Step | Hyp | Ref
| Expression |
1 | | eqid 2732 |
. . 3
β’
(BaseβπΌ) =
(BaseβπΌ) |
2 | | eqid 2732 |
. . 3
β’
(.rβπΌ) = (.rβπΌ) |
3 | 1, 2 | isringrng 46643 |
. 2
β’ (πΌ β Ring β (πΌ β Rng β§ βπ₯ β (BaseβπΌ)βπ¦ β (BaseβπΌ)((π₯(.rβπΌ)π¦) = π¦ β§ (π¦(.rβπΌ)π₯) = π¦))) |
4 | | domnring 20904 |
. . . . 5
β’ (π
β Domn β π
β Ring) |
5 | 4 | anim1i 615 |
. . . 4
β’ ((π
β Domn β§ π β πΏ) β (π
β Ring β§ π β πΏ)) |
6 | | lidlabl.l |
. . . . 5
β’ πΏ = (LIdealβπ
) |
7 | | lidlabl.i |
. . . . 5
β’ πΌ = (π
βΎs π) |
8 | 6, 7 | lidlrng 46778 |
. . . 4
β’ ((π
β Ring β§ π β πΏ) β πΌ β Rng) |
9 | 5, 8 | syl 17 |
. . 3
β’ ((π
β Domn β§ π β πΏ) β πΌ β Rng) |
10 | | ibar 529 |
. . . . . 6
β’ (πΌ β Rng β (βπ₯ β (BaseβπΌ)βπ¦ β (BaseβπΌ)((π₯(.rβπΌ)π¦) = π¦ β§ (π¦(.rβπΌ)π₯) = π¦) β (πΌ β Rng β§ βπ₯ β (BaseβπΌ)βπ¦ β (BaseβπΌ)((π₯(.rβπΌ)π¦) = π¦ β§ (π¦(.rβπΌ)π₯) = π¦)))) |
11 | 10 | bicomd 222 |
. . . . 5
β’ (πΌ β Rng β ((πΌ β Rng β§ βπ₯ β (BaseβπΌ)βπ¦ β (BaseβπΌ)((π₯(.rβπΌ)π¦) = π¦ β§ (π¦(.rβπΌ)π₯) = π¦)) β βπ₯ β (BaseβπΌ)βπ¦ β (BaseβπΌ)((π₯(.rβπΌ)π¦) = π¦ β§ (π¦(.rβπΌ)π₯) = π¦))) |
12 | 11 | adantl 482 |
. . . 4
β’ (((π
β Domn β§ π β πΏ) β§ πΌ β Rng) β ((πΌ β Rng β§ βπ₯ β (BaseβπΌ)βπ¦ β (BaseβπΌ)((π₯(.rβπΌ)π¦) = π¦ β§ (π¦(.rβπΌ)π₯) = π¦)) β βπ₯ β (BaseβπΌ)βπ¦ β (BaseβπΌ)((π₯(.rβπΌ)π¦) = π¦ β§ (π¦(.rβπΌ)π₯) = π¦))) |
13 | | eqid 2732 |
. . . . . . . . . . . . . . . . . . . . 21
β’
(.rβπ
) = (.rβπ
) |
14 | 7, 13 | ressmulr 17248 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π β πΏ β (.rβπ
) = (.rβπΌ)) |
15 | 14 | eqcomd 2738 |
. . . . . . . . . . . . . . . . . . 19
β’ (π β πΏ β (.rβπΌ) = (.rβπ
)) |
16 | 15 | oveqd 7422 |
. . . . . . . . . . . . . . . . . 18
β’ (π β πΏ β (π₯(.rβπΌ)π¦) = (π₯(.rβπ
)π¦)) |
17 | 16 | eqeq1d 2734 |
. . . . . . . . . . . . . . . . 17
β’ (π β πΏ β ((π₯(.rβπΌ)π¦) = π¦ β (π₯(.rβπ
)π¦) = π¦)) |
18 | 15 | oveqd 7422 |
. . . . . . . . . . . . . . . . . 18
β’ (π β πΏ β (π¦(.rβπΌ)π₯) = (π¦(.rβπ
)π₯)) |
19 | 18 | eqeq1d 2734 |
. . . . . . . . . . . . . . . . 17
β’ (π β πΏ β ((π¦(.rβπΌ)π₯) = π¦ β (π¦(.rβπ
)π₯) = π¦)) |
