| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rlmdim | Structured version Visualization version GIF version | ||
| Description: The left vector space induced by a ring over itself has dimension 1. (Contributed by Thierry Arnoux, 5-Aug-2023.) Generalize to division rings. (Revised by SN, 22-Mar-2025.) |
| Ref | Expression |
|---|---|
| rlmdim.1 | ⊢ 𝑉 = (ringLMod‘𝐹) |
| Ref | Expression |
|---|---|
| rlmdim | ⊢ (𝐹 ∈ DivRing → (dim‘𝑉) = 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rlmdim.1 | . . . 4 ⊢ 𝑉 = (ringLMod‘𝐹) | |
| 2 | rlmlvec 21140 | . . . 4 ⊢ (𝐹 ∈ DivRing → (ringLMod‘𝐹) ∈ LVec) | |
| 3 | 1, 2 | eqeltrid 2837 | . . 3 ⊢ (𝐹 ∈ DivRing → 𝑉 ∈ LVec) |
| 4 | ssid 3953 | . . . . . . . 8 ⊢ (Base‘𝐹) ⊆ (Base‘𝐹) | |
| 5 | rlmval 21127 | . . . . . . . . . 10 ⊢ (ringLMod‘𝐹) = ((subringAlg ‘𝐹)‘(Base‘𝐹)) | |
| 6 | 1, 5 | eqtri 2756 | . . . . . . . . 9 ⊢ 𝑉 = ((subringAlg ‘𝐹)‘(Base‘𝐹)) |
| 7 | eqid 2733 | . . . . . . . . 9 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
| 8 | 6, 7 | sradrng 33615 | . . . . . . . 8 ⊢ ((𝐹 ∈ DivRing ∧ (Base‘𝐹) ⊆ (Base‘𝐹)) → 𝑉 ∈ DivRing) |
| 9 | 4, 8 | mpan2 691 | . . . . . . 7 ⊢ (𝐹 ∈ DivRing → 𝑉 ∈ DivRing) |
| 10 | 9 | drngringd 20654 | . . . . . 6 ⊢ (𝐹 ∈ DivRing → 𝑉 ∈ Ring) |
| 11 | eqid 2733 | . . . . . . 7 ⊢ (Base‘𝑉) = (Base‘𝑉) | |
| 12 | eqid 2733 | . . . . . . 7 ⊢ (1r‘𝑉) = (1r‘𝑉) | |
| 13 | 11, 12 | ringidcl 20185 | . . . . . 6 ⊢ (𝑉 ∈ Ring → (1r‘𝑉) ∈ (Base‘𝑉)) |
| 14 | 10, 13 | syl 17 | . . . . 5 ⊢ (𝐹 ∈ DivRing → (1r‘𝑉) ∈ (Base‘𝑉)) |
| 15 | eqid 2733 | . . . . . . 7 ⊢ (0g‘𝑉) = (0g‘𝑉) | |
| 16 | 15, 12 | drngunz 20664 | . . . . . 6 ⊢ (𝑉 ∈ DivRing → (1r‘𝑉) ≠ (0g‘𝑉)) |
| 17 | 9, 16 | syl 17 | . . . . 5 ⊢ (𝐹 ∈ DivRing → (1r‘𝑉) ≠ (0g‘𝑉)) |
| 18 | 11, 15 | lindssn 33350 | . . . . 5 ⊢ ((𝑉 ∈ LVec ∧ (1r‘𝑉) ∈ (Base‘𝑉) ∧ (1r‘𝑉) ≠ (0g‘𝑉)) → {(1r‘𝑉)} ∈ (LIndS‘𝑉)) |
| 19 | 3, 14, 17, 18 | syl3anc 1373 | . . . 4 ⊢ (𝐹 ∈ DivRing → {(1r‘𝑉)} ∈ (LIndS‘𝑉)) |
| 20 | drngring 20653 | . . . . . 6 ⊢ (𝐹 ∈ DivRing → 𝐹 ∈ Ring) | |
| 21 | 1 | fveq2i 6831 | . . . . . . . 8 ⊢ (LSpan‘𝑉) = (LSpan‘(ringLMod‘𝐹)) |
| 22 | rspval 21150 | . . . . . . . 8 ⊢ (RSpan‘𝐹) = (LSpan‘(ringLMod‘𝐹)) | |
| 23 | 21, 22 | eqtr4i 2759 | . . . . . . 7 ⊢ (LSpan‘𝑉) = (RSpan‘𝐹) |
| 24 | eqid 2733 | . . . . . . 7 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
| 25 | 23, 7, 24 | rsp1 21176 | . . . . . 6 ⊢ (𝐹 ∈ Ring → ((LSpan‘𝑉)‘{(1r‘𝐹)}) = (Base‘𝐹)) |
| 26 | 20, 25 | syl 17 | . . . . 5 ⊢ (𝐹 ∈ DivRing → ((LSpan‘𝑉)‘{(1r‘𝐹)}) = (Base‘𝐹)) |
| 27 | 6 | a1i 11 | . . . . . . . 8 ⊢ (𝐹 ∈ DivRing → 𝑉 = ((subringAlg ‘𝐹)‘(Base‘𝐹))) |
| 28 | eqidd 2734 | . . . . . . . 8 ⊢ (𝐹 ∈ DivRing → (1r‘𝐹) = (1r‘𝐹)) | |
| 29 | ssidd 3954 | . . . . . . . 8 ⊢ (𝐹 ∈ DivRing → (Base‘𝐹) ⊆ (Base‘𝐹)) | |
| 30 | 27, 28, 29 | sra1r 33614 | . . . . . . 7 ⊢ (𝐹 ∈ DivRing → (1r‘𝐹) = (1r‘𝑉)) |
