Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. . 3
⊢
(Base‘𝐼) =
(Base‘𝐼) |
2 | | eqid 2738 |
. . 3
⊢
(.r‘𝐼) = (.r‘𝐼) |
3 | 1, 2 | isringrng 45439 |
. 2
⊢ (𝐼 ∈ Ring ↔ (𝐼 ∈ Rng ∧ ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r‘𝐼)𝑦) = 𝑦 ∧ (𝑦(.r‘𝐼)𝑥) = 𝑦))) |
4 | | domnring 20567 |
. . . . 5
⊢ (𝑅 ∈ Domn → 𝑅 ∈ Ring) |
5 | 4 | anim1i 615 |
. . . 4
⊢ ((𝑅 ∈ Domn ∧ 𝑈 ∈ 𝐿) → (𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿)) |
6 | | lidlabl.l |
. . . . 5
⊢ 𝐿 = (LIdeal‘𝑅) |
7 | | lidlabl.i |
. . . . 5
⊢ 𝐼 = (𝑅 ↾s 𝑈) |
8 | 6, 7 | lidlrng 45485 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) → 𝐼 ∈ Rng) |
9 | 5, 8 | syl 17 |
. . 3
⊢ ((𝑅 ∈ Domn ∧ 𝑈 ∈ 𝐿) → 𝐼 ∈ Rng) |
10 | | ibar 529 |
. . . . . 6
⊢ (𝐼 ∈ Rng → (∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r‘𝐼)𝑦) = 𝑦 ∧ (𝑦(.r‘𝐼)𝑥) = 𝑦) ↔ (𝐼 ∈ Rng ∧ ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r‘𝐼)𝑦) = 𝑦 ∧ (𝑦(.r‘𝐼)𝑥) = 𝑦)))) |
11 | 10 | bicomd 222 |
. . . . 5
⊢ (𝐼 ∈ Rng → ((𝐼 ∈ Rng ∧ ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r‘𝐼)𝑦) = 𝑦 ∧ (𝑦(.r‘𝐼)𝑥) = 𝑦)) ↔ ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r‘𝐼)𝑦) = 𝑦 ∧ (𝑦(.r‘𝐼)𝑥) = 𝑦))) |
12 | 11 | adantl 482 |
. . . 4
⊢ (((𝑅 ∈ Domn ∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng) → ((𝐼 ∈ Rng ∧ ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r‘𝐼)𝑦) = 𝑦 ∧ (𝑦(.r‘𝐼)𝑥) = 𝑦)) ↔ ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r‘𝐼)𝑦) = 𝑦 ∧ (𝑦(.r‘𝐼)𝑥) = 𝑦))) |
13 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(.r‘𝑅) = (.r‘𝑅) |
14 | 7, 13 | ressmulr 17017 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑈 ∈ 𝐿 → (.r‘𝑅) = (.r‘𝐼)) |
15 | 14 | eqcomd 2744 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑈 ∈ 𝐿 → (.r‘𝐼) = (.r‘𝑅)) |
16 | 15 | oveqd 7292 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑈 ∈ 𝐿 → (𝑥(.r‘𝐼)𝑦) = (𝑥(.r‘𝑅)𝑦)) |
17 | 16 | eqeq1d 2740 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑈 ∈ 𝐿 → ((𝑥(.r‘𝐼)𝑦) = 𝑦 ↔ (𝑥(.r‘𝑅)𝑦) = 𝑦)) |
18 | 15 | oveqd 7292 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑈 ∈ 𝐿 → (𝑦(.r‘𝐼)𝑥) = (𝑦(.r‘𝑅)𝑥)) |
19 | 18 | eqeq1d 2740 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑈 ∈ 𝐿 → ((𝑦(.r‘𝐼)𝑥) = 𝑦 ↔ (𝑦(.r‘𝑅)𝑥) = 𝑦)) |
20 | 17, 19 | anbi12d 631 |
. . . . . . . . . . . . . . . 16
⊢ (𝑈 ∈ 𝐿 → (((𝑥(.r‘𝐼)𝑦) = 𝑦 ∧ (𝑦(.r‘𝐼)𝑥) = 𝑦) ↔ ((𝑥(.r‘𝑅)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑅)𝑥) = 𝑦))) |
21 | 20 | ad2antlr 724 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∈ Domn ∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng) → (((𝑥(.r‘𝐼)𝑦) = 𝑦 ∧ (𝑦(.r‘𝐼)𝑥) = 𝑦) ↔ ((𝑥(.r‘𝑅)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑅)𝑥) = 𝑦))) |
22 | 21 | ad2antrr 723 |
. . . . . . . . . . . . . 14
⊢
(((((𝑅 ∈ Domn
∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng) ∧ ¬ 𝑈 = { 0 }) ∧ 𝑥 ∈ (Base‘𝐼)) → (((𝑥(.r‘𝐼)𝑦) = 𝑦 ∧ (𝑦(.r‘𝐼)𝑥) = 𝑦) ↔ ((𝑥(.r‘𝑅)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑅)𝑥) = 𝑦))) |
23 | 22 | ralbidv 3112 |
. . . . . . . . . . . . 13
⊢
(((((𝑅 ∈ Domn
∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng) ∧ ¬ 𝑈 = { 0 }) ∧ 𝑥 ∈ (Base‘𝐼)) → (∀𝑦 ∈ (Base‘𝐼)((𝑥(.r‘𝐼)𝑦) = 𝑦 ∧ (𝑦(.r‘𝐼)𝑥) = 𝑦) ↔ ∀𝑦 ∈ (Base‘𝐼)((𝑥(.r‘𝑅)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑅)𝑥) = 𝑦))) |
24 | | simp-4l 780 |
. . . . . . . . . . . . . 14
⊢
(((((𝑅 ∈ Domn
∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng) ∧ ¬ 𝑈 = { 0 }) ∧ 𝑥 ∈ (Base‘𝐼)) → 𝑅 ∈ Domn) |
25 | 6, 7 | lidlbas 45481 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑈 ∈ 𝐿 → (Base‘𝐼) = 𝑈) |
26 | 25 | eleq1d 2823 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑈 ∈ 𝐿 → ((Base‘𝐼) ∈ 𝐿 ↔ 𝑈 ∈ 𝐿)) |
27 | 26 | ibir 267 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑈 ∈ 𝐿 → (Base‘𝐼) ∈ 𝐿) |
28 | 27 | ad3antlr 728 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑅 ∈ Domn ∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng) ∧ ¬ 𝑈 = { 0 }) →
(Base‘𝐼) ∈ 𝐿) |
29 | 25 | ad2antlr 724 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑅 ∈ Domn ∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng) → (Base‘𝐼) = 𝑈) |
30 | 29 | eqeq1d 2740 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑅 ∈ Domn ∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng) → ((Base‘𝐼) = { 0 } ↔ 𝑈 = { 0 })) |
31 | 30 | biimpd 228 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑅 ∈ Domn ∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng) → ((Base‘𝐼) = { 0 } → 𝑈 = { 0 })) |
32 | 31 | necon3bd 2957 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑅 ∈ Domn ∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng) → (¬ 𝑈 = { 0 } → (Base‘𝐼) ≠ { 0 })) |
33 | 32 | imp 407 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑅 ∈ Domn ∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng) ∧ ¬ 𝑈 = { 0 }) →
(Base‘𝐼) ≠ { 0
}) |
34 | 28, 33 | jca 512 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑅 ∈ Domn ∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng) ∧ ¬ 𝑈 = { 0 }) →
((Base‘𝐼) ∈
𝐿 ∧ (Base‘𝐼) ≠ { 0 })) |
35 | 34 | adantr 481 |
. . . . . . . . . . . . . 14
⊢
(((((𝑅 ∈ Domn
∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng) ∧ ¬ 𝑈 = { 0 }) ∧ 𝑥 ∈ (Base‘𝐼)) → ((Base‘𝐼) ∈ 𝐿 ∧ (Base‘𝐼) ≠ { 0 })) |
36 | | simpr 485 |
. . . . . . . . . . . . . 14
⊢
(((((𝑅 ∈ Domn
∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng) ∧ ¬ 𝑈 = { 0 }) ∧ 𝑥 ∈ (Base‘𝐼)) → 𝑥 ∈ (Base‘𝐼)) |
37 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢
(1r‘𝑅) = (1r‘𝑅) |
38 | | zlidlring.0 |
. . . . . . . . . . . . . . 15
⊢ 0 =
(0g‘𝑅) |
39 | 6, 13, 37, 38 | lidldomn1 45479 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ Domn ∧
((Base‘𝐼) ∈
𝐿 ∧ (Base‘𝐼) ≠ { 0 }) ∧ 𝑥 ∈ (Base‘𝐼)) → (∀𝑦 ∈ (Base‘𝐼)((𝑥(.r‘𝑅)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑅)𝑥) = 𝑦) → 𝑥 = (1r‘𝑅))) |
40 | 24, 35, 36, 39 | syl3anc 1370 |
. . . . . . . . . . . . 13
⊢
(((((𝑅 ∈ Domn
∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng) ∧ ¬ 𝑈 = { 0 }) ∧ 𝑥 ∈ (Base‘𝐼)) → (∀𝑦 ∈ (Base‘𝐼)((𝑥(.r‘𝑅)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑅)𝑥) = 𝑦) → 𝑥 = (1r‘𝑅))) |
41 | 23, 40 | sylbid 239 |
. . . . . . . . . . . 12
⊢
(((((𝑅 ∈ Domn
∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng) ∧ ¬ 𝑈 = { 0 }) ∧ 𝑥 ∈ (Base‘𝐼)) → (∀𝑦 ∈ (Base‘𝐼)((𝑥(.r‘𝐼)𝑦) = 𝑦 ∧ (𝑦(.r‘𝐼)𝑥) = 𝑦) → 𝑥 = (1r‘𝑅))) |
42 | 41 | imp 407 |
. . . . . . . . . . 11
⊢
((((((𝑅 ∈ Domn
∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng) ∧ ¬ 𝑈 = { 0 }) ∧ 𝑥 ∈ (Base‘𝐼)) ∧ ∀𝑦 ∈ (Base‘𝐼)((𝑥(.r‘𝐼)𝑦) = 𝑦 ∧ (𝑦(.r‘𝐼)𝑥) = 𝑦)) → 𝑥 = (1r‘𝑅)) |
43 | 25 | ad3antlr 728 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑅 ∈ Domn ∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng) ∧ ¬ 𝑈 = { 0 }) →
(Base‘𝐼) = 𝑈) |
44 | 43 | eleq2d 2824 |
. . . . . . . . . . . . . 14
⊢ ((((𝑅 ∈ Domn ∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng) ∧ ¬ 𝑈 = { 0 }) → (𝑥 ∈ (Base‘𝐼) ↔ 𝑥 ∈ 𝑈)) |
45 | 44 | biimpd 228 |
. . . . . . . . . . . . 13
⊢ ((((𝑅 ∈ Domn ∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng) ∧ ¬ 𝑈 = { 0 }) → (𝑥 ∈ (Base‘𝐼) → 𝑥 ∈ 𝑈)) |
46 | 45 | imp 407 |
. . . . . . . . . . . 12
⊢
(((((𝑅 ∈ Domn
∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng) ∧ ¬ 𝑈 = { 0 }) ∧ 𝑥 ∈ (Base‘𝐼)) → 𝑥 ∈ 𝑈) |
47 | 46 | adantr 481 |
. . . . . . . . . . 11
⊢
((((((𝑅 ∈ Domn
∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng) ∧ ¬ 𝑈 = { 0 }) ∧ 𝑥 ∈ (Base‘𝐼)) ∧ ∀𝑦 ∈ (Base‘𝐼)((𝑥(.r‘𝐼)𝑦) = 𝑦 ∧ (𝑦(.r‘𝐼)𝑥) = 𝑦)) → 𝑥 ∈ 𝑈) |
48 | 42, 47 | eqeltrrd 2840 |
. . . . . . . . . 10
⊢
((((((𝑅 ∈ Domn
∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng) ∧ ¬ 𝑈 = { 0 }) ∧ 𝑥 ∈ (Base‘𝐼)) ∧ ∀𝑦 ∈ (Base‘𝐼)((𝑥(.r‘𝐼)𝑦) = 𝑦 ∧ (𝑦(.r‘𝐼)𝑥) = 𝑦)) → (1r‘𝑅) ∈ 𝑈) |
49 | 48 | rexlimdva2 3216 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ Domn ∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng) ∧ ¬ 𝑈 = { 0 }) → (∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r‘𝐼)𝑦) = 𝑦 ∧ (𝑦(.r‘𝐼)𝑥) = 𝑦) → (1r‘𝑅) ∈ 𝑈)) |
50 | 49 | impancom 452 |
. . . . . . . 8
⊢ ((((𝑅 ∈ Domn ∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng) ∧ ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r‘𝐼)𝑦) = 𝑦 ∧ (𝑦(.r‘𝐼)𝑥) = 𝑦)) → (¬ 𝑈 = { 0 } →
(1r‘𝑅)
∈ 𝑈)) |
51 | 5 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Domn ∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng) → (𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿)) |
52 | | zlidlring.b |
. . . . . . . . . . 11
⊢ 𝐵 = (Base‘𝑅) |
53 | 6, 52, 37 | lidl1el 20489 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) → ((1r‘𝑅) ∈ 𝑈 ↔ 𝑈 = 𝐵)) |
54 | 51, 53 | syl 17 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Domn ∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng) →
((1r‘𝑅)
∈ 𝑈 ↔ 𝑈 = 𝐵)) |
55 | 54 | adantr 481 |
. . . . . . . 8
