Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ply1degltdim Structured version   Visualization version   GIF version

Theorem ply1degltdim 33626
Description: The space 𝑆 of the univariate polynomials of degree less than 𝑁 has dimension 𝑁. (Contributed by Thierry Arnoux, 20-Feb-2025.)
Hypotheses
Ref Expression
ply1degltdim.p 𝑃 = (Poly1𝑅)
ply1degltdim.d 𝐷 = (deg1𝑅)
ply1degltdim.s 𝑆 = (𝐷 “ (-∞[,)𝑁))
ply1degltdim.n (𝜑𝑁 ∈ ℕ0)
ply1degltdim.r (𝜑𝑅 ∈ DivRing)
ply1degltdim.e 𝐸 = (𝑃s 𝑆)
Assertion
Ref Expression
ply1degltdim (𝜑 → (dim‘𝐸) = 𝑁)

Proof of Theorem ply1degltdim
Dummy variables 𝑖 𝑛 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ply1degltdim.p . . . . 5 𝑃 = (Poly1𝑅)
2 ply1degltdim.r . . . . 5 (𝜑𝑅 ∈ DivRing)
31, 2ply1lvec 33535 . . . 4 (𝜑𝑃 ∈ LVec)
4 ply1degltdim.d . . . . 5 𝐷 = (deg1𝑅)
5 ply1degltdim.s . . . . 5 𝑆 = (𝐷 “ (-∞[,)𝑁))
6 ply1degltdim.n . . . . 5 (𝜑𝑁 ∈ ℕ0)
72drngringd 20653 . . . . 5 (𝜑𝑅 ∈ Ring)
81, 4, 5, 6, 7ply1degltlss 33569 . . . 4 (𝜑𝑆 ∈ (LSubSp‘𝑃))
9 ply1degltdim.e . . . . 5 𝐸 = (𝑃s 𝑆)
10 eqid 2730 . . . . 5 (LSubSp‘𝑃) = (LSubSp‘𝑃)
119, 10lsslvec 21023 . . . 4 ((𝑃 ∈ LVec ∧ 𝑆 ∈ (LSubSp‘𝑃)) → 𝐸 ∈ LVec)
123, 8, 11syl2anc 584 . . 3 (𝜑𝐸 ∈ LVec)
13 oveq1 7397 . . . . 5 (𝑘 = 𝑛 → (𝑘(.g‘(mulGrp‘𝑃))(var1𝑅)) = (𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)))
1413cbvmptv 5214 . . . 4 (𝑘 ∈ (0..^𝑁) ↦ (𝑘(.g‘(mulGrp‘𝑃))(var1𝑅))) = (𝑛 ∈ (0..^𝑁) ↦ (𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)))
151, 4, 5, 6, 2, 9, 14ply1degltdimlem 33625 . . 3 (𝜑 → ran (𝑘 ∈ (0..^𝑁) ↦ (𝑘(.g‘(mulGrp‘𝑃))(var1𝑅))) ∈ (LBasis‘𝐸))
16 eqid 2730 . . . . . . . . . . . . 13 (Base‘𝑃) = (Base‘𝑃)
174, 1, 16deg1xrf 25993 . . . . . . . . . . . 12 𝐷:(Base‘𝑃)⟶ℝ*
18 ffn 6691 . . . . . . . . . . . 12 (𝐷:(Base‘𝑃)⟶ℝ*𝐷 Fn (Base‘𝑃))
1917, 18mp1i 13 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (0..^𝑁)) → 𝐷 Fn (Base‘𝑃))
20 eqid 2730 . . . . . . . . . . . . 13 (mulGrp‘𝑃) = (mulGrp‘𝑃)
2120, 16mgpbas 20061 . . . . . . . . . . . 12 (Base‘𝑃) = (Base‘(mulGrp‘𝑃))
22 eqid 2730 . . . . . . . . . . . 12 (.g‘(mulGrp‘𝑃)) = (.g‘(mulGrp‘𝑃))
231ply1ring 22139 . . . . . . . . . . . . . 14 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
2420ringmgp 20155 . . . . . . . . . . . . . 14 (𝑃 ∈ Ring → (mulGrp‘𝑃) ∈ Mnd)
257, 23, 243syl 18 . . . . . . . . . . . . 13 (𝜑 → (mulGrp‘𝑃) ∈ Mnd)
2625adantr 480 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (0..^𝑁)) → (mulGrp‘𝑃) ∈ Mnd)
27 elfzonn0 13675 . . . . . . . . . . . . 13 (𝑛 ∈ (0..^𝑁) → 𝑛 ∈ ℕ0)
2827adantl 481 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (0..^𝑁)) → 𝑛 ∈ ℕ0)
29 eqid 2730 . . . . . . . . . . . . . . 15 (var1𝑅) = (var1𝑅)
3029, 1, 16vr1cl 22109 . . . . . . . . . . . . . 14 (𝑅 ∈ Ring → (var1𝑅) ∈ (Base‘𝑃))
317, 30syl 17 . . . . . . . . . . . . 13 (𝜑 → (var1𝑅) ∈ (Base‘𝑃))