20 | 17, 19 | anbi12d 631 |
. . . . . . . . . . . . . . . 16
β’ (π β πΏ β (((π₯(.rβπΌ)π¦) = π¦ β§ (π¦(.rβπΌ)π₯) = π¦) β ((π₯(.rβπ
)π¦) = π¦ β§ (π¦(.rβπ
)π₯) = π¦))) |
21 | 20 | ad2antlr 725 |
. . . . . . . . . . . . . . 15
β’ (((π
β Domn β§ π β πΏ) β§ πΌ β Rng) β (((π₯(.rβπΌ)π¦) = π¦ β§ (π¦(.rβπΌ)π₯) = π¦) β ((π₯(.rβπ
)π¦) = π¦ β§ (π¦(.rβπ
)π₯) = π¦))) |
22 | 21 | ad2antrr 724 |
. . . . . . . . . . . . . 14
β’
(((((π
β Domn
β§ π β πΏ) β§ πΌ β Rng) β§ Β¬ π = { 0 }) β§ π₯ β (BaseβπΌ)) β (((π₯(.rβπΌ)π¦) = π¦ β§ (π¦(.rβπΌ)π₯) = π¦) β ((π₯(.rβπ
)π¦) = π¦ β§ (π¦(.rβπ
)π₯) = π¦))) |
23 | 22 | ralbidv 3177 |
. . . . . . . . . . . . 13
β’
(((((π
β Domn
β§ π β πΏ) β§ πΌ β Rng) β§ Β¬ π = { 0 }) β§ π₯ β (BaseβπΌ)) β (βπ¦ β (BaseβπΌ)((π₯(.rβπΌ)π¦) = π¦ β§ (π¦(.rβπΌ)π₯) = π¦) β βπ¦ β (BaseβπΌ)((π₯(.rβπ
)π¦) = π¦ β§ (π¦(.rβπ
)π₯) = π¦))) |
24 | | simp-4l 781 |
. . . . . . . . . . . . . 14
β’
(((((π
β Domn
β§ π β πΏ) β§ πΌ β Rng) β§ Β¬ π = { 0 }) β§ π₯ β (BaseβπΌ)) β π
β Domn) |
25 | 6, 7 | lidlbas 46737 |
. . . . . . . . . . . . . . . . . . 19
β’ (π β πΏ β (BaseβπΌ) = π) |
26 | 25 | eleq1d 2818 |
. . . . . . . . . . . . . . . . . 18
β’ (π β πΏ β ((BaseβπΌ) β πΏ β π β πΏ)) |
27 | 26 | ibir 267 |
. . . . . . . . . . . . . . . . 17
β’ (π β πΏ β (BaseβπΌ) β πΏ) |
28 | 27 | ad3antlr 729 |
. . . . . . . . . . . . . . . 16
β’ ((((π
β Domn β§ π β πΏ) β§ πΌ β Rng) β§ Β¬ π = { 0 }) β
(BaseβπΌ) β πΏ) |
29 | 25 | ad2antlr 725 |
. . . . . . . . . . . . . . . . . . . 20
β’ (((π
β Domn β§ π β πΏ) β§ πΌ β Rng) β (BaseβπΌ) = π) |
30 | 29 | eqeq1d 2734 |
. . . . . . . . . . . . . . . . . . 19
β’ (((π
β Domn β§ π β πΏ) β§ πΌ β Rng) β ((BaseβπΌ) = { 0 } β π = { 0 })) |
31 | 30 | biimpd 228 |
. . . . . . . . . . . . . . . . . 18
β’ (((π
β Domn β§ π β πΏ) β§ πΌ β Rng) β ((BaseβπΌ) = { 0 } β π = { 0 })) |
32 | 31 | necon3bd 2954 |
. . . . . . . . . . . . . . . . 17
β’ (((π
β Domn β§ π β πΏ) β§ πΌ β Rng) β (Β¬ π = { 0 } β (BaseβπΌ) β { 0 })) |
33 | 32 | imp 407 |
. . . . . . . . . . . . . . . 16
β’ ((((π
β Domn β§ π β πΏ) β§ πΌ β Rng) β§ Β¬ π = { 0 }) β
(BaseβπΌ) β { 0
}) |
34 | 28, 33 | jca 512 |
. . . . . . . . . . . . . . 15
β’ ((((π
β Domn β§ π β πΏ) β§ πΌ β Rng) β§ Β¬ π = { 0 }) β
((BaseβπΌ) β
πΏ β§ (BaseβπΌ) β { 0 })) |
35 | 34 | adantr 481 |
. . . . . . . . . . . . . 14
β’
(((((π
β Domn
β§ π β πΏ) β§ πΌ β Rng) β§ Β¬ π = { 0 }) β§ π₯ β (BaseβπΌ)) β ((BaseβπΌ) β πΏ β§ (BaseβπΌ) β { 0 })) |
36 | | simpr 485 |
. . . . . . . . . . . . . 14
β’
(((((π
β Domn
β§ π β πΏ) β§ πΌ β Rng) β§ Β¬ π = { 0 }) β§ π₯ β (BaseβπΌ)) β π₯ β (BaseβπΌ)) |
37 | | eqid 2732 |
. . . . . . . . . . . . . . 15
β’
(1rβπ
) = (1rβπ
) |
38 | | zlidlring.0 |
. . . . . . . . . . . . . . 15
β’ 0 =
(0gβπ
) |
39 | 6, 13, 37, 38 | lidldomn1 46776 |
. . . . . . . . . . . . . 14
β’ ((π
β Domn β§
((BaseβπΌ) β
πΏ β§ (BaseβπΌ) β { 0 }) β§ π₯ β (BaseβπΌ)) β (βπ¦ β (BaseβπΌ)((π₯(.rβπ
)π¦) = π¦ β§ (π¦(.rβπ
)π₯) = π¦) β π₯ = (1rβπ
))) |
40 | 24, 35, 36, 39 | syl3anc 1371 |
. . . . . . . . . . . . 13
β’
(((((π
β Domn
β§ π β πΏ) β§ πΌ β Rng) β§ Β¬ π = { 0 }) β§ π₯ β (BaseβπΌ)) β (βπ¦ β (BaseβπΌ)((π₯(.rβπ
)π¦) = π¦ β§ (π¦(.rβπ
)π₯) = π¦) β π₯ = (1rβπ
))) |
41 | 23, 40 | sylbid 239 |
. . . . . . . . . . . 12
β’
(((((π
β Domn
β§ π β πΏ) β§ πΌ β Rng) β§ Β¬ π = { 0 }) β§ π₯ β (BaseβπΌ)) β (βπ¦ β (BaseβπΌ)((π₯(.rβπΌ)π¦) = π¦ β§ (π¦(.rβπΌ)π₯) = π¦) β π₯ = (1rβπ
))) |
42 | 41 | imp 407 |
. . . . . . . . . . 11
β’
((((((π
β Domn
β§ π β πΏ) β§ πΌ β Rng) β§ Β¬ π = { 0 }) β§ π₯ β (BaseβπΌ)) β§ βπ¦ β (BaseβπΌ)((π₯(.rβπΌ)π¦) = π¦ β§ (π¦(.rβπΌ)π₯) = π¦)) β π₯ = (1rβπ
)) |
43 | 25 | ad3antlr 729 |
. . . . . . . . . . . . . . 15
β’ ((((π
β Domn β§ π β πΏ) β§ πΌ β Rng) β§ Β¬ π = { 0 }) β
(BaseβπΌ) = π) |
44 | 43 | eleq2d 2819 |
. . . . . . . . . . . . . 14
β’ ((((π
β Domn β§ π β πΏ) β§ πΌ β Rng) β§ Β¬ π = { 0 }) β (π₯ β (BaseβπΌ) β π₯ β π)) |
45 | 44 | biimpd 228 |
. . . . . . . . . . . . 13
β’ ((((π
β Domn β§ π β πΏ) β§ πΌ β Rng) β§ Β¬ π = { 0 }) β (π₯ β (BaseβπΌ) β π₯ β π)) |
46 | 45 | imp 407 |
. . . . . . . . . . . 12
β’
(((((π
β Domn
β§ π β πΏ) β§ πΌ β Rng) β§ Β¬ π = { 0 }) β§ π₯ β (BaseβπΌ)) β π₯ β π) |
47 | 46 | adantr 481 |
. . . . . . . . . . 11
β’
((((((π