⊢ ((((𝑅 ∈ Domn ∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng) ∧ ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r‘𝐼)𝑦) = 𝑦 ∧ (𝑦(.r‘𝐼)𝑥) = 𝑦)) → ((1r‘𝑅) ∈ 𝑈 ↔ 𝑈 = 𝐵)) |
56 | 50, 55 | sylibd 238 |
. . . . . . 7
⊢ ((((𝑅 ∈ Domn ∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng) ∧ ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r‘𝐼)𝑦) = 𝑦 ∧ (𝑦(.r‘𝐼)𝑥) = 𝑦)) → (¬ 𝑈 = { 0 } → 𝑈 = 𝐵)) |
57 | 56 | orrd 860 |
. . . . . 6
⊢ ((((𝑅 ∈ Domn ∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng) ∧ ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r‘𝐼)𝑦) = 𝑦 ∧ (𝑦(.r‘𝐼)𝑥) = 𝑦)) → (𝑈 = { 0 } ∨ 𝑈 = 𝐵)) |
58 | 57 | ex 413 |
. . . . 5
⊢ (((𝑅 ∈ Domn ∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng) → (∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r‘𝐼)𝑦) = 𝑦 ∧ (𝑦(.r‘𝐼)𝑥) = 𝑦) → (𝑈 = { 0 } ∨ 𝑈 = 𝐵))) |
59 | 6, 7, 52, 38 | zlidlring 45486 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → 𝐼 ∈ Ring) |
60 | 3 | simprbi 497 |
. . . . . . . . . 10
⊢ (𝐼 ∈ Ring → ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r‘𝐼)𝑦) = 𝑦 ∧ (𝑦(.r‘𝐼)𝑥) = 𝑦)) |
61 | 59, 60 | syl 17 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r‘𝐼)𝑦) = 𝑦 ∧ (𝑦(.r‘𝐼)𝑥) = 𝑦)) |
62 | 61 | ex 413 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring → (𝑈 = { 0 } → ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r‘𝐼)𝑦) = 𝑦 ∧ (𝑦(.r‘𝐼)𝑥) = 𝑦))) |
63 | 4, 62 | syl 17 |
. . . . . . 7
⊢ (𝑅 ∈ Domn → (𝑈 = { 0 } → ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r‘𝐼)𝑦) = 𝑦 ∧ (𝑦(.r‘𝐼)𝑥) = 𝑦))) |
64 | 63 | ad2antrr 723 |
. . . . . 6
⊢ (((𝑅 ∈ Domn ∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng) → (𝑈 = { 0 } → ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r‘𝐼)𝑦) = 𝑦 ∧ (𝑦(.r‘𝐼)𝑥) = 𝑦))) |
65 | 5 | anim1i 615 |
. . . . . . 7
⊢ (((𝑅 ∈ Domn ∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng) → ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng)) |
66 | 52, 13 | ringideu 19804 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ Ring →
∃!𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥(.r‘𝑅)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑅)𝑥) = 𝑦)) |
67 | | reurex 3362 |
. . . . . . . . . . . 12
⊢
(∃!𝑥 ∈
𝐵 ∀𝑦 ∈ 𝐵 ((𝑥(.r‘𝑅)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑅)𝑥) = 𝑦) → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥(.r‘𝑅)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑅)𝑥) = 𝑦)) |
68 | 66, 67 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ Ring → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥(.r‘𝑅)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑅)𝑥) = 𝑦)) |
69 | 68 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥(.r‘𝑅)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑅)𝑥) = 𝑦)) |
70 | 69 | ad2antrr 723 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng) ∧ 𝑈 = 𝐵) → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥(.r‘𝑅)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑅)𝑥) = 𝑦)) |
