| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rlmdim | Structured version Visualization version GIF version | ||
| Description: The left vector space induced by a ring over itself has dimension 1. (Contributed by Thierry Arnoux, 5-Aug-2023.) Generalize to division rings. (Revised by SN, 22-Mar-2025.) |
| Ref | Expression |
|---|---|
| rlmdim.1 | ⊢ 𝑉 = (ringLMod‘𝐹) |
| Ref | Expression |
|---|---|
| rlmdim | ⊢ (𝐹 ∈ DivRing → (dim‘𝑉) = 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rlmdim.1 | . . . 4 ⊢ 𝑉 = (ringLMod‘𝐹) | |
| 2 | rlmlvec 21111 | . . . 4 ⊢ (𝐹 ∈ DivRing → (ringLMod‘𝐹) ∈ LVec) | |
| 3 | 1, 2 | eqeltrid 2832 | . . 3 ⊢ (𝐹 ∈ DivRing → 𝑉 ∈ LVec) |
| 4 | ssid 3969 | . . . . . . . 8 ⊢ (Base‘𝐹) ⊆ (Base‘𝐹) | |
| 5 | rlmval 21098 | . . . . . . . . . 10 ⊢ (ringLMod‘𝐹) = ((subringAlg ‘𝐹)‘(Base‘𝐹)) | |
| 6 | 1, 5 | eqtri 2752 | . . . . . . . . 9 ⊢ 𝑉 = ((subringAlg ‘𝐹)‘(Base‘𝐹)) |
| 7 | eqid 2729 | . . . . . . . . 9 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
| 8 | 6, 7 | sradrng 33578 | . . . . . . . 8 ⊢ ((𝐹 ∈ DivRing ∧ (Base‘𝐹) ⊆ (Base‘𝐹)) → 𝑉 ∈ DivRing) |
| 9 | 4, 8 | mpan2 691 | . . . . . . 7 ⊢ (𝐹 ∈ DivRing → 𝑉 ∈ DivRing) |
| 10 | 9 | drngringd 20646 | . . . . . 6 ⊢ (𝐹 ∈ DivRing → 𝑉 ∈ Ring) |
| 11 | eqid 2729 | . . . . . . 7 ⊢ (Base‘𝑉) = (Base‘𝑉) | |
| 12 | eqid 2729 | . . . . . . 7 ⊢ (1r‘𝑉) = (1r‘𝑉) | |
| 13 | 11, 12 | ringidcl 20174 | . . . . . 6 ⊢ (𝑉 ∈ Ring → (1r‘𝑉) ∈ (Base‘𝑉)) |
| 14 | 10, 13 | syl 17 | . . . . 5 ⊢ (𝐹 ∈ DivRing → (1r‘𝑉) ∈ (Base‘𝑉)) |
| 15 | eqid 2729 | . . . . . . 7 ⊢ (0g‘𝑉) = (0g‘𝑉) | |
| 16 | 15, 12 | drngunz 20656 | . . . . . 6 ⊢ (𝑉 ∈ DivRing → (1r‘𝑉) ≠ (0g‘𝑉)) |
| 17 | 9, 16 | syl 17 | . . . . 5 ⊢ (𝐹 ∈ DivRing → (1r‘𝑉) ≠ (0g‘𝑉)) |
| 18 | 11, 15 | lindssn 33349 | . . . . 5 ⊢ ((𝑉 ∈ LVec ∧ (1r‘𝑉) ∈ (Base‘𝑉) ∧ (1r‘𝑉) ≠ (0g‘𝑉)) → {(1r‘𝑉)} ∈ (LIndS‘𝑉)) |
| 19 | 3, 14, 17, 18 | syl3anc 1373 | . . . 4 ⊢ (𝐹 ∈ DivRing → {(1r‘𝑉)} ∈ (LIndS‘𝑉)) |
| 20 | drngring 20645 | . . . . . 6 ⊢ (𝐹 ∈ DivRing → 𝐹 ∈ Ring) | |
| 21 | 1 | fveq2i 6861 | . . . . . . . 8 ⊢ (LSpan‘𝑉) = (LSpan‘(ringLMod‘𝐹)) |
| 22 | rspval 21121 | . . . . . . . 8 ⊢ (RSpan‘𝐹) = (LSpan‘(ringLMod‘𝐹)) | |
| 23 | 21, 22 | eqtr4i 2755 | . . . . . . 7 ⊢ (LSpan‘𝑉) = (RSpan‘𝐹) |
| 24 | eqid 2729 | . . . . . . 7 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
| 25 | 23, 7, 24 | rsp1 21147 | . . . . . 6 ⊢ (𝐹 ∈ Ring → ((LSpan‘𝑉)‘{(1r‘𝐹)}) = (Base‘𝐹)) |
| 26 | 20, 25 | syl 17 | . . . . 5 ⊢ (𝐹 ∈ DivRing → ((LSpan‘𝑉)‘{(1r‘𝐹)}) = (Base‘𝐹)) |
| 27 | 6 | a1i 11 | . . . . . . . 8 ⊢ (𝐹 ∈ DivRing → 𝑉 = ((subringAlg ‘𝐹)‘(Base‘𝐹))) |
| 28 | eqidd 2730 | . . . . . . . 8 ⊢ (𝐹 ∈ DivRing → (1r‘𝐹) = (1r‘𝐹)) | |
