| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > domneq0 | Structured version Visualization version GIF version | ||
| Description: In a domain, a product is zero iff it has a zero factor. (Contributed by Mario Carneiro, 28-Mar-2015.) |
| Ref | Expression |
|---|---|
| domneq0.b | ⊢ 𝐵 = (Base‘𝑅) |
| domneq0.t | ⊢ · = (.r‘𝑅) |
| domneq0.z | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| domneq0 | ⊢ ((𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 · 𝑌) = 0 ↔ (𝑋 = 0 ∨ 𝑌 = 0 ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simpc 1150 | . . 3 ⊢ ((𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) | |
| 2 | domneq0.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
| 3 | domneq0.t | . . . . . 6 ⊢ · = (.r‘𝑅) | |
| 4 | domneq0.z | . . . . . 6 ⊢ 0 = (0g‘𝑅) | |
| 5 | 2, 3, 4 | isdomn 20621 | . . . . 5 ⊢ (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 0 → (𝑥 = 0 ∨ 𝑦 = 0 )))) |
| 6 | 5 | simprbi 496 | . . . 4 ⊢ (𝑅 ∈ Domn → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 0 → (𝑥 = 0 ∨ 𝑦 = 0 ))) |
| 7 | 6 | 3ad2ant1 1133 | . . 3 ⊢ ((𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 0 → (𝑥 = 0 ∨ 𝑦 = 0 ))) |
| 8 | oveq1 7353 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝑥 · 𝑦) = (𝑋 · 𝑦)) | |
| 9 | 8 | eqeq1d 2733 | . . . . 5 ⊢ (𝑥 = 𝑋 → ((𝑥 · 𝑦) = 0 ↔ (𝑋 · 𝑦) = 0 )) |
| 10 | eqeq1 2735 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝑥 = 0 ↔ 𝑋 = 0 )) | |
| 11 | 10 | orbi1d 916 | . . . . 5 ⊢ (𝑥 = 𝑋 → ((𝑥 = 0 ∨ 𝑦 = 0 ) ↔ (𝑋 = 0 ∨ 𝑦 = 0 ))) |
| 12 | 9, 11 | imbi12d 344 | . . . 4 ⊢ (𝑥 = 𝑋 → (((𝑥 · 𝑦) = 0 → (𝑥 = 0 ∨ 𝑦 = 0 )) ↔ ((𝑋 · 𝑦) = 0 → (𝑋 = 0 ∨ 𝑦 = 0 )))) |
| 13 | oveq2 7354 | . . . . . 6 ⊢ (𝑦 = 𝑌 → (𝑋 · 𝑦) = (𝑋 · 𝑌)) | |
| 14 | 13 | eqeq1d 2733 | . . . . 5 ⊢ (𝑦 = 𝑌 → ((𝑋 · 𝑦) = 0 ↔ (𝑋 · 𝑌) = 0 )) |
| 15 | eqeq1 2735 | . . . . . 6 ⊢ (𝑦 = 𝑌 → (𝑦 = 0 ↔ 𝑌 = 0 )) | |
| 16 | 15 | orbi2d 915 | . . . . 5 ⊢ (𝑦 = 𝑌 → ((𝑋 = 0 ∨ 𝑦 = 0 ) ↔ (𝑋 = 0 ∨ 𝑌 = 0 ))) |
| 17 | 14, 16 | imbi12d 344 | . . . 4 ⊢ (𝑦 = 𝑌 → (((𝑋 · 𝑦) = 0 → (𝑋 = 0 ∨ 𝑦 = 0 )) ↔ ((𝑋 · 𝑌) = 0 → (𝑋 = 0 ∨ 𝑌 = 0 )))) |
| 18 | 12, 17 | rspc2va 3589 | . . 3 ⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 0 → (𝑥 = 0 ∨ 𝑦 = 0 ))) → ((𝑋 · 𝑌) = 0 → (𝑋 = 0 ∨ 𝑌 = 0 ))) |
| 19 | 1, 7, 18 | syl2anc 584 | . 2 ⊢ ((𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 · 𝑌) = 0 → (𝑋 = 0 ∨ 𝑌 = 0 ))) |
| 20 | domnring 20623 | . . . . . 6 ⊢ (𝑅 ∈ Domn → 𝑅 ∈ Ring) | |
| 21 | 20 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑅 ∈ Ring) |
| 22 | simp3 1138 | . . . . 5 ⊢ ((𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
| 23 | 2, 3, 4 | ringlz 20212 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵) → ( 0 · 𝑌) = 0 ) |
| 24 | 21, 22, 23 | syl2anc 584 | . . . 4 ⊢ ((𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( 0 · 𝑌) = 0 ) |
| 25 | oveq1 7353 | . . . . 5 ⊢ (𝑋 = 0 → (𝑋 · 𝑌) = ( 0 · 𝑌)) | |
| 26 | 25 | eqeq1d 2733 | . . . 4 ⊢ (𝑋 = 0 → ((𝑋 · 𝑌) = 0 ↔ ( 0 · 𝑌) = 0 )) |
| 27 | 24, 26 | syl5ibrcom 247 | . . 3 ⊢ ((𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 = 0 → (𝑋 · 𝑌) = 0 )) |
| 28 | simp2 1137 | . . . . 5 ⊢ ((𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 29 | 2, 3, 4 | ringrz 20213 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋 · 0 ) = 0 ) |
| 30 | 21, 28, 29 | syl2anc 584 | . . . 4 ⊢ ((𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 · 0 ) = 0 ) |
| 31 | oveq2 7354 | . . . . 5 ⊢ (𝑌 = 0 → (𝑋 · 𝑌) = (𝑋 · 0 )) | |
| 32 | 31 | eqeq1d 2733 | . . . 4 ⊢ (𝑌 = 0 → ((𝑋 · 𝑌) = 0 ↔ (𝑋 · 0 ) = 0 )) |
| 33 | 30, 32 | syl5ibrcom 247 | . . 3 ⊢ ((𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑌 = 0 → (𝑋 · 𝑌) = 0 )) |
| 34 | 27, 33 | jaod 859 | . 2 ⊢ ((𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 = 0 ∨ 𝑌 = 0 ) → (𝑋 · 𝑌) = 0 )) |
| 35 | 19, 34 | impbid 212 | 1 ⊢ ((𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 · 𝑌) = 0 ↔ (𝑋 = 0 ∨ 𝑌 = 0 ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 .rcmulr 17162 0gc0g 17343 Ringcrg 20152 NzRingcnzr 20428 Domncdomn 20608 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-grp 18849 df-minusg 18850 df-cmn 19695 df-abl 19696 df-mgp 20060 df-rng 20072 df-ur 20101 df-ring 20154 df-nzr 20429 df-domn 20611 |
| This theorem is referenced by: domnmuln0 20625 drngmul0or 20676 fidomndrnglem 20688 domnchr 21470 znidomb 21499 fta1glem2 26102 domnmuln0rd 33239 subrdom 33249 qsidomlem1 33415 minplyirred 33722 lidldomn1 48268 |
| Copyright terms: Public domain | W3C validator |