![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rlmdim | Structured version Visualization version GIF version |
Description: The left vector space induced by a ring over itself has dimension 1. (Contributed by Thierry Arnoux, 5-Aug-2023.) Generalize to division rings. (Revised by SN, 22-Mar-2025.) |
Ref | Expression |
---|---|
rlmdim.1 | ⊢ 𝑉 = (ringLMod‘𝐹) |
Ref | Expression |
---|---|
rlmdim | ⊢ (𝐹 ∈ DivRing → (dim‘𝑉) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rlmdim.1 | . . . 4 ⊢ 𝑉 = (ringLMod‘𝐹) | |
2 | rlmlvec 21234 | . . . 4 ⊢ (𝐹 ∈ DivRing → (ringLMod‘𝐹) ∈ LVec) | |
3 | 1, 2 | eqeltrid 2848 | . . 3 ⊢ (𝐹 ∈ DivRing → 𝑉 ∈ LVec) |
4 | ssid 4031 | . . . . . . . 8 ⊢ (Base‘𝐹) ⊆ (Base‘𝐹) | |
5 | rlmval 21221 | . . . . . . . . . 10 ⊢ (ringLMod‘𝐹) = ((subringAlg ‘𝐹)‘(Base‘𝐹)) | |
6 | 1, 5 | eqtri 2768 | . . . . . . . . 9 ⊢ 𝑉 = ((subringAlg ‘𝐹)‘(Base‘𝐹)) |
7 | eqid 2740 | . . . . . . . . 9 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
8 | 6, 7 | sradrng 33598 | . . . . . . . 8 ⊢ ((𝐹 ∈ DivRing ∧ (Base‘𝐹) ⊆ (Base‘𝐹)) → 𝑉 ∈ DivRing) |
9 | 4, 8 | mpan2 690 | . . . . . . 7 ⊢ (𝐹 ∈ DivRing → 𝑉 ∈ DivRing) |
10 | 9 | drngringd 20759 | . . . . . 6 ⊢ (𝐹 ∈ DivRing → 𝑉 ∈ Ring) |
11 | eqid 2740 | . . . . . . 7 ⊢ (Base‘𝑉) = (Base‘𝑉) | |
12 | eqid 2740 | . . . . . . 7 ⊢ (1r‘𝑉) = (1r‘𝑉) | |
13 | 11, 12 | ringidcl 20289 | . . . . . 6 ⊢ (𝑉 ∈ Ring → (1r‘𝑉) ∈ (Base‘𝑉)) |
14 | 10, 13 | syl 17 | . . . . 5 ⊢ (𝐹 ∈ DivRing → (1r‘𝑉) ∈ (Base‘𝑉)) |
15 | eqid 2740 | . . . . . . 7 ⊢ (0g‘𝑉) = (0g‘𝑉) | |
16 | 15, 12 | drngunz 20769 | . . . . . 6 ⊢ (𝑉 ∈ DivRing → (1r‘𝑉) ≠ (0g‘𝑉)) |
17 | 9, 16 | syl 17 | . . . . 5 ⊢ (𝐹 ∈ DivRing → (1r‘𝑉) ≠ (0g‘𝑉)) |
18 | 11, 15 | lindssn 33371 | . . . . 5 ⊢ ((𝑉 ∈ LVec ∧ (1r‘𝑉) ∈ (Base‘𝑉) ∧ (1r‘𝑉) ≠ (0g‘𝑉)) → {(1r‘𝑉)} ∈ (LIndS‘𝑉)) |
19 | 3, 14, 17, 18 | syl3anc 1371 | . . . 4 ⊢ (𝐹 ∈ DivRing → {(1r‘𝑉)} ∈ (LIndS‘𝑉)) |
20 | drngring 20758 | . . . . . 6 ⊢ (𝐹 ∈ DivRing → 𝐹 ∈ Ring) | |
21 | 1 | fveq2i 6923 | . . . . . . . 8 ⊢ (LSpan‘𝑉) = (LSpan‘(ringLMod‘𝐹)) |
22 | rspval 21244 | . . . . . . . 8 ⊢ (RSpan‘𝐹) = (LSpan‘(ringLMod‘𝐹)) | |
23 | 21, 22 | eqtr4i 2771 | . . . . . . 7 ⊢ (LSpan‘𝑉) = (RSpan‘𝐹) |
24 | eqid 2740 | . . . . . . 7 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
25 | 23, 7, 24 | rsp1 21270 | . . . . . 6 ⊢ (𝐹 ∈ Ring → ((LSpan‘𝑉)‘{(1r‘𝐹)}) = (Base‘𝐹)) |
26 | 20, 25 | syl 17 | . . . . 5 ⊢ (𝐹 ∈ DivRing → ((LSpan‘𝑉)‘{(1r‘𝐹)}) = (Base‘𝐹)) |
27 | 6 | a1i 11 | . . . . . . . 8 ⊢ (𝐹 ∈ DivRing → 𝑉 = ((subringAlg ‘𝐹)‘(Base‘𝐹))) |
28 | eqidd 2741 | . . . . . . . 8 ⊢ (𝐹 ∈ DivRing → (1r‘𝐹) = (1r‘𝐹)) | |
29 | ssidd 4032 | . . . . . . . 8 ⊢ (𝐹 ∈ DivRing → (Base‘𝐹) ⊆ (Base‘𝐹)) | |
