MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domneq0 Structured version   Visualization version   GIF version

Theorem domneq0 20627
Description: In a domain, a product is zero iff it has a zero factor. (Contributed by Mario Carneiro, 28-Mar-2015.)
Hypotheses
Ref Expression
domneq0.b 𝐵 = (Base‘𝑅)
domneq0.t · = (.r𝑅)
domneq0.z 0 = (0g𝑅)
Assertion
Ref Expression
domneq0 ((𝑅 ∈ Domn ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 · 𝑌) = 0 ↔ (𝑋 = 0𝑌 = 0 )))

Proof of Theorem domneq0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3simpc 1150 . . 3 ((𝑅 ∈ Domn ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐵𝑌𝐵))
2 domneq0.b . . . . . 6 𝐵 = (Base‘𝑅)
3 domneq0.t . . . . . 6 · = (.r𝑅)
4 domneq0.z . . . . . 6 0 = (0g𝑅)
52, 3, 4isdomn 20624 . . . . 5 (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 0 → (𝑥 = 0𝑦 = 0 ))))
65simprbi 496 . . . 4 (𝑅 ∈ Domn → ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 0 → (𝑥 = 0𝑦 = 0 )))
763ad2ant1 1133 . . 3 ((𝑅 ∈ Domn ∧ 𝑋𝐵𝑌𝐵) → ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 0 → (𝑥 = 0𝑦 = 0 )))
8 oveq1 7361 . . . . . 6 (𝑥 = 𝑋 → (𝑥 · 𝑦) = (𝑋 · 𝑦))
98eqeq1d 2735 . . . . 5 (𝑥 = 𝑋 → ((𝑥 · 𝑦) = 0 ↔ (𝑋 · 𝑦) = 0 ))
10 eqeq1 2737 . . . . . 6 (𝑥 = 𝑋 → (𝑥 = 0𝑋 = 0 ))
1110orbi1d 916 . . . . 5 (𝑥 = 𝑋 → ((𝑥 = 0𝑦 = 0 ) ↔ (𝑋 = 0𝑦 = 0 )))
129, 11imbi12d 344 . . . 4 (𝑥 = 𝑋 → (((𝑥 · 𝑦) = 0 → (𝑥 = 0𝑦 = 0 )) ↔ ((𝑋 · 𝑦) = 0 → (𝑋 = 0𝑦 = 0 ))))
13 oveq2 7362 . . . . . 6 (𝑦 = 𝑌 → (𝑋 · 𝑦) = (𝑋 · 𝑌))
1413eqeq1d 2735 . . . . 5 (𝑦 = 𝑌 → ((𝑋 · 𝑦) = 0 ↔ (𝑋 · 𝑌) = 0 ))
15 eqeq1 2737 . . . . . 6 (𝑦 = 𝑌 → (𝑦 = 0𝑌 = 0 ))
1615orbi2d 915 . . . . 5 (𝑦 = 𝑌 → ((𝑋 = 0𝑦 = 0 ) ↔ (𝑋 = 0𝑌 = 0 )))
1714, 16imbi12d 344 . . . 4 (𝑦 = 𝑌 → (((𝑋 · 𝑦) = 0 → (𝑋 = 0𝑦 = 0 )) ↔ ((𝑋 · 𝑌) = 0 → (𝑋 = 0𝑌 = 0 ))))
1812, 17rspc2va 3585 . . 3 (((𝑋𝐵𝑌𝐵) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 0 → (𝑥 = 0𝑦 = 0 ))) → ((𝑋 · 𝑌) = 0 → (𝑋 = 0𝑌 = 0 )))
191, 7, 18syl2anc 584 . 2 ((𝑅 ∈ Domn ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 · 𝑌) = 0 → (𝑋 = 0𝑌 = 0 )))
20 domnring 20626 . . . . . 6 (𝑅 ∈ Domn → 𝑅 ∈ Ring)
21203ad2ant1 1133 . . . . 5 ((𝑅 ∈ Domn ∧ 𝑋𝐵𝑌𝐵) → 𝑅 ∈ Ring)
22 simp3 1138 . . . . 5 ((𝑅 ∈ Domn ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
232, 3, 4ringlz 20215 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑌𝐵) → ( 0 · 𝑌) = 0 )
2421, 22, 23syl2anc 584 . . . 4 ((𝑅 ∈ Domn ∧ 𝑋𝐵𝑌𝐵) → ( 0 · 𝑌) = 0 )
25 oveq1 7361 . . . . 5 (𝑋 = 0 → (𝑋 · 𝑌) = ( 0 · 𝑌))
2625eqeq1d 2735 . . . 4 (𝑋 = 0 → ((𝑋 · 𝑌) = 0 ↔ ( 0 · 𝑌) = 0 ))
2724, 26syl5ibrcom 247 . . 3 ((𝑅 ∈ Domn ∧ 𝑋𝐵𝑌𝐵) → (𝑋 = 0 → (𝑋 · 𝑌) = 0 ))
28 simp2 1137 . . . . 5 ((𝑅 ∈ Domn ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
292, 3, 4ringrz 20216 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑋 · 0 ) = 0 )
3021, 28, 29syl2anc 584 . . . 4 ((𝑅 ∈ Domn ∧ 𝑋𝐵𝑌𝐵) → (𝑋 · 0 ) = 0 )
31 oveq2 7362 . . . . 5 (𝑌 = 0 → (𝑋 · 𝑌) = (𝑋 · 0 ))
3231eqeq1d 2735 . . . 4 (𝑌 = 0 → ((𝑋 · 𝑌) = 0 ↔ (𝑋 · 0 ) = 0 ))
3330, 32syl5ibrcom 247 . . 3 ((𝑅 ∈ Domn ∧ 𝑋𝐵𝑌𝐵) → (𝑌 = 0 → (𝑋 · 𝑌) = 0 ))
3427, 33jaod 859 . 2 ((𝑅 ∈ Domn ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 = 0𝑌 = 0 ) → (𝑋 · 𝑌) = 0 ))
3519, 34impbid 212 1 ((𝑅 ∈ Domn ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 · 𝑌) = 0 ↔ (𝑋 = 0𝑌 = 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2113  wral 3048  cfv 6488  (class class class)co 7354  Basecbs 17124  .rcmulr 17166  0gc0g 17347  Ringcrg 20155  NzRingcnzr 20431  Domncdomn 20611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7805  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-er 8630  df-en 8878  df-dom 8879  df-sdom 8880  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-nn 12135  df-2 12197  df-sets 17079  df-slot 17097  df-ndx 17109  df-base 17125  df-plusg 17178  df-0g 17349  df-mgm 18552  df-sgrp 18631  df-mnd 18647  df-grp 18853  df-minusg 18854  df-cmn 19698  df-abl 19699  df-mgp 20063  df-rng 20075  df-ur 20104  df-ring 20157  df-nzr 20432  df-domn 20614
This theorem is referenced by:  domnmuln0  20628  drngmul0or  20679  fidomndrnglem  20691  domnchr  21473  znidomb  21502  fta1glem2  26104  domnmuln0rd  33250  subrdom  33260  qsidomlem1  33426  minplyirred  33747  lidldomn1  48358
  Copyright terms: Public domain W3C validator