Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ply1degltdim Structured version   Visualization version   GIF version

Theorem ply1degltdim 33153
Description: The space 𝑆 of the univariate polynomials of degree less than 𝑁 has dimension 𝑁. (Contributed by Thierry Arnoux, 20-Feb-2025.)
Hypotheses
Ref Expression
ply1degltdim.p 𝑃 = (Poly1𝑅)
ply1degltdim.d 𝐷 = ( deg1𝑅)
ply1degltdim.s 𝑆 = (𝐷 “ (-∞[,)𝑁))
ply1degltdim.n (𝜑𝑁 ∈ ℕ0)
ply1degltdim.r (𝜑𝑅 ∈ DivRing)
ply1degltdim.e 𝐸 = (𝑃s 𝑆)
Assertion
Ref Expression
ply1degltdim (𝜑 → (dim‘𝐸) = 𝑁)

Proof of Theorem ply1degltdim
Dummy variables 𝑖 𝑛 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ply1degltdim.p . . . . 5 𝑃 = (Poly1𝑅)
2 ply1degltdim.r . . . . 5 (𝜑𝑅 ∈ DivRing)
31, 2ply1lvec 33072 . . . 4 (𝜑𝑃 ∈ LVec)
4 ply1degltdim.d . . . . 5 𝐷 = ( deg1𝑅)
5 ply1degltdim.s . . . . 5 𝑆 = (𝐷 “ (-∞[,)𝑁))
6 ply1degltdim.n . . . . 5 (𝜑𝑁 ∈ ℕ0)
72drngringd 20584 . . . . 5 (𝜑𝑅 ∈ Ring)
81, 4, 5, 6, 7ply1degltlss 33099 . . . 4 (𝜑𝑆 ∈ (LSubSp‘𝑃))
9 ply1degltdim.e . . . . 5 𝐸 = (𝑃s 𝑆)
10 eqid 2724 . . . . 5 (LSubSp‘𝑃) = (LSubSp‘𝑃)
119, 10lsslvec 20946 . . . 4 ((𝑃 ∈ LVec ∧ 𝑆 ∈ (LSubSp‘𝑃)) → 𝐸 ∈ LVec)
123, 8, 11syl2anc 583 . . 3 (𝜑𝐸 ∈ LVec)
13 oveq1 7408 . . . . 5 (𝑘 = 𝑛 → (𝑘(.g‘(mulGrp‘𝑃))(var1𝑅)) = (𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)))
1413cbvmptv 5251 . . . 4 (𝑘 ∈ (0..^𝑁) ↦ (𝑘(.g‘(mulGrp‘𝑃))(var1𝑅))) = (𝑛 ∈ (0..^𝑁) ↦ (𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)))
151, 4, 5, 6, 2, 9, 14ply1degltdimlem 33152 . . 3 (𝜑 → ran (𝑘 ∈ (0..^𝑁) ↦ (𝑘(.g‘(mulGrp‘𝑃))(var1𝑅))) ∈ (LBasis‘𝐸))
16 eqid 2724 . . . . . . . . . . . . 13 (Base‘𝑃) = (Base‘𝑃)
174, 1, 16deg1xrf 25938 . . . . . . . . . . . 12 𝐷:(Base‘𝑃)⟶ℝ*
18 ffn 6707 . . . . . . . . . . . 12 (𝐷:(Base‘𝑃)⟶ℝ*𝐷 Fn (Base‘𝑃))
1917, 18mp1i 13 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (0..^𝑁)) → 𝐷 Fn (Base‘𝑃))
20 eqid 2724 . . . . . . . . . . . . 13 (mulGrp‘𝑃) = (mulGrp‘𝑃)
2120, 16mgpbas 20034 . . . . . . . . . . . 12 (Base‘𝑃) = (Base‘(mulGrp‘𝑃))
22 eqid 2724 . . . . . . . . . . . 12 (.g‘(mulGrp‘𝑃)) = (.g‘(mulGrp‘𝑃))
231ply1ring 22088 . . . . . . . . . . . . . 14 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
2420ringmgp 20133 . . . . . . . . . . . . . 14 (𝑃 ∈ Ring → (mulGrp‘𝑃) ∈ Mnd)
257, 23, 243syl 18 . . . . . . . . . . . . 13 (𝜑 → (mulGrp‘𝑃) ∈ Mnd)
