Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  primefldgen1 Structured version   Visualization version   GIF version

Theorem primefldgen1 33294
Description: The prime field of a division ring is the subfield generated by the multiplicative identity element. In general, we should write "prime division ring", but since most later usages are in the case where the ambient ring is commutative, we keep the term "prime field". (Contributed by Thierry Arnoux, 11-Jan-2025.)
Hypotheses
Ref Expression
primefldgen1.b 𝐵 = (Base‘𝑅)
primefldgen1.1 1 = (1r𝑅)
primefldgen1.r (𝜑𝑅 ∈ DivRing)
Assertion
Ref Expression
primefldgen1 (𝜑 (SubDRing‘𝑅) = (𝑅 fldGen { 1 }))

Proof of Theorem primefldgen1
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 issdrg 20709 . . . . . . . . 9 (𝑎 ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ 𝑎 ∈ (SubRing‘𝑅) ∧ (𝑅s 𝑎) ∈ DivRing))
21simp2bi 1146 . . . . . . . 8 (𝑎 ∈ (SubDRing‘𝑅) → 𝑎 ∈ (SubRing‘𝑅))
3 primefldgen1.1 . . . . . . . . 9 1 = (1r𝑅)
43subrg1cl 20501 . . . . . . . 8 (𝑎 ∈ (SubRing‘𝑅) → 1𝑎)
52, 4syl 17 . . . . . . 7 (𝑎 ∈ (SubDRing‘𝑅) → 1𝑎)
65adantl 481 . . . . . 6 ((𝜑𝑎 ∈ (SubDRing‘𝑅)) → 1𝑎)
76snssd 4760 . . . . 5 ((𝜑𝑎 ∈ (SubDRing‘𝑅)) → { 1 } ⊆ 𝑎)
87ralrimiva 3124 . . . 4 (𝜑 → ∀𝑎 ∈ (SubDRing‘𝑅){ 1 } ⊆ 𝑎)
9 rabid2 3428 . . . 4 ((SubDRing‘𝑅) = {𝑎 ∈ (SubDRing‘𝑅) ∣ { 1 } ⊆ 𝑎} ↔ ∀𝑎 ∈ (SubDRing‘𝑅){ 1 } ⊆ 𝑎)
108, 9sylibr 234 . . 3 (𝜑 → (SubDRing‘𝑅) = {𝑎 ∈ (SubDRing‘𝑅) ∣ { 1 } ⊆ 𝑎})
1110inteqd 4902 . 2 (𝜑 (SubDRing‘𝑅) = {𝑎 ∈ (SubDRing‘𝑅) ∣ { 1 } ⊆ 𝑎})
12 primefldgen1.b . . 3 𝐵 = (Base‘𝑅)
13 primefldgen1.r . . 3 (𝜑𝑅 ∈ DivRing)
1413drngringd 20658 . . . . 5 (𝜑𝑅 ∈ Ring)
1512, 3ringidcl 20189 . . . . 5 (𝑅 ∈ Ring → 1𝐵)
1614, 15syl 17 . . . 4 (𝜑1𝐵)
1716snssd 4760 . . 3 (𝜑 → { 1 } ⊆ 𝐵)
1812, 13, 17fldgenval 33285 . 2 (𝜑 → (𝑅 fldGen { 1 }) = {𝑎 ∈ (SubDRing‘𝑅) ∣ { 1 } ⊆ 𝑎})
1911, 18eqtr4d 2769 1 (𝜑 (SubDRing‘𝑅) = (𝑅 fldGen { 1 }))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047  {crab 3395  wss 3897  {csn 4575   cint 4897  cfv 6487  (class class class)co 7352  Basecbs 17126  s cress 17147  1rcur 20105  Ringcrg 20157  SubRingcsubrg 20490  DivRingcdr 20650  SubDRingcsdrg 20707   fldGen cfldgen 33283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11068  ax-resscn 11069  ax-1cn 11070  ax-icn 11071  ax-addcl 11072  ax-addrcl 11073  ax-mulcl 11074  ax-mulrcl 11075  ax-mulcom 11076  ax-addass 11077  ax-mulass 11078  ax-distr 11079  ax-i2m1 11080  ax-1ne0 11081  ax-1rid 11082  ax-rnegex 11083  ax-rrecex 11084  ax-cnre 11085  ax-pre-lttri 11086  ax-pre-lttrn 11087  ax-pre-ltadd 11088  ax-pre-mulgt0 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6254  df-ord 6315  df-on 6316  df-lim 6317  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11154  df-mnf 11155  df-xr 11156  df-ltxr 11157  df-le 11158  df-sub 11352  df-neg 11353  df-nn 12132  df-2 12194  df-sets 17081  df-slot 17099  df-ndx 17111  df-base 17127  df-ress 17148  df-plusg 17180  df-0g 17351  df-mgm 18554  df-sgrp 18633  df-mnd 18649  df-mgp 20065  df-ur 20106  df-ring 20159  df-subrg 20491  df-drng 20652  df-sdrg 20708  df-fldgen 33284
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator