![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rlmdim | Structured version Visualization version GIF version |
Description: The left vector space induced by a ring over itself has dimension 1. (Contributed by Thierry Arnoux, 5-Aug-2023.) Generalize to division rings. (Revised by SN, 22-Mar-2025.) |
Ref | Expression |
---|---|
rlmdim.1 | β’ π = (ringLModβπΉ) |
Ref | Expression |
---|---|
rlmdim | β’ (πΉ β DivRing β (dimβπ) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rlmdim.1 | . . . 4 β’ π = (ringLModβπΉ) | |
2 | rlmlvec 21056 | . . . 4 β’ (πΉ β DivRing β (ringLModβπΉ) β LVec) | |
3 | 1, 2 | eqeltrid 2829 | . . 3 β’ (πΉ β DivRing β π β LVec) |
4 | ssid 3997 | . . . . . . . 8 β’ (BaseβπΉ) β (BaseβπΉ) | |
5 | rlmval 21043 | . . . . . . . . . 10 β’ (ringLModβπΉ) = ((subringAlg βπΉ)β(BaseβπΉ)) | |
6 | 1, 5 | eqtri 2752 | . . . . . . . . 9 β’ π = ((subringAlg βπΉ)β(BaseβπΉ)) |
7 | eqid 2724 | . . . . . . . . 9 β’ (BaseβπΉ) = (BaseβπΉ) | |
8 | 6, 7 | sradrng 33178 | . . . . . . . 8 β’ ((πΉ β DivRing β§ (BaseβπΉ) β (BaseβπΉ)) β π β DivRing) |
9 | 4, 8 | mpan2 688 | . . . . . . 7 β’ (πΉ β DivRing β π β DivRing) |
10 | 9 | drngringd 20591 | . . . . . 6 β’ (πΉ β DivRing β π β Ring) |
11 | eqid 2724 | . . . . . . 7 β’ (Baseβπ) = (Baseβπ) | |
12 | eqid 2724 | . . . . . . 7 β’ (1rβπ) = (1rβπ) | |
13 | 11, 12 | ringidcl 20161 | . . . . . 6 β’ (π β Ring β (1rβπ) β (Baseβπ)) |
14 | 10, 13 | syl 17 | . . . . 5 β’ (πΉ β DivRing β (1rβπ) β (Baseβπ)) |
15 | eqid 2724 | . . . . . . 7 β’ (0gβπ) = (0gβπ) | |
16 | 15, 12 | drngunz 20602 | . . . . . 6 β’ (π β DivRing β (1rβπ) β (0gβπ)) |
17 | 9, 16 | syl 17 | . . . . 5 β’ (πΉ β DivRing β (1rβπ) β (0gβπ)) |
18 | 11, 15 | lindssn 32990 | . . . . 5 β’ ((π β LVec β§ (1rβπ) β (Baseβπ) β§ (1rβπ) β (0gβπ)) β {(1rβπ)} β (LIndSβπ)) |
19 | 3, 14, 17, 18 | syl3anc 1368 | . . . 4 β’ (πΉ β DivRing β {(1rβπ)} β (LIndSβπ)) |
20 | drngring 20590 | . . . . . 6 β’ (πΉ β DivRing β πΉ β Ring) | |
21 | 1 | fveq2i 6885 | . . . . . . . 8 β’ (LSpanβπ) = (LSpanβ(ringLModβπΉ)) |
22 | rspval 21066 | . . . . . . . 8 β’ (RSpanβπΉ) = (LSpanβ(ringLModβπΉ)) | |
23 | 21, 22 | eqtr4i 2755 | . . . . . . 7 β’ (LSpanβπ) = (RSpanβπΉ) |
24 | eqid 2724 | . . . . . . 7 β’ (1rβπΉ) = (1rβπΉ) | |
25 | 23, 7, 24 | rsp1 21092 | . . . . . 6 β’ (πΉ β Ring β ((LSpanβπ)β{(1rβπΉ)}) = (BaseβπΉ)) |
26 | 20, 25 | syl 17 | . . . . 5 β’ (πΉ β DivRing β ((LSpanβπ)β{(1rβπΉ)}) = (BaseβπΉ)) |
27 | 6 | a1i 11 | . . . . . . . 8 β’ (πΉ β DivRing β π = ((subringAlg βπΉ)β(BaseβπΉ))) |
28 | eqidd 2725 | . . . . . . . 8 β’ (πΉ β DivRing β (1rβπΉ) = (1rβπΉ)) | |
29 | ssidd 3998 | . . . . . . . 8 β’ (πΉ β DivRing β (BaseβπΉ) β (BaseβπΉ)) | |
30 | 27, 28, 29 | sra1r 33177 | . . . . . . 7 β’ (πΉ β DivRing β (1rβπΉ) = (1rβπ)) |
31 | 30 | sneqd 4633 | . . . . . 6 β’ (πΉ β DivRing β {(1rβπΉ)} = {(1rβπ)}) |
32 | 31 | fveq2d 6886 | . . . . 5 β’ (πΉ β DivRing β ((LSpanβπ)β{(1rβπΉ)}) = ((LSpanβπ)β{(1rβπ)})) |
