∧ ¬ 𝑈 = { 0 }) → (𝑥 ∈ (Base‘𝐼) → 𝑥𝑈))
4645imp 406 . . . . . . . . . . . 12 (((((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) ∧ ¬ 𝑈 = { 0 }) ∧ 𝑥 ∈ (Base‘𝐼)) → 𝑥𝑈)
4746adantr 480 . . . . . . . . . . 11 ((((((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) ∧ ¬ 𝑈 = { 0 }) ∧ 𝑥 ∈ (Base‘𝐼)) ∧ ∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦)) → 𝑥𝑈)
4842, 47eqeltrrd 2829 . . . . . . . . . 10 ((((((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) ∧ ¬ 𝑈 = { 0 }) ∧ 𝑥 ∈ (Base‘𝐼)) ∧ ∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦)) → (1r𝑅) ∈ 𝑈)
4948rexlimdva2 3132 . . . . . . . . 9 ((((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) ∧ ¬ 𝑈 = { 0 }) → (∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦) → (1r𝑅) ∈ 𝑈))
5049impancom 451 . . . . . . . 8 ((((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) ∧ ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦)) → (¬ 𝑈 = { 0 } → (1r𝑅) ∈ 𝑈))
515adantr 480 . . . . . . . . . 10 (((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) → (𝑅 ∈ Ring ∧ 𝑈𝐿))
52 zlidlring.b . . . . . . . . . . 11 𝐵 = (Base‘𝑅)
536, 52, 37lidl1el 21151 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑈𝐿) → ((1r𝑅) ∈ 𝑈𝑈 = 𝐵))
5451, 53syl 17 . . . . . . . . 9 (((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) → ((1r𝑅) ∈ 𝑈𝑈 = 𝐵))
5554adantr 480 . . . . . . . 8 ((((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) ∧ ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦)) → ((1r𝑅) ∈ 𝑈𝑈 = 𝐵))
5650, 55sylibd 239 . . . . . . 7 ((((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) ∧ ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦)) → (¬ 𝑈 = { 0 } → 𝑈 = 𝐵))
5756orrd 863 . . . . . 6 ((((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) ∧ ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦)) → (𝑈 = { 0 } ∨ 𝑈 = 𝐵))
5857ex 412 . . . . 5 (((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) → (∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦) → (𝑈 = { 0 } ∨ 𝑈 = 𝐵)))
596, 7, 52, 38zlidlring 48219 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → 𝐼 ∈ Ring)
603simprbi 496 . . . . . . . . . 10 (𝐼 ∈ Ring → ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦))
6159, 60syl 17 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦))
6261ex 412 . . . . . . . 8 (𝑅 ∈ Ring → (𝑈 = { 0 } → ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦)))
634, 62syl 17 . . . . . . 7 (𝑅 ∈ Domn → (𝑈 = { 0 } → ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦)))
6463ad2antrr 726 . . . . . 6 (((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) → (𝑈 = { 0 } → ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦)))
655anim1i 615 . . . . . . 7 (((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) → ((𝑅 ∈ Ring ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng))
6652, 13ringideu 20157 . . . . . . . . . . . 12 (𝑅 ∈ Ring → ∃!𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦))
67 reurex 3349 . . . . . . . . . . . 12 (∃!𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦) → ∃𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦))
6866, 67syl 17 . . . . . . . . . . 11 (𝑅 ∈ Ring → ∃𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦))
6968adantr 480 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑈𝐿) → ∃𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦))
7069ad2antrr 726 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) ∧ 𝑈 = 𝐵) → ∃𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦))
717, 52ressbas 17165 . . . . . . . . . . . 12 (𝑈𝐿 → (𝑈𝐵) = (Base‘𝐼))
7271ad3antlr 731 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) ∧ 𝑈 = 𝐵) → (𝑈𝐵) = (Base‘𝐼))
73 ineq1 4166 . . . . . . . . . . . . 13 (𝑈 = 𝐵 → (𝑈𝐵) = (𝐵𝐵))
74 inidm 4180 . . . . . . . . . . . . 13 (𝐵𝐵) = 𝐵
7573, 74eqtrdi 2780 . . . . . . . . . . . 12 (𝑈 = 𝐵 → (𝑈𝐵) = 𝐵)
7675adantl 481 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) ∧ 𝑈 = 𝐵) → (𝑈𝐵) = 𝐵)
7772, 76eqtr3d 2766 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) ∧ 𝑈 = 𝐵) → (Base‘𝐼) = 𝐵)
7820ad3antlr 731 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) ∧ 𝑈 = 𝐵) → (((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦) ↔ ((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦)))
7977, 78raleqbidv 3310 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) ∧ 𝑈 = 𝐵) → (∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦) ↔ ∀𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦)))
8077, 79rexeqbidv 3311 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) ∧ 𝑈 = 𝐵) → (∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦) ↔ ∃𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦)))
8170, 80mpbird 257 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) ∧ 𝑈 = 𝐵) → ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦))
8281ex 412 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) → (𝑈 = 𝐵 → ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦)))
8365, 82syl 17 . . . . . 6 (((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) → (𝑈 = 𝐵 → ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦)))
8464, 83jaod 859 . . . . 5 (((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) → ((𝑈 = { 0 } ∨ 𝑈 = 𝐵) → ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦)))
8558, 84impbid 212 . . . 4 (((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) → (∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦) ↔ (𝑈 = { 0 } ∨ 𝑈 = 𝐵)))
8612, 85bitrd 279 . . 3 (((𝑅 ∈ Domn ∧ 𝑈𝐿) ∧ 𝐼 ∈ Rng) → ((𝐼 ∈ Rng ∧ ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦)) ↔ (𝑈 = { 0 } ∨ 𝑈 = 𝐵)))
879, 86mpdan 687 . 2 ((𝑅 ∈ Domn ∧ 𝑈𝐿) → ((𝐼 ∈ Rng ∧ ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r𝐼)𝑦) = 𝑦 ∧ (𝑦(.r𝐼)𝑥) = 𝑦)) ↔ (𝑈 = { 0 } ∨ 𝑈 = 𝐵)))
883, 87bitrid 283 1 ((𝑅 ∈ Domn ∧ 𝑈𝐿) → (𝐼 ∈ Ring ↔ (𝑈 = { 0 } ∨ 𝑈 = 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  ∃!wreu 3343  cin 3904  {csn 4579  cfv 6486  (class class class)co 7353  Basecbs 17138  s cress 17159  .rcmulr 17180  0gc0g 17361  Rngcrng 20055  1rcur 20084  Ringcrg 20136  Domncdomn 20595  LIdealclidl 21131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-sca 17195  df-vsca 17196  df-ip 17197  df-0g 17363  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-grp 18833  df-minusg 18834  df-sbg 18835  df-subg 19020  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-ring 20138  df-nzr 20416  df-subrg 20473  df-domn 20598  df-lmod 20783  df-lss 20853  df-sra 21095  df-rgmod 21096  df-lidl 21133
This theorem is referenced by:  lidldomnnring  48221
  Copyright terms: Public domain W3C validator