β Domn
β§ π β πΏ) β§ πΌ β Rng) β§ Β¬ π = { 0 }) β§ π₯ β (BaseβπΌ)) β§ βπ¦ β (BaseβπΌ)((π₯(.rβπΌ)π¦) = π¦ β§ (π¦(.rβπΌ)π₯) = π¦)) β π₯ β π) |
48 | 42, 47 | eqeltrrd 2834 |
. . . . . . . . . 10
β’
((((((π
β Domn
β§ π β πΏ) β§ πΌ β Rng) β§ Β¬ π = { 0 }) β§ π₯ β (BaseβπΌ)) β§ βπ¦ β (BaseβπΌ)((π₯(.rβπΌ)π¦) = π¦ β§ (π¦(.rβπΌ)π₯) = π¦)) β (1rβπ
) β π) |
49 | 48 | rexlimdva2 3157 |
. . . . . . . . 9
β’ ((((π
β Domn β§ π β πΏ) β§ πΌ β Rng) β§ Β¬ π = { 0 }) β (βπ₯ β (BaseβπΌ)βπ¦ β (BaseβπΌ)((π₯(.rβπΌ)π¦) = π¦ β§ (π¦(.rβπΌ)π₯) = π¦) β (1rβπ
) β π)) |
50 | 49 | impancom 452 |
. . . . . . . 8
β’ ((((π
β Domn β§ π β πΏ) β§ πΌ β Rng) β§ βπ₯ β (BaseβπΌ)βπ¦ β (BaseβπΌ)((π₯(.rβπΌ)π¦) = π¦ β§ (π¦(.rβπΌ)π₯) = π¦)) β (Β¬ π = { 0 } β
(1rβπ
)
β π)) |
51 | 5 | adantr 481 |
. . . . . . . . . 10
β’ (((π
β Domn β§ π β πΏ) β§ πΌ β Rng) β (π
β Ring β§ π β πΏ)) |
52 | | zlidlring.b |
. . . . . . . . . . 11
β’ π΅ = (Baseβπ
) |
53 | 6, 52, 37 | lidl1el 20833 |
. . . . . . . . . 10
β’ ((π
β Ring β§ π β πΏ) β ((1rβπ
) β π β π = π΅)) |
54 | 51, 53 | syl 17 |
. . . . . . . . 9
β’ (((π
β Domn β§ π β πΏ) β§ πΌ β Rng) β
((1rβπ
)
β π β π = π΅)) |
55 | 54 | adantr 481 |
. . . . . . . 8
β’ ((((π
β Domn β§ π β πΏ) β§ πΌ β Rng) β§ βπ₯ β (BaseβπΌ)βπ¦ β (BaseβπΌ)((π₯(.rβπΌ)π¦) = π¦ β§ (π¦(.rβπΌ)π₯) = π¦)) β ((1rβπ
) β π β π = π΅)) |
56 | 50, 55 | sylibd 238 |
. . . . . . 7
β’ ((((π
β Domn β§ π β πΏ) β§ πΌ β Rng) β§ βπ₯ β (BaseβπΌ)βπ¦ β (BaseβπΌ)((π₯(.rβπΌ)π¦) = π¦ β§ (π¦(.rβπΌ)π₯) = π¦)) β (Β¬ π = { 0 } β π = π΅)) |
57 | 56 | orrd 861 |
. . . . . 6
β’ ((((π
β Domn β§ π β πΏ) β§ πΌ β Rng) β§ βπ₯ β (BaseβπΌ)βπ¦ β (BaseβπΌ)((π₯(.rβπΌ)π¦) = π¦ β§ (π¦(.rβπΌ)π₯) = π¦)) β (π = { 0 } β¨ π = π΅)) |
58 | 57 | ex 413 |
. . . . 5
β’ (((π
β Domn β§ π β πΏ) β§ πΌ β Rng) β (βπ₯ β (BaseβπΌ)βπ¦ β (BaseβπΌ)((π₯(.rβπΌ)π¦) = π¦ β§ (π¦(.rβπΌ)π₯) = π¦) β (π = { 0 } β¨ π = π΅))) |
59 | 6, 7, 52, 38 | zlidlring 46779 |
. . . . . . . . . 10
β’ ((π
β Ring β§ π = { 0 }) β πΌ β Ring) |
60 | 3 | simprbi 497 |
. . . . . . . . . 10
β’ (πΌ β Ring β βπ₯ β (BaseβπΌ)βπ¦ β (BaseβπΌ)((π₯(.rβπΌ)π¦) = π¦ β§ (π¦(.rβπΌ)π₯) = π¦)) |