2625adantr 480 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (0..^𝑁)) → (mulGrp‘𝑃) ∈ Mnd)
27 elfzonn0 13673 . . . . . . . . . . . . 13 (𝑛 ∈ (0..^𝑁) → 𝑛 ∈ ℕ0)
2827adantl 481 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (0..^𝑁)) → 𝑛 ∈ ℕ0)
29 eqid 2724 . . . . . . . . . . . . . . 15 (var1𝑅) = (var1𝑅)
3029, 1, 16vr1cl 22058 . . . . . . . . . . . . . 14 (𝑅 ∈ Ring → (var1𝑅) ∈ (Base‘𝑃))
317, 30syl 17 . . . . . . . . . . . . 13 (𝜑 → (var1𝑅) ∈ (Base‘𝑃))
3231adantr 480 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (0..^𝑁)) → (var1𝑅) ∈ (Base‘𝑃))
3321, 22, 26, 28, 32mulgnn0cld 19011 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (0..^𝑁)) → (𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ (Base‘𝑃))
34 mnfxr 11267 . . . . . . . . . . . . 13 -∞ ∈ ℝ*
3534a1i 11 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (0..^𝑁)) → -∞ ∈ ℝ*)
366nn0red 12529 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℝ)
3736rexrd 11260 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℝ*)
3837adantr 480 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (0..^𝑁)) → 𝑁 ∈ ℝ*)
394, 1, 16deg1xrcl 25939 . . . . . . . . . . . . 13 ((𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ (Base‘𝑃) → (𝐷‘(𝑛(.g‘(mulGrp‘𝑃))(var1𝑅))) ∈ ℝ*)
4033, 39syl 17 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (0..^𝑁)) → (𝐷‘(𝑛(.g‘(mulGrp‘𝑃))(var1𝑅))) ∈ ℝ*)
4140mnfled 13111 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (0..^𝑁)) → -∞ ≤ (𝐷‘(𝑛(.g‘(mulGrp‘𝑃))(var1𝑅))))
4227nn0red 12529 . . . . . . . . . . . . . . 15 (𝑛 ∈ (0..^𝑁) → 𝑛 ∈ ℝ)
4342rexrd 11260 . . . . . . . . . . . . . 14 (𝑛 ∈ (0..^𝑁) → 𝑛 ∈ ℝ*)
4443adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (0..^𝑁)) → 𝑛 ∈ ℝ*)
454, 1, 29, 20, 22deg1pwle 25976 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 𝑛 ∈ ℕ0) → (𝐷‘(𝑛(.g‘(mulGrp‘𝑃))(var1𝑅))) ≤ 𝑛)
467, 27, 45syl2an 595 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (0..^𝑁)) → (𝐷‘(𝑛(.g‘(mulGrp‘𝑃))(var1𝑅))) ≤ 𝑛)
47 elfzolt2 13637 . . . . . . . . . . . . . 14 (𝑛 ∈ (0..^𝑁) → 𝑛 < 𝑁)
4847adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (0..^𝑁)) → 𝑛 < 𝑁)
4940, 44, 38, 46, 48xrlelttrd 13135 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (0..^𝑁)) → (𝐷‘(𝑛(.g‘(mulGrp‘𝑃))(var1𝑅))) < 𝑁)