33 | 27, 29 | srabase 21022 | . . . . 5 β’ (πΉ β DivRing β (BaseβπΉ) = (Baseβπ)) |
34 | 26, 32, 33 | 3eqtr3d 2772 | . . . 4 β’ (πΉ β DivRing β ((LSpanβπ)β{(1rβπ)}) = (Baseβπ)) |
35 | eqid 2724 | . . . . 5 β’ (LBasisβπ) = (LBasisβπ) | |
36 | eqid 2724 | . . . . 5 β’ (LSpanβπ) = (LSpanβπ) | |
37 | 11, 35, 36 | islbs4 21716 | . . . 4 β’ ({(1rβπ)} β (LBasisβπ) β ({(1rβπ)} β (LIndSβπ) β§ ((LSpanβπ)β{(1rβπ)}) = (Baseβπ))) |
38 | 19, 34, 37 | sylanbrc 582 | . . 3 β’ (πΉ β DivRing β {(1rβπ)} β (LBasisβπ)) |
39 | 35 | dimval 33193 | . . 3 β’ ((π β LVec β§ {(1rβπ)} β (LBasisβπ)) β (dimβπ) = (β―β{(1rβπ)})) |
40 | 3, 38, 39 | syl2anc 583 | . 2 β’ (πΉ β DivRing β (dimβπ) = (β―β{(1rβπ)})) |
41 | fvex 6895 | . . 3 β’ (1rβπ) β V | |
42 | hashsng 14330 | . . 3 β’ ((1rβπ) β V β (β―β{(1rβπ)}) = 1) | |
43 | 41, 42 | ax-mp 5 | . 2 β’ (β―β{(1rβπ)}) = 1 |
44 | 40, 43 | eqtrdi 2780 | 1 β’ (πΉ β DivRing β (dimβπ) = 1) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 β wne 2932 Vcvv 3466 β wss 3941 {csn 4621 βcfv 6534 1c1 11108 β―chash 14291 Basecbs 17149 0gc0g 17390 1rcur 20082 Ringcrg 20134 DivRingcdr 20583 LSpanclspn 20814 LBasisclbs 20918 LVecclvec 20946 subringAlg csra 21015 ringLModcrglmod 21016 RSpancrsp 21062 LIndSclinds 21689 dimcldim 33191 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-reg 9584 ax-inf2 9633 ax-ac2 10455 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-int 4942 df-iun 4990 df-iin 4991 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-se 5623 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-isom 6543 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-om 7850 df-1st 7969 df-2nd 7970 df-tpos 8207 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8700 df-map 8819 df-en 8937 df-dom 8938 df-sdom 8939 df-fin 8940 df-oi 9502 df-r1 9756 df-rank 9757 df-card 9931 df-acn 9934 df-ac 10108 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-9 12281 df-n0 12472 df-xnn0 12544 df-z 12558 df-dec 12677 df-uz 12822 df-fz 13486 df-hash 14292 df-struct 17085 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-ress 17179 df-plusg 17215 df-mulr 17216 df-sca 17218 df-vsca 17219 df-ip 17220 df-tset 17221 df-ple 17222 df-ocomp 17223 df-0g 17392 df-mre 17535 df-mrc 17536 df-mri 17537 df-acs 17538 df-proset 18256 df-drs 18257 df-poset 18274 df-ipo 18489 df-mgm 18569 df-sgrp 18648 df-mnd 18664 df-submnd 18710 df-grp 18862 df-minusg 18863 df-sbg 18864 df-subg 19046 df-cmn 19698 df-abl 19699 df-mgp 20036 df-rng 20054 df-ur 20083 df-ring 20136 df-oppr 20232 df-dvdsr 20255 df-unit 20256 df-invr 20286 df-subrg 20467 df-drng 20585 df-lmod 20704 df-lss 20775 df-lsp 20815 df-lbs 20919 df-lvec 20947 df-sra 21017 df-rgmod 21018 df-lidl 21063 df-rsp 21064 df-lindf 21690 df-linds 21691 df-dim 33192 |
This theorem is referenced by: extdgid 33247 |
Copyright terms: Public domain | W3C validator |