30 | 27, 28, 29 | sra1r 33597 | . . . . . . 7 ⊢ (𝐹 ∈ DivRing → (1r‘𝐹) = (1r‘𝑉)) |
31 | 30 | sneqd 4660 | . . . . . 6 ⊢ (𝐹 ∈ DivRing → {(1r‘𝐹)} = {(1r‘𝑉)}) |
32 | 31 | fveq2d 6924 | . . . . 5 ⊢ (𝐹 ∈ DivRing → ((LSpan‘𝑉)‘{(1r‘𝐹)}) = ((LSpan‘𝑉)‘{(1r‘𝑉)})) |
33 | 27, 29 | srabase 21200 | . . . . 5 ⊢ (𝐹 ∈ DivRing → (Base‘𝐹) = (Base‘𝑉)) |
34 | 26, 32, 33 | 3eqtr3d 2788 | . . . 4 ⊢ (𝐹 ∈ DivRing → ((LSpan‘𝑉)‘{(1r‘𝑉)}) = (Base‘𝑉)) |
35 | eqid 2740 | . . . . 5 ⊢ (LBasis‘𝑉) = (LBasis‘𝑉) | |
36 | eqid 2740 | . . . . 5 ⊢ (LSpan‘𝑉) = (LSpan‘𝑉) | |
37 | 11, 35, 36 | islbs4 21875 | . . . 4 ⊢ ({(1r‘𝑉)} ∈ (LBasis‘𝑉) ↔ ({(1r‘𝑉)} ∈ (LIndS‘𝑉) ∧ ((LSpan‘𝑉)‘{(1r‘𝑉)}) = (Base‘𝑉))) |
38 | 19, 34, 37 | sylanbrc 582 | . . 3 ⊢ (𝐹 ∈ DivRing → {(1r‘𝑉)} ∈ (LBasis‘𝑉)) |
39 | 35 | dimval 33613 | . . 3 ⊢ ((𝑉 ∈ LVec ∧ {(1r‘𝑉)} ∈ (LBasis‘𝑉)) → (dim‘𝑉) = (♯‘{(1r‘𝑉)})) |
40 | 3, 38, 39 | syl2anc 583 | . 2 ⊢ (𝐹 ∈ DivRing → (dim‘𝑉) = (♯‘{(1r‘𝑉)})) |
41 | fvex 6933 | . . 3 ⊢ (1r‘𝑉) ∈ V | |
42 | hashsng 14418 | . . 3 ⊢ ((1r‘𝑉) ∈ V → (♯‘{(1r‘𝑉)}) = 1) | |
43 | 41, 42 | ax-mp 5 | . 2 ⊢ (♯‘{(1r‘𝑉)}) = 1 |
44 | 40, 43 | eqtrdi 2796 | 1 ⊢ (𝐹 ∈ DivRing → (dim‘𝑉) = 1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 Vcvv 3488 ⊆ wss 3976 {csn 4648 ‘cfv 6573 1c1 11185 ♯chash 14379 Basecbs 17258 0gc0g 17499 1rcur 20208 Ringcrg 20260 DivRingcdr 20751 LSpanclspn 20992 LBasisclbs 21096 LVecclvec 21124 subringAlg csra 21193 ringLModcrglmod 21194 RSpancrsp 21240 LIndSclinds 21848 dimcldim 33611 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-reg 9661 ax-inf2 9710 ax-ac2 10532 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-tpos 8267 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-oi 9579 df-r1 9833 df-rank 9834 df-card 10008 df-acn 10011 df-ac 10185 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-xnn0 12626 df-z 12640 df-dec 12759 df-uz 12904 df-fz 13568 df-hash 14380 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ocomp 17332 df-0g 17501 df-mre 17644 df-mrc 17645 df-mri 17646 df-acs 17647 df-proset 18365 df-drs 18366 df-poset 18383 df-ipo 18598 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-submnd 18819 df-grp 18976 df-minusg 18977 df-sbg 18978 df-subg 19163 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-oppr 20360 df-dvdsr 20383 df-unit 20384 df-invr 20414 df-subrg 20597 df-drng 20753 df-lmod 20882 df-lss 20953 df-lsp 20993 df-lbs 21097 df-lvec 21125 df-sra 21195 df-rgmod 21196 df-lidl 21241 df-rsp 21242 df-lindf 21849 df-linds 21850 df-dim 33612 |
This theorem is referenced by: extdgid 33673 |
Copyright terms: Public domain | W3C validator |