5035, 38, 40, 41, 49elicod 13370 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (0..^𝑁)) → (𝐷‘(𝑛(.g‘(mulGrp‘𝑃))(var1𝑅))) ∈ (-∞[,)𝑁))
5119, 33, 50elpreimad 7050 . . . . . . . . . 10 ((𝜑𝑛 ∈ (0..^𝑁)) → (𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ (𝐷 “ (-∞[,)𝑁)))
5251, 5eleqtrrdi 2836 . . . . . . . . 9 ((𝜑𝑛 ∈ (0..^𝑁)) → (𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ 𝑆)
5316, 10lssss 20772 . . . . . . . . . . 11 (𝑆 ∈ (LSubSp‘𝑃) → 𝑆 ⊆ (Base‘𝑃))
549, 16ressbas2 17180 . . . . . . . . . . 11 (𝑆 ⊆ (Base‘𝑃) → 𝑆 = (Base‘𝐸))
558, 53, 543syl 18 . . . . . . . . . 10 (𝜑𝑆 = (Base‘𝐸))
5655adantr 480 . . . . . . . . 9 ((𝜑𝑛 ∈ (0..^𝑁)) → 𝑆 = (Base‘𝐸))
5752, 56eleqtrd 2827 . . . . . . . 8 ((𝜑𝑛 ∈ (0..^𝑁)) → (𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ (Base‘𝐸))
5857, 14fmptd 7105 . . . . . . 7 (𝜑 → (𝑘 ∈ (0..^𝑁) ↦ (𝑘(.g‘(mulGrp‘𝑃))(var1𝑅))):(0..^𝑁)⟶(Base‘𝐸))
5958ffnd 6708 . . . . . 6 (𝜑 → (𝑘 ∈ (0..^𝑁) ↦ (𝑘(.g‘(mulGrp‘𝑃))(var1𝑅))) Fn (0..^𝑁))
60 hashfn 14331 . . . . . 6 ((𝑘 ∈ (0..^𝑁) ↦ (𝑘(.g‘(mulGrp‘𝑃))(var1𝑅))) Fn (0..^𝑁) → (♯‘(𝑘 ∈ (0..^𝑁) ↦ (𝑘(.g‘(mulGrp‘𝑃))(var1𝑅)))) = (♯‘(0..^𝑁)))
6159, 60syl 17 . . . . 5 (𝜑 → (♯‘(𝑘 ∈ (0..^𝑁) ↦ (𝑘(.g‘(mulGrp‘𝑃))(var1𝑅)))) = (♯‘(0..^𝑁)))
62 ovexd 7436 . . . . . 6 (𝜑 → (0..^𝑁) ∈ V)
6357ralrimiva 3138 . . . . . . 7 (𝜑 → ∀𝑛 ∈ (0..^𝑁)(𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ (Base‘𝐸))
64 drngnzr 20596 . . . . . . . . . . . . 13 (𝑅 ∈ DivRing → 𝑅 ∈ NzRing)
652, 64syl 17 . . . . . . . . . . . 12 (𝜑𝑅 ∈ NzRing)
6665ad2antrr 723 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑁)) → 𝑅 ∈ NzRing)
6728adantr 480 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑁)) → 𝑛 ∈ ℕ0)
68 elfzonn0 13673 . . . . . . . . . . . 12 (𝑖 ∈ (0..^𝑁) → 𝑖 ∈ ℕ0)
6968adantl 481 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑁)) → 𝑖 ∈ ℕ0)
701, 29, 22, 66, 67, 69ply1moneq 33096 . . . . . . . . . 10 (((𝜑𝑛 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑁)) → ((𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) = (𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)) ↔ 𝑛 = 𝑖))
7170biimpd 228 . . . . . . . . 9 (((𝜑𝑛 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑁)) → ((𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) = (𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)) → 𝑛 = 𝑖))
