Step | Hyp | Ref
| Expression |
1 | | ply1degltdim.p |
. . . . 5
β’ π = (Poly1βπ
) |
2 | | ply1degltdim.r |
. . . . 5
β’ (π β π
β DivRing) |
3 | 1, 2 | ply1lvec 32626 |
. . . 4
β’ (π β π β LVec) |
4 | | ply1degltdim.d |
. . . . 5
β’ π· = ( deg1
βπ
) |
5 | | ply1degltdim.s |
. . . . 5
β’ π = (β‘π· β (-β[,)π)) |
6 | | ply1degltdim.n |
. . . . 5
β’ (π β π β
β0) |
7 | 2 | drngringd 20315 |
. . . . 5
β’ (π β π
β Ring) |
8 | 1, 4, 5, 6, 7 | ply1degltlss 32655 |
. . . 4
β’ (π β π β (LSubSpβπ)) |
9 | | ply1degltdim.e |
. . . . 5
β’ πΈ = (π βΎs π) |
10 | | eqid 2732 |
. . . . 5
β’
(LSubSpβπ) =
(LSubSpβπ) |
11 | 9, 10 | lsslvec 20711 |
. . . 4
β’ ((π β LVec β§ π β (LSubSpβπ)) β πΈ β LVec) |
12 | 3, 8, 11 | syl2anc 584 |
. . 3
β’ (π β πΈ β LVec) |
13 | | oveq1 7412 |
. . . . 5
β’ (π = π β (π(.gβ(mulGrpβπ))(var1βπ
)) = (π(.gβ(mulGrpβπ))(var1βπ
))) |
14 | 13 | cbvmptv 5260 |
. . . 4
β’ (π β (0..^π) β¦ (π(.gβ(mulGrpβπ))(var1βπ
))) = (π β (0..^π) β¦ (π(.gβ(mulGrpβπ))(var1βπ
))) |
15 | 1, 4, 5, 6, 2, 9, 14 | ply1degltdimlem 32695 |
. . 3
β’ (π β ran (π β (0..^π) β¦ (π(.gβ(mulGrpβπ))(var1βπ
))) β (LBasisβπΈ)) |
16 | | eqid 2732 |
. . . . . . . . . . . . 13
β’
(Baseβπ) =
(Baseβπ) |
17 | 4, 1, 16 | deg1xrf 25590 |
. . . . . . . . . . . 12
β’ π·:(Baseβπ)βΆβ* |
18 | | ffn 6714 |
. . . . . . . . . . . 12
β’ (π·:(Baseβπ)βΆβ* β π· Fn (Baseβπ)) |
19 | 17, 18 | mp1i 13 |
. . . . . . . . . . 11
β’ ((π β§ π β (0..^π)) β π· Fn (Baseβπ)) |
20 | | eqid 2732 |
. . . . . . . . . . . . 13
β’
(mulGrpβπ) =
(mulGrpβπ) |
21 | 20, 16 | mgpbas 19987 |
. . . . . . . . . . . 12
β’
(Baseβπ) =
(Baseβ(mulGrpβπ)) |
22 | | eqid 2732 |
. . . . . . . . . . . 12
β’
(.gβ(mulGrpβπ)) =
(.gβ(mulGrpβπ)) |
23 | 1 | ply1ring 21761 |
. . . . . . . . . . . . . 14
β’ (π
β Ring β π β Ring) |
24 | 20 | ringmgp 20055 |
. . . . . . . . . . . . . 14
β’ (π β Ring β
(mulGrpβπ) β
Mnd) |
25 | 7, 23, 24 | 3syl 18 |
. . . . . . . . . . . . 13
β’ (π β (mulGrpβπ) β Mnd) |
26 | 25 | adantr 481 |
. . . . . . . . . . . 12
β’ ((π β§ π β (0..^π)) β (mulGrpβπ) β Mnd) |
27 | | elfzonn0 13673 |
. . . . . . . . . . . . 13
β’ (π β (0..^π) β π β β0) |
28 | 27 | adantl 482 |
. . . . . . . . . . . 12
β’ ((π β§ π β (0..^π)) β π β β0) |
29 | | eqid 2732 |
. . . . . . . . . . . . . . 15
β’
(var1βπ
) = (var1βπ
) |
30 | 29, 1, 16 | vr1cl 21732 |
. . . . . . . . . . . . . 14
β’ (π
β Ring β
(var1βπ
)
β (Baseβπ)) |
31 | 7, 30 | syl 17 |
. . . . . . . . . . . . 13
β’ (π β
(var1βπ
)
β (Baseβπ)) |
32 | 31 | adantr 481 |
. . . . . . . . . . . 12
β’ ((π β§ π β (0..^π)) β (var1βπ
) β (Baseβπ)) |
33 | 21, 22, 26, 28, 32 | mulgnn0cld 18969 |
. . . . . . . . . . 11
β’ ((π β§ π β (0..^π)) β (π(.gβ(mulGrpβπ))(var1βπ
)) β (Baseβπ)) |
34 | | mnfxr 11267 |
. . . . . . . . . . . . 13
β’ -β
β β* |
35 | 34 | a1i 11 |
. . . . . . . . . . . 12
β’ ((π β§ π β (0..^π)) β -β β
β*) |
36 | 6 | nn0red 12529 |
. . . . . . . . . . . . . 14
β’ (π β π β β) |
37 | 36 | rexrd 11260 |
. . . . . . . . . . . . 13
β’ (π β π β
β*) |
38 | 37 | adantr 481 |
. . . . . . . . . . . 12
β’ ((π β§ π β (0..^π)) β π β
β*) |
39 | 4, 1, 16 | deg1xrcl 25591 |
. . . . . . . . . . . . 13
β’ ((π(.gβ(mulGrpβπ))(var1βπ
)) β (Baseβπ) β (π·β(π(.gβ(mulGrpβπ))(var1βπ
))) β
β*) |
40 | 33, 39 | syl 17 |
. . . . . . . . . . . 12
β’ ((π β§ π β (0..^π)) β (π·β(π(.gβ(mulGrpβπ))(var1βπ
))) β
β*) |
41 | 40 | mnfled 13111 |
. . . . . . . . . . . 12
β’ ((π β§ π β (0..^π)) β -β β€ (π·β(π(.gβ(mulGrpβπ))(var1βπ
)))) |
42 | 27 | nn0red 12529 |
. . . . . . . . . . . . . . 15
β’ (π β (0..^π) β π β β) |
43 | 42 | rexrd 11260 |
. . . . . . . . . . . . . 14
β’ (π β (0..^π) β π β β*) |
44 | 43 | adantl 482 |
. . . . . . . . . . . . 13
β’ ((π β§ π β (0..^π)) β π β β*) |
45 | 4, 1, 29, 20, 22 | deg1pwle 25628 |
. . . . . . . . . . . . . 14
β’ ((π
β Ring β§ π β β0)
β (π·β(π(.gβ(mulGrpβπ))(var1βπ
))) β€ π) |
46 | 7, 27, 45 | syl2an 596 |
. . . . . . . . . . . . 13
β’ ((π β§ π β (0..^π)) β (π·β(π(.gβ(mulGrpβπ))(var1βπ
))) β€ π) |
47 | | elfzolt2 13637 |
. . . . . . . . . . . . . 14
β’ (π β (0..^π) β π < π) |
48 | 47 | adantl 482 |
. . . . . . . . . . . . 13
β’ ((π β§ π β (0..^π)) β π < π) |
49 | 40, 44, 38, 46, 48 | xrlelttrd 13135 |
. . . . . . . . . . . 12
β’ ((π β§ π β (0..^π)) β (π·β(π(.gβ(mulGrpβπ))(var1βπ
))) < π) |
50 | 35, 38, 40, 41, 49 | elicod 13370 |
. . . . . . . . . . 11
β’ ((π β§ π β (0..^π)) β (π·β(π(.gβ(mulGrpβπ))(var1βπ
))) β (-β[,)π)) |
51 | 19, 33, 50 | elpreimad 7057 |
. . . . . . . . . 10
β’ ((π β§ π β (0..^π)) β (π(.gβ(mulGrpβπ))(var1βπ
)) β (β‘π· β (-β[,)π))) |
52 | 51, 5 | eleqtrrdi 2844 |