61 | 59, 60 | syl 17 |
. . . . . . . . 9
β’ ((π
β Ring β§ π = { 0 }) β βπ₯ β (BaseβπΌ)βπ¦ β (BaseβπΌ)((π₯(.rβπΌ)π¦) = π¦ β§ (π¦(.rβπΌ)π₯) = π¦)) |
62 | 61 | ex 413 |
. . . . . . . 8
β’ (π
β Ring β (π = { 0 } β βπ₯ β (BaseβπΌ)βπ¦ β (BaseβπΌ)((π₯(.rβπΌ)π¦) = π¦ β§ (π¦(.rβπΌ)π₯) = π¦))) |
63 | 4, 62 | syl 17 |
. . . . . . 7
β’ (π
β Domn β (π = { 0 } β βπ₯ β (BaseβπΌ)βπ¦ β (BaseβπΌ)((π₯(.rβπΌ)π¦) = π¦ β§ (π¦(.rβπΌ)π₯) = π¦))) |
64 | 63 | ad2antrr 724 |
. . . . . 6
β’ (((π
β Domn β§ π β πΏ) β§ πΌ β Rng) β (π = { 0 } β βπ₯ β (BaseβπΌ)βπ¦ β (BaseβπΌ)((π₯(.rβπΌ)π¦) = π¦ β§ (π¦(.rβπΌ)π₯) = π¦))) |
65 | 5 | anim1i 615 |
. . . . . . 7
β’ (((π
β Domn β§ π β πΏ) β§ πΌ β Rng) β ((π
β Ring β§ π β πΏ) β§ πΌ β Rng)) |
66 | 52, 13 | ringideu 20070 |
. . . . . . . . . . . 12
β’ (π
β Ring β
β!π₯ β π΅ βπ¦ β π΅ ((π₯(.rβπ
)π¦) = π¦ β§ (π¦(.rβπ
)π₯) = π¦)) |
67 | | reurex 3380 |
. . . . . . . . . . . 12
β’
(β!π₯ β
π΅ βπ¦ β π΅ ((π₯(.rβπ
)π¦) = π¦ β§ (π¦(.rβπ
)π₯) = π¦) β βπ₯ β π΅ βπ¦ β π΅ ((π₯(.rβπ
)π¦) = π¦ β§ (π¦(.rβπ
)π₯) = π¦)) |
68 | 66, 67 | syl 17 |
. . . . . . . . . . 11
β’ (π
β Ring β βπ₯ β π΅ βπ¦ β π΅ ((π₯(.rβπ
)π¦) = π¦ β§ (π¦(.rβπ
)π₯) = π¦)) |
69 | 68 | adantr 481 |
. . . . . . . . . 10
β’ ((π
β Ring β§ π β πΏ) β βπ₯ β π΅ βπ¦ β π΅ ((π₯(.rβπ
)π¦) = π¦ β§ (π¦(.rβπ
)π₯) = π¦)) |
70 | 69 | ad2antrr 724 |
. . . . . . . . 9
β’ ((((π
β Ring β§ π β πΏ) β§ πΌ β Rng) β§ π = π΅) β βπ₯ β π΅ βπ¦ β π΅ ((π₯(.rβπ
)π¦) = π¦ β§ (π¦(.rβπ
)π₯) = π¦)) |
71 | 7, 52 | ressbas 17175 |
. . . . . . . . . . . 12
β’ (π β πΏ β (π β© π΅) = (BaseβπΌ)) |
72 | 71 | ad3antlr 729 |
. . . . . . . . . . 11
β’ ((((π
β Ring β§ π β πΏ) β§ πΌ β Rng) β§ π = π΅) β (π β© π΅) = (BaseβπΌ)) |
73 | | ineq1 4204 |
. . . . . . . . . . . . 13
β’ (π = π΅ β (π β© π΅) = (π΅ β© π΅)) |
74 | | inidm 4217 |
. . . . . . . . . . . . 13
β’ (π΅ β© π΅) = π΅ |
75 | 73, 74 | eqtrdi 2788 |
. . . . . . . . . . . 12
β’ (π = π΅ β (π β© π΅) = π΅) |
76 | 75 | adantl 482 |
. . . . . . . . . . 11
β’ ((((π
β Ring β§ π β πΏ) β§ πΌ β Rng) β§ π = π΅) β (π β© π΅) = π΅) |
77 | 72, 76 | eqtr3d 2774 |
. . . . . . . . . 10
β’ ((((π
β Ring β§ π β πΏ) β§ πΌ β Rng) β§ π = π΅) β (BaseβπΌ) = π΅) |
78 | 20 | ad3antlr 729 |
. . . . . . . . . . 11
β’ ((((π
β Ring β§ π β πΏ) β§ πΌ β Rng) β§ π = π΅) β (((π₯(.rβπΌ)π¦) = π¦ β§ (π¦(.rβπΌ)π₯) = π¦) β ((π₯(.rβπ
)π¦) = π¦ β§ (π¦(.rβπ
)π₯) = π¦))) |
79 | 77, 78 | raleqbidv 3342 |
. . . . . . . . . 10
β’ ((((π
β Ring β§ π β πΏ) β§ πΌ β Rng) β§ π = π΅) β (βπ¦ β (BaseβπΌ)((π₯(.rβπΌ)π¦) = π¦ β§ (π¦(.rβπΌ)π₯) = π¦) β βπ¦ β π΅ ((π₯(.rβπ
)π¦) = π¦ β§ (π¦(.rβπ
)π₯) = π¦))) |
80 | 77, 79 | rexeqbidv 3343 |
. . . . . . . . 9
β’ ((((π
β Ring β§ π β πΏ) β§ πΌ β Rng) β§ π = π΅) β (βπ₯ β (BaseβπΌ)βπ¦ β (BaseβπΌ)((π₯(.rβπΌ)π¦) = π¦ β§ (π¦(.rβπΌ)π₯) = π¦) β βπ₯ β π΅ βπ¦ β π΅ ((π₯(.rβπ
)π¦) = π¦ β§ (π¦(.rβπ
)π₯) = π¦))) |
81 | 70, 80 | mpbird 256 |
. . . . . . . 8
β’ ((((π
β Ring β§ π β πΏ) β§ πΌ β Rng) β§ π = π΅) β βπ₯ β (BaseβπΌ)βπ¦ β (BaseβπΌ)((π₯(.rβπΌ)π¦) = π¦ β§ (π¦(.rβπΌ)π₯) = π¦)) |
82 | 81 | ex 413 |
. . . . . . 7
β’ (((π
β Ring β§ π β πΏ) β§ πΌ β Rng) β (π = π΅ β βπ₯ β (BaseβπΌ)βπ¦ β (BaseβπΌ)((π₯(.rβπΌ)π¦) = π¦ β§ (π¦(.rβπΌ)π₯) = π¦))) |
83 | 65, 82 | syl 17 |
. . . . . 6
β’ (((π
β Domn β§ π β πΏ) β§ πΌ β Rng) β (π = π΅ β βπ₯ β (BaseβπΌ)βπ¦ β (BaseβπΌ)((π₯(.rβπΌ)π¦) = π¦ β§ (π¦(.rβπΌ)π₯) = π¦))) |
84 | 64, 83 | jaod 857 |
. . . . 5
β’ (((π
β Domn β§ π β πΏ) β§ πΌ β Rng) β ((π = { 0 } β¨ π = π΅) β βπ₯ β (BaseβπΌ)βπ¦ β (BaseβπΌ)((π₯(.rβπΌ)π¦) = π¦ β§ (π¦(.rβπΌ)π₯) = π¦))) |
85 | 58, 84 | impbid 211 |
. . . 4
β’ (((π
β Domn β§ π β πΏ) β§ πΌ β Rng) β (βπ₯ β (BaseβπΌ)βπ¦ β (BaseβπΌ)((π₯(.rβπΌ)π¦) = π¦ β§ (π¦(.rβπΌ)π₯) = π¦) β (π = { 0 } β¨ π = π΅))) |
86 | 12, 85 | bitrd 278 |
. . 3
β’ (((π
β Domn β§ π β πΏ) β§ πΌ β Rng) β ((πΌ β Rng β§ βπ₯ β (BaseβπΌ)βπ¦ β (BaseβπΌ)((π₯(.rβπΌ)π¦) = π¦ β§ (π¦(.rβπΌ)π₯) = π¦)) β (π = { 0 } β¨ π = π΅))) |
87 | 9, 86 | mpdan 685 |
. 2
β’ ((π
β Domn β§ π β πΏ) β ((πΌ β Rng β§ βπ₯ β (BaseβπΌ)βπ¦ β (BaseβπΌ)((π₯(.rβπΌ)π¦) = π¦ β§ (π¦(.rβπΌ)π₯) = π¦)) β (π = { 0 } β¨ π = π΅))) |
88 | 3, 87 | bitrid 282 |
1
β’ ((π
β Domn β§ π β πΏ) β (πΌ β Ring β (π = { 0 } β¨ π = π΅))) |