| 31 | 30 | sneqd 4587 | . . . . . 6 ⊢ (𝐹 ∈ DivRing → {(1r‘𝐹)} = {(1r‘𝑉)}) |
| 32 | 31 | fveq2d 6832 | . . . . 5 ⊢ (𝐹 ∈ DivRing → ((LSpan‘𝑉)‘{(1r‘𝐹)}) = ((LSpan‘𝑉)‘{(1r‘𝑉)})) |
| 33 | 27, 29 | srabase 21113 | . . . . 5 ⊢ (𝐹 ∈ DivRing → (Base‘𝐹) = (Base‘𝑉)) |
| 34 | 26, 32, 33 | 3eqtr3d 2776 | . . . 4 ⊢ (𝐹 ∈ DivRing → ((LSpan‘𝑉)‘{(1r‘𝑉)}) = (Base‘𝑉)) |
| 35 | eqid 2733 | . . . . 5 ⊢ (LBasis‘𝑉) = (LBasis‘𝑉) | |
| 36 | eqid 2733 | . . . . 5 ⊢ (LSpan‘𝑉) = (LSpan‘𝑉) | |
| 37 | 11, 35, 36 | islbs4 21771 | . . . 4 ⊢ ({(1r‘𝑉)} ∈ (LBasis‘𝑉) ↔ ({(1r‘𝑉)} ∈ (LIndS‘𝑉) ∧ ((LSpan‘𝑉)‘{(1r‘𝑉)}) = (Base‘𝑉))) |
| 38 | 19, 34, 37 | sylanbrc 583 | . . 3 ⊢ (𝐹 ∈ DivRing → {(1r‘𝑉)} ∈ (LBasis‘𝑉)) |
| 39 | 35 | dimval 33634 | . . 3 ⊢ ((𝑉 ∈ LVec ∧ {(1r‘𝑉)} ∈ (LBasis‘𝑉)) → (dim‘𝑉) = (♯‘{(1r‘𝑉)})) |
| 40 | 3, 38, 39 | syl2anc 584 | . 2 ⊢ (𝐹 ∈ DivRing → (dim‘𝑉) = (♯‘{(1r‘𝑉)})) |
| 41 | fvex 6841 | . . 3 ⊢ (1r‘𝑉) ∈ V | |
| 42 | hashsng 14278 | . . 3 ⊢ ((1r‘𝑉) ∈ V → (♯‘{(1r‘𝑉)}) = 1) | |
| 43 | 41, 42 | ax-mp 5 | . 2 ⊢ (♯‘{(1r‘𝑉)}) = 1 |
| 44 | 40, 43 | eqtrdi 2784 | 1 ⊢ (𝐹 ∈ DivRing → (dim‘𝑉) = 1) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 Vcvv 3437 ⊆ wss 3898 {csn 4575 ‘cfv 6486 1c1 11014 ♯chash 14239 Basecbs 17122 0gc0g 17345 1rcur 20101 Ringcrg 20153 DivRingcdr 20646 LSpanclspn 20906 LBasisclbs 21010 LVecclvec 21038 subringAlg csra 21107 ringLModcrglmod 21108 RSpancrsp 21146 LIndSclinds 21744 dimcldim 33632 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-reg 9485 ax-inf2 9538 ax-ac2 10361 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-tpos 8162 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-er 8628 df-map 8758 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-oi 9403 df-r1 9664 df-rank 9665 df-card 9839 df-acn 9842 df-ac 10014 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 df-9 12202 df-n0 12389 df-xnn0 12462 df-z 12476 df-dec 12595 df-uz 12739 df-fz 13410 df-hash 14240 df-struct 17060 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-ress 17144 df-plusg 17176 df-mulr 17177 df-sca 17179 df-vsca 17180 df-ip 17181 df-tset 17182 df-ple 17183 df-ocomp 17184 df-0g 17347 df-mre 17490 df-mrc 17491 df-mri 17492 df-acs 17493 df-proset 18202 df-drs 18203 df-poset 18221 df-ipo 18436 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-submnd 18694 df-grp 18851 df-minusg 18852 df-sbg 18853 df-subg 19038 df-cmn 19696 df-abl 19697 df-mgp 20061 df-rng 20073 df-ur 20102 df-ring 20155 df-oppr 20257 df-dvdsr 20277 df-unit 20278 df-invr 20308 df-subrg 20487 df-drng 20648 df-lmod 20797 df-lss 20867 df-lsp 20907 df-lbs 21011 df-lvec 21039 df-sra 21109 df-rgmod 21110 df-lidl 21147 df-rsp 21148 df-lindf 21745 df-linds 21746 df-dim 33633 |
| This theorem is referenced by: extdgid 33694 |
| Copyright terms: Public domain | W3C validator |