71 | 7, 52 | ressbas 16947 |
. . . . . . . . . . . 12
⊢ (𝑈 ∈ 𝐿 → (𝑈 ∩ 𝐵) = (Base‘𝐼)) |
72 | 71 | ad3antlr 728 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng) ∧ 𝑈 = 𝐵) → (𝑈 ∩ 𝐵) = (Base‘𝐼)) |
73 | | ineq1 4139 |
. . . . . . . . . . . . 13
⊢ (𝑈 = 𝐵 → (𝑈 ∩ 𝐵) = (𝐵 ∩ 𝐵)) |
74 | | inidm 4152 |
. . . . . . . . . . . . 13
⊢ (𝐵 ∩ 𝐵) = 𝐵 |
75 | 73, 74 | eqtrdi 2794 |
. . . . . . . . . . . 12
⊢ (𝑈 = 𝐵 → (𝑈 ∩ 𝐵) = 𝐵) |
76 | 75 | adantl 482 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng) ∧ 𝑈 = 𝐵) → (𝑈 ∩ 𝐵) = 𝐵) |
77 | 72, 76 | eqtr3d 2780 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng) ∧ 𝑈 = 𝐵) → (Base‘𝐼) = 𝐵) |
78 | 20 | ad3antlr 728 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng) ∧ 𝑈 = 𝐵) → (((𝑥(.r‘𝐼)𝑦) = 𝑦 ∧ (𝑦(.r‘𝐼)𝑥) = 𝑦) ↔ ((𝑥(.r‘𝑅)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑅)𝑥) = 𝑦))) |
79 | 77, 78 | raleqbidv 3336 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng) ∧ 𝑈 = 𝐵) → (∀𝑦 ∈ (Base‘𝐼)((𝑥(.r‘𝐼)𝑦) = 𝑦 ∧ (𝑦(.r‘𝐼)𝑥) = 𝑦) ↔ ∀𝑦 ∈ 𝐵 ((𝑥(.r‘𝑅)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑅)𝑥) = 𝑦))) |
80 | 77, 79 | rexeqbidv 3337 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng) ∧ 𝑈 = 𝐵) → (∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r‘𝐼)𝑦) = 𝑦 ∧ (𝑦(.r‘𝐼)𝑥) = 𝑦) ↔ ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥(.r‘𝑅)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑅)𝑥) = 𝑦))) |
81 | 70, 80 | mpbird 256 |
. . . . . . . 8
⊢ ((((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng) ∧ 𝑈 = 𝐵) → ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r‘𝐼)𝑦) = 𝑦 ∧ (𝑦(.r‘𝐼)𝑥) = 𝑦)) |
82 | 81 | ex 413 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng) → (𝑈 = 𝐵 → ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r‘𝐼)𝑦) = 𝑦 ∧ (𝑦(.r‘𝐼)𝑥) = 𝑦))) |
83 | 65, 82 | syl 17 |
. . . . . 6
⊢ (((𝑅 ∈ Domn ∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng) → (𝑈 = 𝐵 → ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r‘𝐼)𝑦) = 𝑦 ∧ (𝑦(.r‘𝐼)𝑥) = 𝑦))) |
84 | 64, 83 | jaod 856 |
. . . . 5
⊢ (((𝑅 ∈ Domn ∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng) → ((𝑈 = { 0 } ∨ 𝑈 = 𝐵) → ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r‘𝐼)𝑦) = 𝑦 ∧ (𝑦(.r‘𝐼)𝑥) = 𝑦))) |
85 | 58, 84 | impbid 211 |
. . . 4
⊢ (((𝑅 ∈ Domn ∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng) → (∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r‘𝐼)𝑦) = 𝑦 ∧ (𝑦(.r‘𝐼)𝑥) = 𝑦) ↔ (𝑈 = { 0 } ∨ 𝑈 = 𝐵))) |
86 | 12, 85 | bitrd 278 |
. . 3
⊢ (((𝑅 ∈ Domn ∧ 𝑈 ∈ 𝐿) ∧ 𝐼 ∈ Rng) → ((𝐼 ∈ Rng ∧ ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r‘𝐼)𝑦) = 𝑦 ∧ (𝑦(.r‘𝐼)𝑥) = 𝑦)) ↔ (𝑈 = { 0 } ∨ 𝑈 = 𝐵))) |
87 | 9, 86 | mpdan 684 |
. 2
⊢ ((𝑅 ∈ Domn ∧ 𝑈 ∈ 𝐿) → ((𝐼 ∈ Rng ∧ ∃𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)((𝑥(.r‘𝐼)𝑦) = 𝑦 ∧ (𝑦(.r‘𝐼)𝑥) = 𝑦)) ↔ (𝑈 = { 0 } ∨ 𝑈 = 𝐵))) |
88 | 3, 87 | syl5bb 283 |
1
⊢ ((𝑅 ∈ Domn ∧ 𝑈 ∈ 𝐿) → (𝐼 ∈ Ring ↔ (𝑈 = { 0 } ∨ 𝑈 = 𝐵))) |