| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > primefldgen1 | Structured version Visualization version GIF version | ||
| Description: The prime field of a division ring is the subfield generated by the multiplicative identity element. In general, we should write "prime division ring", but since most later usages are in the case where the ambient ring is commutative, we keep the term "prime field". (Contributed by Thierry Arnoux, 11-Jan-2025.) |
| Ref | Expression |
|---|---|
| primefldgen1.b | ⊢ 𝐵 = (Base‘𝑅) |
| primefldgen1.1 | ⊢ 1 = (1r‘𝑅) |
| primefldgen1.r | ⊢ (𝜑 → 𝑅 ∈ DivRing) |
| Ref | Expression |
|---|---|
| primefldgen1 | ⊢ (𝜑 → ∩ (SubDRing‘𝑅) = (𝑅 fldGen { 1 })) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issdrg 20657 | . . . . . . . . 9 ⊢ (𝑎 ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ 𝑎 ∈ (SubRing‘𝑅) ∧ (𝑅 ↾s 𝑎) ∈ DivRing)) | |
| 2 | 1 | simp2bi 1146 | . . . . . . . 8 ⊢ (𝑎 ∈ (SubDRing‘𝑅) → 𝑎 ∈ (SubRing‘𝑅)) |
| 3 | primefldgen1.1 | . . . . . . . . 9 ⊢ 1 = (1r‘𝑅) | |
| 4 | 3 | subrg1cl 20449 | . . . . . . . 8 ⊢ (𝑎 ∈ (SubRing‘𝑅) → 1 ∈ 𝑎) |
| 5 | 2, 4 | syl 17 | . . . . . . 7 ⊢ (𝑎 ∈ (SubDRing‘𝑅) → 1 ∈ 𝑎) |
| 6 | 5 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ (SubDRing‘𝑅)) → 1 ∈ 𝑎) |
| 7 | 6 | snssd 4758 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ (SubDRing‘𝑅)) → { 1 } ⊆ 𝑎) |
| 8 | 7 | ralrimiva 3121 | . . . 4 ⊢ (𝜑 → ∀𝑎 ∈ (SubDRing‘𝑅){ 1 } ⊆ 𝑎) |
| 9 | rabid2 3425 | . . . 4 ⊢ ((SubDRing‘𝑅) = {𝑎 ∈ (SubDRing‘𝑅) ∣ { 1 } ⊆ 𝑎} ↔ ∀𝑎 ∈ (SubDRing‘𝑅){ 1 } ⊆ 𝑎) | |
| 10 | 8, 9 | sylibr 234 | . . 3 ⊢ (𝜑 → (SubDRing‘𝑅) = {𝑎 ∈ (SubDRing‘𝑅) ∣ { 1 } ⊆ 𝑎}) |
| 11 | 10 | inteqd 4899 | . 2 ⊢ (𝜑 → ∩ (SubDRing‘𝑅) = ∩ {𝑎 ∈ (SubDRing‘𝑅) ∣ { 1 } ⊆ 𝑎}) |
| 12 | primefldgen1.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 13 | primefldgen1.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ DivRing) | |
| 14 | 13 | drngringd 20606 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| 15 | 12, 3 | ringidcl 20137 | . . . . 5 ⊢ (𝑅 ∈ Ring → 1 ∈ 𝐵) |
| 16 | 14, 15 | syl 17 | . . . 4 ⊢ (𝜑 → 1 ∈ 𝐵) |
| 17 | 16 | snssd 4758 | . . 3 ⊢ (𝜑 → { 1 } ⊆ 𝐵) |
| 18 | 12, 13, 17 | fldgenval 33246 | . 2 ⊢ (𝜑 → (𝑅 fldGen { 1 }) = ∩ {𝑎 ∈ (SubDRing‘𝑅) ∣ { 1 } ⊆ 𝑎}) |
| 19 | 11, 18 | eqtr4d 2767 | 1 ⊢ (𝜑 → ∩ (SubDRing‘𝑅) = (𝑅 fldGen { 1 })) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 {crab 3392 ⊆ wss 3899 {csn 4573 ∩ cint 4894 ‘cfv 6476 (class class class)co 7340 Basecbs 17107 ↾s cress 17128 1rcur 20053 Ringcrg 20105 SubRingcsubrg 20438 DivRingcdr 20598 SubDRingcsdrg 20655 fldGen cfldgen 33244 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5231 ax-nul 5241 ax-pow 5300 ax-pr 5367 ax-un 7662 ax-cnex 11053 ax-resscn 11054 ax-1cn 11055 ax-icn 11056 ax-addcl 11057 ax-addrcl 11058 ax-mulcl 11059 ax-mulrcl 11060 ax-mulcom 11061 ax-addass 11062 ax-mulass 11063 ax-distr 11064 ax-i2m1 11065 ax-1ne0 11066 ax-1rid 11067 ax-rnegex 11068 ax-rrecex 11069 ax-cnre 11070 ax-pre-lttri 11071 ax-pre-lttrn 11072 ax-pre-ltadd 11073 ax-pre-mulgt0 11074 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3393 df-v 3435 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4895 df-iun 4940 df-br 5089 df-opab 5151 df-mpt 5170 df-tr 5196 df-id 5508 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5566 df-we 5568 df-xp 5619 df-rel 5620 df-cnv 5621 df-co 5622 df-dm 5623 df-rn 5624 df-res 5625 df-ima 5626 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7297 df-ov 7343 df-oprab 7344 df-mpo 7345 df-om 7791 df-2nd 7916 df-frecs 8205 df-wrecs 8236 df-recs 8285 df-rdg 8323 df-er 8616 df-en 8864 df-dom 8865 df-sdom 8866 df-pnf 11139 df-mnf 11140 df-xr 11141 df-ltxr 11142 df-le 11143 df-sub 11337 df-neg 11338 df-nn 12117 df-2 12179 df-sets 17062 df-slot 17080 df-ndx 17092 df-base 17108 df-ress 17129 df-plusg 17161 df-0g 17332 df-mgm 18501 df-sgrp 18580 df-mnd 18596 df-mgp 20013 df-ur 20054 df-ring 20107 df-subrg 20439 df-drng 20600 df-sdrg 20656 df-fldgen 33245 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |