| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rlmdim | Structured version Visualization version GIF version | ||
| Description: The left vector space induced by a ring over itself has dimension 1. (Contributed by Thierry Arnoux, 5-Aug-2023.) Generalize to division rings. (Revised by SN, 22-Mar-2025.) |
| Ref | Expression |
|---|---|
| rlmdim.1 | ⊢ 𝑉 = (ringLMod‘𝐹) |
| Ref | Expression |
|---|---|
| rlmdim | ⊢ (𝐹 ∈ DivRing → (dim‘𝑉) = 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rlmdim.1 | . . . 4 ⊢ 𝑉 = (ringLMod‘𝐹) | |
| 2 | rlmlvec 21126 | . . . 4 ⊢ (𝐹 ∈ DivRing → (ringLMod‘𝐹) ∈ LVec) | |
| 3 | 1, 2 | eqeltrid 2832 | . . 3 ⊢ (𝐹 ∈ DivRing → 𝑉 ∈ LVec) |
| 4 | ssid 3960 | . . . . . . . 8 ⊢ (Base‘𝐹) ⊆ (Base‘𝐹) | |
| 5 | rlmval 21113 | . . . . . . . . . 10 ⊢ (ringLMod‘𝐹) = ((subringAlg ‘𝐹)‘(Base‘𝐹)) | |
| 6 | 1, 5 | eqtri 2752 | . . . . . . . . 9 ⊢ 𝑉 = ((subringAlg ‘𝐹)‘(Base‘𝐹)) |
| 7 | eqid 2729 | . . . . . . . . 9 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
| 8 | 6, 7 | sradrng 33554 | . . . . . . . 8 ⊢ ((𝐹 ∈ DivRing ∧ (Base‘𝐹) ⊆ (Base‘𝐹)) → 𝑉 ∈ DivRing) |
| 9 | 4, 8 | mpan2 691 | . . . . . . 7 ⊢ (𝐹 ∈ DivRing → 𝑉 ∈ DivRing) |
| 10 | 9 | drngringd 20640 | . . . . . 6 ⊢ (𝐹 ∈ DivRing → 𝑉 ∈ Ring) |
| 11 | eqid 2729 | . . . . . . 7 ⊢ (Base‘𝑉) = (Base‘𝑉) | |
| 12 | eqid 2729 | . . . . . . 7 ⊢ (1r‘𝑉) = (1r‘𝑉) | |
| 13 | 11, 12 | ringidcl 20168 | . . . . . 6 ⊢ (𝑉 ∈ Ring → (1r‘𝑉) ∈ (Base‘𝑉)) |
| 14 | 10, 13 | syl 17 | . . . . 5 ⊢ (𝐹 ∈ DivRing → (1r‘𝑉) ∈ (Base‘𝑉)) |
| 15 | eqid 2729 | . . . . . . 7 ⊢ (0g‘𝑉) = (0g‘𝑉) | |
| 16 | 15, 12 | drngunz 20650 | . . . . . 6 ⊢ (𝑉 ∈ DivRing → (1r‘𝑉) ≠ (0g‘𝑉)) |
| 17 | 9, 16 | syl 17 | . . . . 5 ⊢ (𝐹 ∈ DivRing → (1r‘𝑉) ≠ (0g‘𝑉)) |
| 18 | 11, 15 | lindssn 33325 | . . . . 5 ⊢ ((𝑉 ∈ LVec ∧ (1r‘𝑉) ∈ (Base‘𝑉) ∧ (1r‘𝑉) ≠ (0g‘𝑉)) → {(1r‘𝑉)} ∈ (LIndS‘𝑉)) |
| 19 | 3, 14, 17, 18 | syl3anc 1373 | . . . 4 ⊢ (𝐹 ∈ DivRing → {(1r‘𝑉)} ∈ (LIndS‘𝑉)) |
| 20 | drngring 20639 | . . . . . 6 ⊢ (𝐹 ∈ DivRing → 𝐹 ∈ Ring) | |
| 21 | 1 | fveq2i 6829 | . . . . . . . 8 ⊢ (LSpan‘𝑉) = (LSpan‘(ringLMod‘𝐹)) |
| 22 | rspval 21136 | . . . . . . . 8 ⊢ (RSpan‘𝐹) = (LSpan‘(ringLMod‘𝐹)) | |
| 23 | 21, 22 | eqtr4i 2755 | . . . . . . 7 ⊢ (LSpan‘𝑉) = (RSpan‘𝐹) |
| 24 | eqid 2729 | . . . . . . 7 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
| 25 | 23, 7, 24 | rsp1 21162 | . . . . . 6 ⊢ (𝐹 ∈ Ring → ((LSpan‘𝑉)‘{(1r‘𝐹)}) = (Base‘𝐹)) |
| 26 | 20, 25 | syl 17 | . . . . 5 ⊢ (𝐹 ∈ DivRing → ((LSpan‘𝑉)‘{(1r‘𝐹)}) = (Base‘𝐹)) |
| 27 | 6 | a1i 11 | . . . . . . . 8 ⊢ (𝐹 ∈ DivRing → 𝑉 = ((subringAlg ‘𝐹)‘(Base‘𝐹))) |
| 28 | eqidd 2730 | . . . . . . . 8 ⊢ (𝐹 ∈ DivRing → (1r‘𝐹) = (1r‘𝐹)) | |
| 29 | ssidd 3961 | . . . . . . . 8 ⊢ (𝐹 ∈ DivRing → (Base‘𝐹) ⊆ (Base‘𝐹)) | |