3231adantr 480 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (0..^𝑁)) → (var1𝑅) ∈ (Base‘𝑃))
3321, 22, 26, 28, 32mulgnn0cld 19034 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (0..^𝑁)) → (𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ (Base‘𝑃))
34 mnfxr 11238 . . . . . . . . . . . . 13 -∞ ∈ ℝ*
3534a1i 11 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (0..^𝑁)) → -∞ ∈ ℝ*)
366nn0red 12511 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℝ)
3736rexrd 11231 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℝ*)
3837adantr 480 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (0..^𝑁)) → 𝑁 ∈ ℝ*)
394, 1, 16deg1xrcl 25994 . . . . . . . . . . . . 13 ((𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ (Base‘𝑃) → (𝐷‘(𝑛(.g‘(mulGrp‘𝑃))(var1𝑅))) ∈ ℝ*)
4033, 39syl 17 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (0..^𝑁)) → (𝐷‘(𝑛(.g‘(mulGrp‘𝑃))(var1𝑅))) ∈ ℝ*)
4140mnfled 13103 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (0..^𝑁)) → -∞ ≤ (𝐷‘(𝑛(.g‘(mulGrp‘𝑃))(var1𝑅))))
4227nn0red 12511 . . . . . . . . . . . . . . 15 (𝑛 ∈ (0..^𝑁) → 𝑛 ∈ ℝ)
4342rexrd 11231 . . . . . . . . . . . . . 14 (𝑛 ∈ (0..^𝑁) → 𝑛 ∈ ℝ*)
4443adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (0..^𝑁)) → 𝑛 ∈ ℝ*)
454, 1, 29, 20, 22deg1pwle 26032 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 𝑛 ∈ ℕ0) → (𝐷‘(𝑛(.g‘(mulGrp‘𝑃))(var1𝑅))) ≤ 𝑛)
467, 27, 45syl2an 596 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (0..^𝑁)) → (𝐷‘(𝑛(.g‘(mulGrp‘𝑃))(var1𝑅))) ≤ 𝑛)
47 elfzolt2 13636 . . . . . . . . . . . . . 14 (𝑛 ∈ (0..^𝑁) → 𝑛 < 𝑁)
4847adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (0..^𝑁)) → 𝑛 < 𝑁)
4940, 44, 38, 46, 48xrlelttrd 13127 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (0..^𝑁)) → (𝐷‘(𝑛(.g‘(mulGrp‘𝑃))(var1𝑅))) < 𝑁)
5035, 38, 40, 41, 49elicod 13363 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (0..^𝑁)) → (𝐷‘(𝑛(.g‘(mulGrp‘𝑃))(var1𝑅))) ∈ (-∞[,)𝑁))
5119, 33, 50elpreimad 7034 . . . . . . . . . 10 ((𝜑𝑛 ∈ (0..^𝑁)) → (𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ (𝐷 “ (-∞[,)𝑁)))
5251, 5eleqtrrdi 2840 . . . . . . . . 9 ((𝜑𝑛 ∈ (0..^𝑁)) → (𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ 𝑆)
5316, 10lssss 20849 . . . . . . . . . . 11 (𝑆 ∈ (LSubSp‘𝑃) → 𝑆 ⊆ (Base‘𝑃))
549, 16ressbas2 17215 . . . . . . . . . . 11 (𝑆 ⊆ (Base‘𝑃) → 𝑆 = (Base‘𝐸))
558, 53, 543syl 18 . . . . . . . . . 10 (𝜑𝑆 = (Base‘𝐸))
5655adantr 480 . . . . . . . . 9 ((𝜑𝑛 ∈ (0..^𝑁)) → 𝑆 = (Base‘𝐸))
5752, 56eleqtrd 2831 . . . . . . . 8 ((𝜑𝑛 ∈ (0..^𝑁)) → (𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ (Base‘𝐸))
5857, 14fmptd 7089 . . . . . . 7 (𝜑 → (𝑘 ∈ (0..^𝑁) ↦ (𝑘(.g‘(mulGrp‘𝑃))(var1𝑅))):(0..^𝑁)⟶(Base‘𝐸))
5958ffnd 6692 . . . . . 6 (𝜑 → (𝑘 ∈ (0..^𝑁) ↦ (𝑘(.g‘(mulGrp‘𝑃))(var1𝑅))) Fn (0..^𝑁))
60 hashfn 14347 . . . . . 6 ((𝑘 ∈ (0..^𝑁) ↦ (𝑘(.g‘(mulGrp‘𝑃))(var1𝑅))) Fn (0..^𝑁) → (♯‘(𝑘 ∈ (0..^𝑁) ↦ (𝑘(.g‘(mulGrp‘𝑃))(var1𝑅)))) = (♯‘(0..^𝑁)))
6159, 60syl 17 . . . . 5 (𝜑 → (♯‘(𝑘 ∈ (0..^𝑁) ↦ (𝑘(.g‘(mulGrp‘𝑃))(var1𝑅)))) = (♯‘(0..^𝑁)))
62 ovexd 7425 . . . . . 6 (𝜑 → (0..^𝑁) ∈ V)
6357ralrimiva 3126 . . . . . . 7 (𝜑 → ∀𝑛 ∈ (0..^𝑁)(𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ (Base‘𝐸))
64 drngnzr 20664 . . . . . . . . . . . . 13 (𝑅 ∈ DivRing → 𝑅 ∈ NzRing)
652, 64syl 17 . . . . . . . . . . . 12 (𝜑𝑅 ∈ NzRing)
6665ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑁)) → 𝑅 ∈ NzRing)
6728adantr 480 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑁)) → 𝑛 ∈ ℕ0)
68 elfzonn0 13675 . . . . . . . . . . . 12 (𝑖 ∈ (0..^𝑁) → 𝑖 ∈ ℕ0)
6968adantl 481 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑁)) → 𝑖 ∈ ℕ0)
701, 29, 22, 66, 67, 69ply1moneq 33562 . . . . . . . . . 10 (((𝜑𝑛 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑁)) → ((𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) = (𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)) ↔ 𝑛 = 𝑖))
7170biimpd 229 . . . . . . . . 9 (((𝜑𝑛 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑁)) → ((𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) = (𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)) → 𝑛 = 𝑖))
7271anasss 466 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (0..^𝑁) ∧ 𝑖 ∈ (0..^𝑁))) → ((𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) = (𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)) → 𝑛 = 𝑖))
7372ralrimivva 3181 . . . . . . 7 (𝜑 → ∀𝑛 ∈ (0..^𝑁)∀𝑖 ∈ (0..^𝑁)((𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) = (𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)) → 𝑛 = 𝑖))
74 oveq1 7397 . . . . . . . 8 (𝑛 = 𝑖 → (𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) = (𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))
7514, 74f1mpt 7239 . . . . . . 7 ((𝑘 ∈ (0..^𝑁) ↦ (𝑘(.g‘(mulGrp‘𝑃))(var1𝑅))):(0..^𝑁)–1-1→(Base‘𝐸) ↔ (∀𝑛 ∈ (0..^𝑁)(𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ (Base‘𝐸) ∧ ∀𝑛 ∈ (0..^𝑁)∀𝑖 ∈ (0..^𝑁)((𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) = (𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)) → 𝑛 = 𝑖)))
7663, 73, 75sylanbrc 583 . . . . . 6 (𝜑 → (𝑘 ∈ (0..^𝑁) ↦ (𝑘(.g‘(mulGrp‘𝑃))(var1𝑅))):(0..^𝑁)–1-1→(Base‘𝐸))
77 hashf1rn 14324 . . . . . 6 (((0..^𝑁) ∈ V ∧ (𝑘 ∈ (0..^𝑁) ↦ (𝑘(.g‘(mulGrp‘𝑃))(var1𝑅))):(0..^𝑁)–1-1→(Base‘𝐸)) → (♯‘(𝑘 ∈ (0..^𝑁) ↦ (𝑘(.g‘(mulGrp‘𝑃))(var1𝑅)))) = (♯‘ran (𝑘 ∈ (0..^𝑁) ↦ (𝑘(.g‘(mulGrp‘𝑃))(var1𝑅)))))
7862, 76, 77syl2anc 584 . . . . 5 (𝜑 → (♯‘(𝑘 ∈ (0..^𝑁) ↦ (𝑘(.g‘(mulGrp‘𝑃))(var1𝑅)))) = (♯‘ran (𝑘 ∈ (0..^𝑁) ↦ (𝑘(.g‘(mulGrp‘𝑃))(var1𝑅)))))
79 hashfzo0 14402 . . . . . 6 (𝑁 ∈ ℕ0 → (♯‘(0..^𝑁)) = 𝑁)
806, 79syl 17 . . . . 5 (𝜑 → (♯‘(0..^𝑁)) = 𝑁)
