Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > domneq0 | Structured version Visualization version GIF version |
Description: In a domain, a product is zero iff it has a zero factor. (Contributed by Mario Carneiro, 28-Mar-2015.) |
Ref | Expression |
---|---|
domneq0.b | ⊢ 𝐵 = (Base‘𝑅) |
domneq0.t | ⊢ · = (.r‘𝑅) |
domneq0.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
domneq0 | ⊢ ((𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 · 𝑌) = 0 ↔ (𝑋 = 0 ∨ 𝑌 = 0 ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simpc 1152 | . . 3 ⊢ ((𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) | |
2 | domneq0.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
3 | domneq0.t | . . . . . 6 ⊢ · = (.r‘𝑅) | |
4 | domneq0.z | . . . . . 6 ⊢ 0 = (0g‘𝑅) | |
5 | 2, 3, 4 | isdomn 20332 | . . . . 5 ⊢ (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 0 → (𝑥 = 0 ∨ 𝑦 = 0 )))) |
6 | 5 | simprbi 500 | . . . 4 ⊢ (𝑅 ∈ Domn → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 0 → (𝑥 = 0 ∨ 𝑦 = 0 ))) |
7 | 6 | 3ad2ant1 1135 | . . 3 ⊢ ((𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 0 → (𝑥 = 0 ∨ 𝑦 = 0 ))) |
8 | oveq1 7220 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝑥 · 𝑦) = (𝑋 · 𝑦)) | |
9 | 8 | eqeq1d 2739 | . . . . 5 ⊢ (𝑥 = 𝑋 → ((𝑥 · 𝑦) = 0 ↔ (𝑋 · 𝑦) = 0 )) |
10 | eqeq1 2741 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝑥 = 0 ↔ 𝑋 = 0 )) | |
11 | 10 | orbi1d 917 | . . . . 5 ⊢ (𝑥 = 𝑋 → ((𝑥 = 0 ∨ 𝑦 = 0 ) ↔ (𝑋 = 0 ∨ 𝑦 = 0 ))) |
12 | 9, 11 | imbi12d 348 | . . . 4 ⊢ (𝑥 = 𝑋 → (((𝑥 · 𝑦) = 0 → (𝑥 = 0 ∨ 𝑦 = 0 )) ↔ ((𝑋 · 𝑦) = 0 → (𝑋 = 0 ∨ 𝑦 = 0 )))) |
13 | oveq2 7221 | . . . . . 6 ⊢ (𝑦 = 𝑌 → (𝑋 · 𝑦) = (𝑋 · 𝑌)) | |
14 | 13 | eqeq1d 2739 | . . . . 5 ⊢ (𝑦 = 𝑌 → ((𝑋 · 𝑦) = 0 ↔ (𝑋 · 𝑌) = 0 )) |
15 | eqeq1 2741 | . . . . . 6 ⊢ (𝑦 = 𝑌 → (𝑦 = 0 ↔ 𝑌 = 0 )) | |
16 | 15 | orbi2d 916 | . . . . 5 ⊢ (𝑦 = 𝑌 → ((𝑋 = 0 ∨ 𝑦 = 0 ) ↔ (𝑋 = 0 ∨ 𝑌 = 0 ))) |
17 | 14, 16 | imbi12d 348 | . . . 4 ⊢ (𝑦 = 𝑌 → (((𝑋 · 𝑦) = 0 → (𝑋 = 0 ∨ 𝑦 = 0 )) ↔ ((𝑋 · 𝑌) = 0 → (𝑋 = 0 ∨ 𝑌 = 0 )))) |
18 | 12, 17 | rspc2va 3548 | . . 3 ⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 0 → (𝑥 = 0 ∨ 𝑦 = 0 ))) → ((𝑋 · 𝑌) = 0 → (𝑋 = 0 ∨ 𝑌 = 0 ))) |
19 | 1, 7, 18 | syl2anc 587 | . 2 ⊢ ((𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 · 𝑌) = 0 → (𝑋 = 0 ∨ 𝑌 = 0 ))) |
20 | domnring 20334 | . . . . . 6 ⊢ (𝑅 ∈ Domn → 𝑅 ∈ Ring) | |
21 | 20 | 3ad2ant1 1135 | . . . . 5 ⊢ ((𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑅 ∈ Ring) |
22 | simp3 1140 | . . . . 5 ⊢ ((𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
23 | 2, 3, 4 | ringlz 19605 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵) → ( 0 · 𝑌) = 0 ) |
24 | 21, 22, 23 | syl2anc 587 | . . . 4 ⊢ ((𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( 0 · 𝑌) = 0 ) |
25 | oveq1 7220 | . . . . 5 ⊢ (𝑋 = 0 → (𝑋 · 𝑌) = ( 0 · 𝑌)) | |
26 | 25 | eqeq1d 2739 | . . . 4 ⊢ (𝑋 = 0 → ((𝑋 · 𝑌) = 0 ↔ ( 0 · 𝑌) = 0 )) |
27 | 24, 26 | syl5ibrcom 250 | . . 3 ⊢ ((𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 = 0 → (𝑋 · 𝑌) = 0 )) |
28 | simp2 1139 | . . . . 5 ⊢ ((𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
29 | 2, 3, 4 | ringrz 19606 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋 · 0 ) = 0 ) |
30 | 21, 28, 29 | syl2anc 587 | . . . 4 ⊢ ((𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 · 0 ) = 0 ) |
31 | oveq2 7221 | . . . . 5 ⊢ (𝑌 = 0 → (𝑋 · 𝑌) = (𝑋 · 0 )) | |
32 | 31 | eqeq1d 2739 | . . . 4 ⊢ (𝑌 = 0 → ((𝑋 · 𝑌) = 0 ↔ (𝑋 · 0 ) = 0 )) |
33 | 30, 32 | syl5ibrcom 250 | . . 3 ⊢ ((𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑌 = 0 → (𝑋 · 𝑌) = 0 )) |
34 | 27, 33 | jaod 859 | . 2 ⊢ ((𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 = 0 ∨ 𝑌 = 0 ) → (𝑋 · 𝑌) = 0 )) |
35 | 19, 34 | impbid 215 | 1 ⊢ ((𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 · 𝑌) = 0 ↔ (𝑋 = 0 ∨ 𝑌 = 0 ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∨ wo 847 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 ∀wral 3061 ‘cfv 6380 (class class class)co 7213 Basecbs 16760 .rcmulr 16803 0gc0g 16944 Ringcrg 19562 NzRingcnzr 20295 Domncdomn 20318 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-nn 11831 df-2 11893 df-sets 16717 df-slot 16735 df-ndx 16745 df-base 16761 df-plusg 16815 df-0g 16946 df-mgm 18114 df-sgrp 18163 df-mnd 18174 df-grp 18368 df-minusg 18369 df-mgp 19505 df-ring 19564 df-nzr 20296 df-domn 20322 |
This theorem is referenced by: domnmuln0 20336 opprdomn 20339 fidomndrnglem 20344 domnchr 20497 znidomb 20526 fta1glem2 25064 qsidomlem1 31342 lidldomn1 45152 |
Copyright terms: Public domain | W3C validator |