. . . . . . . . 9
β’ ((π β§ π β (0..^π)) β (π(.gβ(mulGrpβπ))(var1βπ
)) β π) |
53 | 16, 10 | lssss 20539 |
. . . . . . . . . . 11
β’ (π β (LSubSpβπ) β π β (Baseβπ)) |
54 | 9, 16 | ressbas2 17178 |
. . . . . . . . . . 11
β’ (π β (Baseβπ) β π = (BaseβπΈ)) |
55 | 8, 53, 54 | 3syl 18 |
. . . . . . . . . 10
β’ (π β π = (BaseβπΈ)) |
56 | 55 | adantr 481 |
. . . . . . . . 9
β’ ((π β§ π β (0..^π)) β π = (BaseβπΈ)) |
57 | 52, 56 | eleqtrd 2835 |
. . . . . . . 8
β’ ((π β§ π β (0..^π)) β (π(.gβ(mulGrpβπ))(var1βπ
)) β (BaseβπΈ)) |
58 | 57, 14 | fmptd 7110 |
. . . . . . 7
β’ (π β (π β (0..^π) β¦ (π(.gβ(mulGrpβπ))(var1βπ
))):(0..^π)βΆ(BaseβπΈ)) |
59 | 58 | ffnd 6715 |
. . . . . 6
β’ (π β (π β (0..^π) β¦ (π(.gβ(mulGrpβπ))(var1βπ
))) Fn (0..^π)) |
60 | | hashfn 14331 |
. . . . . 6
β’ ((π β (0..^π) β¦ (π(.gβ(mulGrpβπ))(var1βπ
))) Fn (0..^π) β (β―β(π β (0..^π) β¦ (π(.gβ(mulGrpβπ))(var1βπ
)))) = (β―β(0..^π))) |
61 | 59, 60 | syl 17 |
. . . . 5
β’ (π β (β―β(π β (0..^π) β¦ (π(.gβ(mulGrpβπ))(var1βπ
)))) = (β―β(0..^π))) |
62 | | ovexd 7440 |
. . . . . 6
β’ (π β (0..^π) β V) |
63 | 57 | ralrimiva 3146 |
. . . . . . 7
β’ (π β βπ β (0..^π)(π(.gβ(mulGrpβπ))(var1βπ
)) β (BaseβπΈ)) |
64 | | drngnzr 20327 |
. . . . . . . . . . . . 13
β’ (π
β DivRing β π
β NzRing) |
65 | 2, 64 | syl 17 |
. . . . . . . . . . . 12
β’ (π β π
β NzRing) |
66 | 65 | ad2antrr 724 |
. . . . . . . . . . 11
β’ (((π β§ π β (0..^π)) β§ π β (0..^π)) β π
β NzRing) |
67 | 28 | adantr 481 |
. . . . . . . . . . 11
β’ (((π β§ π β (0..^π)) β§ π β (0..^π)) β π β β0) |
68 | | elfzonn0 13673 |
. . . . . . . . . . . 12
β’ (π β (0..^π) β π β β0) |
69 | 68 | adantl 482 |
. . . . . . . . . . 11
β’ (((π β§ π β (0..^π)) β§ π β (0..^π)) β π β β0) |
70 | 1, 29, 22, 66, 67, 69 | ply1moneq 32653 |
. . . . . . . . . 10
β’ (((π β§ π β (0..^π)) β§ π β (0..^π)) β ((π(.gβ(mulGrpβπ))(var1βπ
)) = (π(.gβ(mulGrpβπ))(var1βπ
)) β π = π)) |
71 | 70 | biimpd 228 |
. . . . . . . . 9
β’ (((π β§ π β (0..^π)) β§ π β (0..^π)) β ((π(.gβ(mulGrpβπ))(var1βπ
)) = (π(.gβ(mulGrpβπ))(var1βπ
)) β π = π)) |
72 | 71 | anasss 467 |
. . . . . . . 8
β’ ((π β§ (π β (0..^π) β§ π β (0..^π))) β ((π(.gβ(mulGrpβπ))(var1βπ
)) = (π(.gβ(mulGrpβπ))(var1βπ
)) β π = π)) |
73 | 72 | ralrimivva 3200 |
. . . . . . 7
β’ (π β βπ β (0..^π)βπ β (0..^π)((π(.gβ(mulGrpβπ))(var1βπ
)) = (π(.gβ(mulGrpβπ))(var1βπ
)) β π = π)) |
74 | | oveq1 7412 |
. . . . . . . 8
β’ (π = π β (π(.gβ(mulGrpβπ))(var1βπ
)) = (π(.gβ(mulGrpβπ))(var1βπ
))) |
75 | 14, 74 | f1mpt 7256 |
. . . . . . 7
β’ ((π β (0..^π) β¦ (π(.gβ(mulGrpβπ))(var1βπ
))):(0..^π)β1-1β(BaseβπΈ) β (βπ β (0..^π)(π(.gβ(mulGrpβπ))(var1βπ
)) β (BaseβπΈ) β§ βπ β (0..^π)βπ β (0..^π)((π(.gβ(mulGrpβπ))(var1βπ
)) = (π(.gβ(mulGrpβπ))(var1βπ
)) β π = π))) |
76 | 63, 73, 75 | sylanbrc 583 |
. . . . . 6
β’ (π β (π β (0..^π) β¦ (π(.gβ(mulGrpβπ))(var1βπ
))):(0..^π)β1-1β(BaseβπΈ)) |
77 | | hashf1rn 14308 |
. . . . . 6
β’
(((0..^π) β V
β§ (π β (0..^π) β¦ (π(.gβ(mulGrpβπ))(var1βπ
))):(0..^π)β1-1β(BaseβπΈ)) β (β―β(π β (0..^π) β¦ (π(.gβ(mulGrpβπ))(var1βπ
)))) = (β―βran (π β (0..^π) β¦ (π(.gβ(mulGrpβπ))(var1βπ
))))) |
78 | 62, 76, 77 | syl2anc 584 |
. . . . 5
β’ (π β (β―β(π β (0..^π) β¦ (π(.gβ(mulGrpβπ))(var1βπ
)))) = (β―βran (π β (0..^π) β¦ (π(.gβ(mulGrpβπ))(var1βπ
))))) |
79 | | hashfzo0 14386 |
. . . . . 6
β’ (π β β0
β (β―β(0..^π)) = π) |
80 | 6, 79 | syl 17 |
. . . . 5
β’ (π β (β―β(0..^π)) = π) |
81 | 61, 78, 80 | 3eqtr3d 2780 |
. . . 4
β’ (π β (β―βran (π β (0..^π) β¦ (π(.gβ(mulGrpβπ))(var1βπ
)))) = π) |
82 | | hashvnfin 14316 |
. . . . 5
β’ ((ran
(π β (0..^π) β¦ (π(.gβ(mulGrpβπ))(var1βπ
))) β (LBasisβπΈ) β§ π β β0) β
((β―βran (π
β (0..^π) β¦
(π(.gβ(mulGrpβπ))(var1βπ
)))) = π β ran (π β (0..^π) β¦ (π(.gβ(mulGrpβπ))(var1βπ
))) β
Fin)) |
83 | 82 | imp 407 |
. . . 4
β’ (((ran
(π β (0..^π) β¦ (π(.gβ(mulGrpβπ))(var1βπ
))) β (LBasisβπΈ) β§ π β β0) β§
(β―βran (π
β (0..^π) β¦
(π(.gβ(mulGrpβπ))(var1βπ
)))) = π) β ran (π β (0..^π) β¦ (π(.gβ(mulGrpβπ))(var1βπ
))) β Fin) |
84 | 15, 6, 81, 83 | syl21anc 836 |
. . 3
β’ (π β ran (π β (0..^π) β¦ (π(.gβ(mulGrpβπ))(var1βπ
))) β Fin) |
85 | | eqid 2732 |
. . . 4
β’
(LBasisβπΈ) =
(LBasisβπΈ) |
86 | 85 | dimvalfi 32675 |
. . 3
β’ ((πΈ β LVec β§ ran (π β (0..^π) β¦ (π(.gβ(mulGrpβπ))(var1βπ
))) β (LBasisβπΈ) β§ ran (π β (0..^π) β¦ (π(.gβ(mulGrpβπ))(var1βπ
))) β Fin) β
(dimβπΈ) =
(β―βran (π
β (0..^π) β¦
(π(.gβ(mulGrpβπ))(var1βπ
))))) |
87 | 12, 15, 84, 86 | syl3anc 1371 |
. 2
β’ (π β (dimβπΈ) = (β―βran (π β (0..^π) β¦ (π(.gβ(mulGrpβπ))(var1βπ
))))) |
88 | 87, 81 | eqtrd 2772 |
1
β’ (π β (dimβπΈ) = π) |