8161, 78, 803eqtr3d 2773 . . . 4 (𝜑 → (♯‘ran (𝑘 ∈ (0..^𝑁) ↦ (𝑘(.g‘(mulGrp‘𝑃))(var1𝑅)))) = 𝑁)
82 hashvnfin 14332 . . . . 5 ((ran (𝑘 ∈ (0..^𝑁) ↦ (𝑘(.g‘(mulGrp‘𝑃))(var1𝑅))) ∈ (LBasis‘𝐸) ∧ 𝑁 ∈ ℕ0) → ((♯‘ran (𝑘 ∈ (0..^𝑁) ↦ (𝑘(.g‘(mulGrp‘𝑃))(var1𝑅)))) = 𝑁 → ran (𝑘 ∈ (0..^𝑁) ↦ (𝑘(.g‘(mulGrp‘𝑃))(var1𝑅))) ∈ Fin))
8382imp 406 . . . 4 (((ran (𝑘 ∈ (0..^𝑁) ↦ (𝑘(.g‘(mulGrp‘𝑃))(var1𝑅))) ∈ (LBasis‘𝐸) ∧ 𝑁 ∈ ℕ0) ∧ (♯‘ran (𝑘 ∈ (0..^𝑁) ↦ (𝑘(.g‘(mulGrp‘𝑃))(var1𝑅)))) = 𝑁) → ran (𝑘 ∈ (0..^𝑁) ↦ (𝑘(.g‘(mulGrp‘𝑃))(var1𝑅))) ∈ Fin)
8415, 6, 81, 83syl21anc 837 . . 3 (𝜑 → ran (𝑘 ∈ (0..^𝑁) ↦ (𝑘(.g‘(mulGrp‘𝑃))(var1𝑅))) ∈ Fin)
85 eqid 2730 . . . 4 (LBasis‘𝐸) = (LBasis‘𝐸)
8685dimvalfi 33604 . . 3 ((𝐸 ∈ LVec ∧ ran (𝑘 ∈ (0..^𝑁) ↦ (𝑘(.g‘(mulGrp‘𝑃))(var1𝑅))) ∈ (LBasis‘𝐸) ∧ ran (𝑘 ∈ (0..^𝑁) ↦ (𝑘(.g‘(mulGrp‘𝑃))(var1𝑅))) ∈ Fin) → (dim‘𝐸) = (♯‘ran (𝑘 ∈ (0..^𝑁) ↦ (𝑘(.g‘(mulGrp‘𝑃))(var1𝑅)))))
8712, 15, 84, 86syl3anc 1373 . 2 (𝜑 → (dim‘𝐸) = (♯‘ran (𝑘 ∈ (0..^𝑁) ↦ (𝑘(.g‘(mulGrp‘𝑃))(var1𝑅)))))
8887, 81eqtrd 2765 1 (𝜑 → (dim‘𝐸) = 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3045  Vcvv 3450  wss 3917   class class class wbr 5110  cmpt 5191  ccnv 5640  ran crn 5642  cima 5644   Fn wfn 6509  wf 6510  1-1wf1 6511  cfv 6514  (class class class)co 7390  Fincfn 8921  0cc0 11075  -∞cmnf 11213  *cxr 11214   < clt 11215  cle 11216  0cn0 12449  [,)cico 13315  ..^cfzo 13622  chash 14302  Basecbs 17186  s cress 17207  Mndcmnd 18668  .gcmg 19006  mulGrpcmgp 20056  Ringcrg 20149  NzRingcnzr 20428  DivRingcdr 20645  LSubSpclss 20844  LBasisclbs 20988  LVecclvec 21016  var1cv1 22067  Poly1cpl1 22068  deg1cdg1 25966  dimcldim 33601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-ofr 7657  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-sup 9400  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-xnn0 12523  df-z 12537  df-dec 12657  df-uz 12801  df-ico 13319  df-fz 13476  df-fzo 13623  df-seq 13974  df-hash 14303  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-0g 17411  df-gsum 17412  df-prds 17417  df-pws 17419  df-mre 17554  df-mrc 17555  df-mri 17556  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-ghm 19152  df-cntz 19256  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-srg 20103  df-ring 20151  df-cring 20152  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-nzr 20429  df-subrng 20462  df-subrg 20486  df-drng 20647  df-lmod 20775  df-lss 20845  df-lsp 20885  df-lmhm 20936  df-lbs 20989  df-lvec 21017  df-sra 21087  df-rgmod 21088  df-cnfld 21272  df-dsmm 21648  df-frlm 21663  df-uvc 21699  df-lindf 21722  df-linds 21723  df-psr 21825  df-mvr 21826  df-mpl 21827  df-opsr 21829  df-psr1 22071  df-vr1 22072  df-ply1 22073  df-coe1 22074  df-mdeg 25967  df-deg1 25968  df-dim 33602
This theorem is referenced by:  algextdeglem8  33721
  Copyright terms: Public domain W3C validator