| 29 | ssidd 3970 | . . . . . . . 8 ⊢ (𝐹 ∈ DivRing → (Base‘𝐹) ⊆ (Base‘𝐹)) | |
| 30 | 27, 28, 29 | sra1r 33577 | . . . . . . 7 ⊢ (𝐹 ∈ DivRing → (1r‘𝐹) = (1r‘𝑉)) |
| 31 | 30 | sneqd 4601 | . . . . . 6 ⊢ (𝐹 ∈ DivRing → {(1r‘𝐹)} = {(1r‘𝑉)}) |
| 32 | 31 | fveq2d 6862 | . . . . 5 ⊢ (𝐹 ∈ DivRing → ((LSpan‘𝑉)‘{(1r‘𝐹)}) = ((LSpan‘𝑉)‘{(1r‘𝑉)})) |
| 33 | 27, 29 | srabase 21084 | . . . . 5 ⊢ (𝐹 ∈ DivRing → (Base‘𝐹) = (Base‘𝑉)) |
| 34 | 26, 32, 33 | 3eqtr3d 2772 | . . . 4 ⊢ (𝐹 ∈ DivRing → ((LSpan‘𝑉)‘{(1r‘𝑉)}) = (Base‘𝑉)) |
| 35 | eqid 2729 | . . . . 5 ⊢ (LBasis‘𝑉) = (LBasis‘𝑉) | |
| 36 | eqid 2729 | . . . . 5 ⊢ (LSpan‘𝑉) = (LSpan‘𝑉) | |
| 37 | 11, 35, 36 | islbs4 21741 | . . . 4 ⊢ ({(1r‘𝑉)} ∈ (LBasis‘𝑉) ↔ ({(1r‘𝑉)} ∈ (LIndS‘𝑉) ∧ ((LSpan‘𝑉)‘{(1r‘𝑉)}) = (Base‘𝑉))) |
| 38 | 19, 34, 37 | sylanbrc 583 | . . 3 ⊢ (𝐹 ∈ DivRing → {(1r‘𝑉)} ∈ (LBasis‘𝑉)) |
| 39 | 35 | dimval 33596 | . . 3 ⊢ ((𝑉 ∈ LVec ∧ {(1r‘𝑉)} ∈ (LBasis‘𝑉)) → (dim‘𝑉) = (♯‘{(1r‘𝑉)})) |
| 40 | 3, 38, 39 | syl2anc 584 | . 2 ⊢ (𝐹 ∈ DivRing → (dim‘𝑉) = (♯‘{(1r‘𝑉)})) |
| 41 | fvex 6871 | . . 3 ⊢ (1r‘𝑉) ∈ V | |
| 42 | hashsng 14334 | . . 3 ⊢ ((1r‘𝑉) ∈ V → (♯‘{(1r‘𝑉)}) = 1) | |
| 43 | 41, 42 | ax-mp 5 | . 2 ⊢ (♯‘{(1r‘𝑉)}) = 1 |
| 44 | 40, 43 | eqtrdi 2780 | 1 ⊢ (𝐹 ∈ DivRing → (dim‘𝑉) = 1) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 Vcvv 3447 ⊆ wss 3914 {csn 4589 ‘cfv 6511 1c1 11069 ♯chash 14295 Basecbs 17179 0gc0g 17402 1rcur 20090 Ringcrg 20142 DivRingcdr 20638 LSpanclspn 20877 LBasisclbs 20981 LVecclvec 21009 subringAlg csra 21078 ringLModcrglmod 21079 RSpancrsp 21117 LIndSclinds 21714 dimcldim 33594 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-reg 9545 ax-inf2 9594 ax-ac2 10416 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-tpos 8205 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-oi 9463 df-r1 9717 df-rank 9718 df-card 9892 df-acn 9895 df-ac 10069 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-xnn0 12516 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-hash 14296 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ocomp 17241 df-0g 17404 df-mre 17547 df-mrc 17548 df-mri 17549 df-acs 17550 df-proset 18255 df-drs 18256 df-poset 18274 df-ipo 18487 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-submnd 18711 df-grp 18868 df-minusg 18869 df-sbg 18870 df-subg 19055 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-oppr 20246 df-dvdsr 20266 df-unit 20267 df-invr 20297 df-subrg 20479 df-drng 20640 df-lmod 20768 df-lss 20838 df-lsp 20878 df-lbs 20982 df-lvec 21010 df-sra 21080 df-rgmod 21081 df-lidl 21118 df-rsp 21119 df-lindf 21715 df-linds 21716 df-dim 33595 |
| This theorem is referenced by: extdgid 33656 |
| Copyright terms: Public domain | W3C validator |