| 30 | 27, 28, 29 | sra1r 33553 | . . . . . . 7 ⊢ (𝐹 ∈ DivRing → (1r‘𝐹) = (1r‘𝑉)) |
| 31 | 30 | sneqd 4591 | . . . . . 6 ⊢ (𝐹 ∈ DivRing → {(1r‘𝐹)} = {(1r‘𝑉)}) |
| 32 | 31 | fveq2d 6830 | . . . . 5 ⊢ (𝐹 ∈ DivRing → ((LSpan‘𝑉)‘{(1r‘𝐹)}) = ((LSpan‘𝑉)‘{(1r‘𝑉)})) |
| 33 | 27, 29 | srabase 21099 | . . . . 5 ⊢ (𝐹 ∈ DivRing → (Base‘𝐹) = (Base‘𝑉)) |
| 34 | 26, 32, 33 | 3eqtr3d 2772 | . . . 4 ⊢ (𝐹 ∈ DivRing → ((LSpan‘𝑉)‘{(1r‘𝑉)}) = (Base‘𝑉)) |
| 35 | eqid 2729 | . . . . 5 ⊢ (LBasis‘𝑉) = (LBasis‘𝑉) | |
| 36 | eqid 2729 | . . . . 5 ⊢ (LSpan‘𝑉) = (LSpan‘𝑉) | |
| 37 | 11, 35, 36 | islbs4 21757 | . . . 4 ⊢ ({(1r‘𝑉)} ∈ (LBasis‘𝑉) ↔ ({(1r‘𝑉)} ∈ (LIndS‘𝑉) ∧ ((LSpan‘𝑉)‘{(1r‘𝑉)}) = (Base‘𝑉))) |
| 38 | 19, 34, 37 | sylanbrc 583 | . . 3 ⊢ (𝐹 ∈ DivRing → {(1r‘𝑉)} ∈ (LBasis‘𝑉)) |
| 39 | 35 | dimval 33572 | . . 3 ⊢ ((𝑉 ∈ LVec ∧ {(1r‘𝑉)} ∈ (LBasis‘𝑉)) → (dim‘𝑉) = (♯‘{(1r‘𝑉)})) |
| 40 | 3, 38, 39 | syl2anc 584 | . 2 ⊢ (𝐹 ∈ DivRing → (dim‘𝑉) = (♯‘{(1r‘𝑉)})) |
| 41 | fvex 6839 | . . 3 ⊢ (1r‘𝑉) ∈ V | |
| 42 | hashsng 14294 | . . 3 ⊢ ((1r‘𝑉) ∈ V → (♯‘{(1r‘𝑉)}) = 1) | |
| 43 | 41, 42 | ax-mp 5 | . 2 ⊢ (♯‘{(1r‘𝑉)}) = 1 |
| 44 | 40, 43 | eqtrdi 2780 | 1 ⊢ (𝐹 ∈ DivRing → (dim‘𝑉) = 1) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 Vcvv 3438 ⊆ wss 3905 {csn 4579 ‘cfv 6486 1c1 11029 ♯chash 14255 Basecbs 17138 0gc0g 17361 1rcur 20084 Ringcrg 20136 DivRingcdr 20632 LSpanclspn 20892 LBasisclbs 20996 LVecclvec 21024 subringAlg csra 21093 ringLModcrglmod 21094 RSpancrsp 21132 LIndSclinds 21730 dimcldim 33570 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-reg 9503 ax-inf2 9556 ax-ac2 10376 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-tpos 8166 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-oi 9421 df-r1 9679 df-rank 9680 df-card 9854 df-acn 9857 df-ac 10029 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-xnn0 12476 df-z 12490 df-dec 12610 df-uz 12754 df-fz 13429 df-hash 14256 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-sca 17195 df-vsca 17196 df-ip 17197 df-tset 17198 df-ple 17199 df-ocomp 17200 df-0g 17363 df-mre 17506 df-mrc 17507 df-mri 17508 df-acs 17509 df-proset 18218 df-drs 18219 df-poset 18237 df-ipo 18452 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-submnd 18676 df-grp 18833 df-minusg 18834 df-sbg 18835 df-subg 19020 df-cmn 19679 df-abl 19680 df-mgp 20044 df-rng 20056 df-ur 20085 df-ring 20138 df-oppr 20240 df-dvdsr 20260 df-unit 20261 df-invr 20291 df-subrg 20473 df-drng 20634 df-lmod 20783 df-lss 20853 df-lsp 20893 df-lbs 20997 df-lvec 21025 df-sra 21095 df-rgmod 21096 df-lidl 21133 df-rsp 21134 df-lindf 21731 df-linds 21732 df-dim 33571 |
| This theorem is referenced by: extdgid 33632 |
| Copyright terms: Public domain | W3C validator |