| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > primefldgen1 | Structured version Visualization version GIF version | ||
| Description: The prime field of a division ring is the subfield generated by the multiplicative identity element. In general, we should write "prime division ring", but since most later usages are in the case where the ambient ring is commutative, we keep the term "prime field". (Contributed by Thierry Arnoux, 11-Jan-2025.) |
| Ref | Expression |
|---|---|
| primefldgen1.b | ⊢ 𝐵 = (Base‘𝑅) |
| primefldgen1.1 | ⊢ 1 = (1r‘𝑅) |
| primefldgen1.r | ⊢ (𝜑 → 𝑅 ∈ DivRing) |
| Ref | Expression |
|---|---|
| primefldgen1 | ⊢ (𝜑 → ∩ (SubDRing‘𝑅) = (𝑅 fldGen { 1 })) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issdrg 20757 | . . . . . . . . 9 ⊢ (𝑎 ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ 𝑎 ∈ (SubRing‘𝑅) ∧ (𝑅 ↾s 𝑎) ∈ DivRing)) | |
| 2 | 1 | simp2bi 1146 | . . . . . . . 8 ⊢ (𝑎 ∈ (SubDRing‘𝑅) → 𝑎 ∈ (SubRing‘𝑅)) |
| 3 | primefldgen1.1 | . . . . . . . . 9 ⊢ 1 = (1r‘𝑅) | |
| 4 | 3 | subrg1cl 20548 | . . . . . . . 8 ⊢ (𝑎 ∈ (SubRing‘𝑅) → 1 ∈ 𝑎) |
| 5 | 2, 4 | syl 17 | . . . . . . 7 ⊢ (𝑎 ∈ (SubDRing‘𝑅) → 1 ∈ 𝑎) |
| 6 | 5 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ (SubDRing‘𝑅)) → 1 ∈ 𝑎) |
| 7 | 6 | snssd 4789 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ (SubDRing‘𝑅)) → { 1 } ⊆ 𝑎) |
| 8 | 7 | ralrimiva 3133 | . . . 4 ⊢ (𝜑 → ∀𝑎 ∈ (SubDRing‘𝑅){ 1 } ⊆ 𝑎) |
| 9 | rabid2 3453 | . . . 4 ⊢ ((SubDRing‘𝑅) = {𝑎 ∈ (SubDRing‘𝑅) ∣ { 1 } ⊆ 𝑎} ↔ ∀𝑎 ∈ (SubDRing‘𝑅){ 1 } ⊆ 𝑎) | |
| 10 | 8, 9 | sylibr 234 | . . 3 ⊢ (𝜑 → (SubDRing‘𝑅) = {𝑎 ∈ (SubDRing‘𝑅) ∣ { 1 } ⊆ 𝑎}) |
| 11 | 10 | inteqd 4931 | . 2 ⊢ (𝜑 → ∩ (SubDRing‘𝑅) = ∩ {𝑎 ∈ (SubDRing‘𝑅) ∣ { 1 } ⊆ 𝑎}) |
| 12 | primefldgen1.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 13 | primefldgen1.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ DivRing) | |
| 14 | 13 | drngringd 20705 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| 15 | 12, 3 | ringidcl 20230 | . . . . 5 ⊢ (𝑅 ∈ Ring → 1 ∈ 𝐵) |
| 16 | 14, 15 | syl 17 | . . . 4 ⊢ (𝜑 → 1 ∈ 𝐵) |
| 17 | 16 | snssd 4789 | . . 3 ⊢ (𝜑 → { 1 } ⊆ 𝐵) |
| 18 | 12, 13, 17 | fldgenval 33254 | . 2 ⊢ (𝜑 → (𝑅 fldGen { 1 }) = ∩ {𝑎 ∈ (SubDRing‘𝑅) ∣ { 1 } ⊆ 𝑎}) |
| 19 | 11, 18 | eqtr4d 2772 | 1 ⊢ (𝜑 → ∩ (SubDRing‘𝑅) = (𝑅 fldGen { 1 })) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3050 {crab 3419 ⊆ wss 3931 {csn 4606 ∩ cint 4926 ‘cfv 6541 (class class class)co 7413 Basecbs 17229 ↾s cress 17252 1rcur 20146 Ringcrg 20198 SubRingcsubrg 20537 DivRingcdr 20697 SubDRingcsdrg 20755 fldGen cfldgen 33252 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-2 12311 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17230 df-ress 17253 df-plusg 17286 df-0g 17457 df-mgm 18622 df-sgrp 18701 df-mnd 18717 df-mgp 20106 df-ur 20147 df-ring 20200 df-subrg 20538 df-drng 20699 df-sdrg 20756 df-fldgen 33253 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |