| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rlmdim | Structured version Visualization version GIF version | ||
| Description: The left vector space induced by a ring over itself has dimension 1. (Contributed by Thierry Arnoux, 5-Aug-2023.) Generalize to division rings. (Revised by SN, 22-Mar-2025.) |
| Ref | Expression |
|---|---|
| rlmdim.1 | ⊢ 𝑉 = (ringLMod‘𝐹) |
| Ref | Expression |
|---|---|
| rlmdim | ⊢ (𝐹 ∈ DivRing → (dim‘𝑉) = 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rlmdim.1 | . . . 4 ⊢ 𝑉 = (ringLMod‘𝐹) | |
| 2 | rlmlvec 21136 | . . . 4 ⊢ (𝐹 ∈ DivRing → (ringLMod‘𝐹) ∈ LVec) | |
| 3 | 1, 2 | eqeltrid 2835 | . . 3 ⊢ (𝐹 ∈ DivRing → 𝑉 ∈ LVec) |
| 4 | ssid 3957 | . . . . . . . 8 ⊢ (Base‘𝐹) ⊆ (Base‘𝐹) | |
| 5 | rlmval 21123 | . . . . . . . . . 10 ⊢ (ringLMod‘𝐹) = ((subringAlg ‘𝐹)‘(Base‘𝐹)) | |
| 6 | 1, 5 | eqtri 2754 | . . . . . . . . 9 ⊢ 𝑉 = ((subringAlg ‘𝐹)‘(Base‘𝐹)) |
| 7 | eqid 2731 | . . . . . . . . 9 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
| 8 | 6, 7 | sradrng 33589 | . . . . . . . 8 ⊢ ((𝐹 ∈ DivRing ∧ (Base‘𝐹) ⊆ (Base‘𝐹)) → 𝑉 ∈ DivRing) |
| 9 | 4, 8 | mpan2 691 | . . . . . . 7 ⊢ (𝐹 ∈ DivRing → 𝑉 ∈ DivRing) |
| 10 | 9 | drngringd 20650 | . . . . . 6 ⊢ (𝐹 ∈ DivRing → 𝑉 ∈ Ring) |
| 11 | eqid 2731 | . . . . . . 7 ⊢ (Base‘𝑉) = (Base‘𝑉) | |
| 12 | eqid 2731 | . . . . . . 7 ⊢ (1r‘𝑉) = (1r‘𝑉) | |
| 13 | 11, 12 | ringidcl 20181 | . . . . . 6 ⊢ (𝑉 ∈ Ring → (1r‘𝑉) ∈ (Base‘𝑉)) |
| 14 | 10, 13 | syl 17 | . . . . 5 ⊢ (𝐹 ∈ DivRing → (1r‘𝑉) ∈ (Base‘𝑉)) |
| 15 | eqid 2731 | . . . . . . 7 ⊢ (0g‘𝑉) = (0g‘𝑉) | |
| 16 | 15, 12 | drngunz 20660 | . . . . . 6 ⊢ (𝑉 ∈ DivRing → (1r‘𝑉) ≠ (0g‘𝑉)) |
| 17 | 9, 16 | syl 17 | . . . . 5 ⊢ (𝐹 ∈ DivRing → (1r‘𝑉) ≠ (0g‘𝑉)) |
| 18 | 11, 15 | lindssn 33338 | . . . . 5 ⊢ ((𝑉 ∈ LVec ∧ (1r‘𝑉) ∈ (Base‘𝑉) ∧ (1r‘𝑉) ≠ (0g‘𝑉)) → {(1r‘𝑉)} ∈ (LIndS‘𝑉)) |
| 19 | 3, 14, 17, 18 | syl3anc 1373 | . . . 4 ⊢ (𝐹 ∈ DivRing → {(1r‘𝑉)} ∈ (LIndS‘𝑉)) |
| 20 | drngring 20649 | . . . . . 6 ⊢ (𝐹 ∈ DivRing → 𝐹 ∈ Ring) | |
| 21 | 1 | fveq2i 6825 | . . . . . . . 8 ⊢ (LSpan‘𝑉) = (LSpan‘(ringLMod‘𝐹)) |
| 22 | rspval 21146 | . . . . . . . 8 ⊢ (RSpan‘𝐹) = (LSpan‘(ringLMod‘𝐹)) | |
| 23 | 21, 22 | eqtr4i 2757 | . . . . . . 7 ⊢ (LSpan‘𝑉) = (RSpan‘𝐹) |
| 24 | eqid 2731 | . . . . . . 7 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
| 25 | 23, 7, 24 | rsp1 21172 | . . . . . 6 ⊢ (𝐹 ∈ Ring → ((LSpan‘𝑉)‘{(1r‘𝐹)}) = (Base‘𝐹)) |
| 26 | 20, 25 | syl 17 | . . . . 5 ⊢ (𝐹 ∈ DivRing → ((LSpan‘𝑉)‘{(1r‘𝐹)}) = (Base‘𝐹)) |
| 27 | 6 | a1i 11 | . . . . . . . 8 ⊢ (𝐹 ∈ DivRing → 𝑉 = ((subringAlg ‘𝐹)‘(Base‘𝐹))) |
| 28 | eqidd 2732 | . . . . . . . 8 ⊢ (𝐹 ∈ DivRing → (1r‘𝐹) = (1r‘𝐹)) | |
| 29 | ssidd 3958 | . . . . . . . 8 ⊢ (𝐹 ∈ DivRing → (Base‘𝐹) ⊆ (Base‘𝐹)) | |
| 30 | 27, 28, 29 | sra1r 33588 | . . . . . . 7 ⊢ (𝐹 ∈ DivRing → (1r‘𝐹) = (1r‘𝑉)) |
| 31 | 30 | sneqd 4588 | . . . . . 6 ⊢ (𝐹 ∈ DivRing → {(1r‘𝐹)} = {(1r‘𝑉)}) |
| 32 | 31 | fveq2d 6826 | . . . . 5 ⊢ (𝐹 ∈ DivRing → ((LSpan‘𝑉)‘{(1r‘𝐹)}) = ((LSpan‘𝑉)‘{(1r‘𝑉)})) |
| 33 | 27, 29 | srabase 21109 | . . . . 5 ⊢ (𝐹 ∈ DivRing → (Base‘𝐹) = (Base‘𝑉)) |
| 34 | 26, 32, 33 | 3eqtr3d 2774 | . . . 4 ⊢ (𝐹 ∈ DivRing → ((LSpan‘𝑉)‘{(1r‘𝑉)}) = (Base‘𝑉)) |
| 35 | eqid 2731 | . . . . 5 ⊢ (LBasis‘𝑉) = (LBasis‘𝑉) | |
| 36 | eqid 2731 | . . . . 5 ⊢ (LSpan‘𝑉) = (LSpan‘𝑉) | |
| 37 | 11, 35, 36 | islbs4 21767 | . . . 4 ⊢ ({(1r‘𝑉)} ∈ (LBasis‘𝑉) ↔ ({(1r‘𝑉)} ∈ (LIndS‘𝑉) ∧ ((LSpan‘𝑉)‘{(1r‘𝑉)}) = (Base‘𝑉))) |
| 38 | 19, 34, 37 | sylanbrc 583 | . . 3 ⊢ (𝐹 ∈ DivRing → {(1r‘𝑉)} ∈ (LBasis‘𝑉)) |
| 39 | 35 | dimval 33608 | . . 3 ⊢ ((𝑉 ∈ LVec ∧ {(1r‘𝑉)} ∈ (LBasis‘𝑉)) → (dim‘𝑉) = (♯‘{(1r‘𝑉)})) |
| 40 | 3, 38, 39 | syl2anc 584 | . 2 ⊢ (𝐹 ∈ DivRing → (dim‘𝑉) = (♯‘{(1r‘𝑉)})) |
| 41 | fvex 6835 | . . 3 ⊢ (1r‘𝑉) ∈ V | |
| 42 | hashsng 14273 | . . 3 ⊢ ((1r‘𝑉) ∈ V → (♯‘{(1r‘𝑉)}) = 1) | |
| 43 | 41, 42 | ax-mp 5 | . 2 ⊢ (♯‘{(1r‘𝑉)}) = 1 |
| 44 | 40, 43 | eqtrdi 2782 | 1 ⊢ (𝐹 ∈ DivRing → (dim‘𝑉) = 1) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 Vcvv 3436 ⊆ wss 3902 {csn 4576 ‘cfv 6481 1c1 11004 ♯chash 14234 Basecbs 17117 0gc0g 17340 1rcur 20097 Ringcrg 20149 DivRingcdr 20642 LSpanclspn 20902 LBasisclbs 21006 LVecclvec 21034 subringAlg csra 21103 ringLModcrglmod 21104 RSpancrsp 21142 LIndSclinds 21740 dimcldim 33606 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-reg 9478 ax-inf2 9531 ax-ac2 10351 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-oi 9396 df-r1 9654 df-rank 9655 df-card 9829 df-acn 9832 df-ac 10004 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-9 12192 df-n0 12379 df-xnn0 12452 df-z 12466 df-dec 12586 df-uz 12730 df-fz 13405 df-hash 14235 df-struct 17055 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-ress 17139 df-plusg 17171 df-mulr 17172 df-sca 17174 df-vsca 17175 df-ip 17176 df-tset 17177 df-ple 17178 df-ocomp 17179 df-0g 17342 df-mre 17485 df-mrc 17486 df-mri 17487 df-acs 17488 df-proset 18197 df-drs 18198 df-poset 18216 df-ipo 18431 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-submnd 18689 df-grp 18846 df-minusg 18847 df-sbg 18848 df-subg 19033 df-cmn 19692 df-abl 19693 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-oppr 20253 df-dvdsr 20273 df-unit 20274 df-invr 20304 df-subrg 20483 df-drng 20644 df-lmod 20793 df-lss 20863 df-lsp 20903 df-lbs 21007 df-lvec 21035 df-sra 21105 df-rgmod 21106 df-lidl 21143 df-rsp 21144 df-lindf 21741 df-linds 21742 df-dim 33607 |
| This theorem is referenced by: extdgid 33668 |
| Copyright terms: Public domain | W3C validator |