7271anasss 466 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (0..^𝑁) ∧ 𝑖 ∈ (0..^𝑁))) → ((𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) = (𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)) → 𝑛 = 𝑖))
7372ralrimivva 3192 . . . . . . 7 (𝜑 → ∀𝑛 ∈ (0..^𝑁)∀𝑖 ∈ (0..^𝑁)((𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) = (𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)) → 𝑛 = 𝑖))
74 oveq1 7408 . . . . . . . 8 (𝑛 = 𝑖 → (𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) = (𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))
7514, 74f1mpt 7252 . . . . . . 7 ((𝑘 ∈ (0..^𝑁) ↦ (𝑘(.g‘(mulGrp‘𝑃))(var1𝑅))):(0..^𝑁)–1-1→(Base‘𝐸) ↔ (∀𝑛 ∈ (0..^𝑁)(𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ (Base‘𝐸) ∧ ∀𝑛 ∈ (0..^𝑁)∀𝑖 ∈ (0..^𝑁)((𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) = (𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)) → 𝑛 = 𝑖)))
7663, 73, 75sylanbrc 582 . . . . . 6 (𝜑 → (𝑘 ∈ (0..^𝑁) ↦ (𝑘(.g‘(mulGrp‘𝑃))(var1𝑅))):(0..^𝑁)–1-1→(Base‘𝐸))
77 hashf1rn 14308 . . . . . 6 (((0..^𝑁) ∈ V ∧ (𝑘 ∈ (0..^𝑁) ↦ (𝑘(.g‘(mulGrp‘𝑃))(var1𝑅))):(0..^𝑁)–1-1→(Base‘𝐸)) → (♯‘(𝑘 ∈ (0..^𝑁) ↦ (𝑘(.g‘(mulGrp‘𝑃))(var1𝑅)))) = (♯‘ran (𝑘 ∈ (0..^𝑁) ↦ (𝑘(.g‘(mulGrp‘𝑃))(var1𝑅)))))
7862, 76, 77syl2anc 583 . . . . 5 (𝜑 → (♯‘(𝑘 ∈ (0..^𝑁) ↦ (𝑘(.g‘(mulGrp‘𝑃))(var1𝑅)))) = (♯‘ran (𝑘 ∈ (0..^𝑁) ↦ (𝑘(.g‘(mulGrp‘𝑃))(var1𝑅)))))
79 hashfzo0 14386 . . . . . 6 (𝑁 ∈ ℕ0 → (♯‘(0..^𝑁)) = 𝑁)
806, 79syl 17 . . . . 5 (𝜑 → (♯‘(0..^𝑁)) = 𝑁)
8161, 78, 803eqtr3d 2772 . . . 4 (𝜑 → (♯‘ran (𝑘 ∈ (0..^𝑁) ↦ (𝑘(.g‘(mulGrp‘𝑃))(var1𝑅)))) = 𝑁)
82 hashvnfin 14316 . . . . 5 ((ran (𝑘 ∈ (0..^𝑁) ↦ (𝑘(.g‘(mulGrp‘𝑃))(var1𝑅))) ∈ (LBasis‘𝐸) ∧ 𝑁 ∈ ℕ0) → ((♯‘ran (𝑘 ∈ (0..^𝑁) ↦ (𝑘(.g‘(mulGrp‘𝑃))(var1𝑅)))) = 𝑁 → ran (𝑘 ∈ (0..^𝑁) ↦ (𝑘(.g‘(mulGrp‘𝑃))(var1𝑅))) ∈ Fin))
8382imp 406 . . . 4 (((ran (𝑘 ∈ (0..^𝑁) ↦ (𝑘(.g‘(mulGrp‘𝑃))(var1𝑅))) ∈ (LBasis‘𝐸) ∧ 𝑁 ∈ ℕ0) ∧ (♯‘ran (𝑘 ∈ (0..^𝑁) ↦ (𝑘(.g‘(mulGrp‘𝑃))(var1𝑅)))) = 𝑁) → ran (𝑘 ∈ (0..^𝑁) ↦ (𝑘(.g‘(mulGrp‘𝑃))(var1𝑅))) ∈ Fin)
8415, 6, 81, 83syl21anc 835 . . 3 (𝜑 → ran (𝑘 ∈ (0..^𝑁) ↦ (𝑘(.g‘(mulGrp‘𝑃))(var1𝑅))) ∈ Fin)
85 eqid 2724 . . . 4 (LBasis‘𝐸) = (LBasis‘𝐸)
8685dimvalfi 33131 . . 3 ((𝐸 ∈ LVec ∧ ran (𝑘 ∈ (0..^𝑁) ↦ (𝑘(.g‘(mulGrp‘𝑃))(var1𝑅))) ∈ (LBasis‘𝐸) ∧ ran (𝑘 ∈ (0..^𝑁) ↦ (𝑘(.g‘(mulGrp‘𝑃))(var1𝑅))) ∈ Fin) → (dim‘𝐸) = (♯‘ran (𝑘 ∈ (0..^𝑁) ↦ (𝑘(.g‘(mulGrp‘𝑃))(var1𝑅)))))
8712, 15, 84, 86syl3anc 1368 . 2 (𝜑 → (dim‘𝐸) = (♯‘ran (𝑘 ∈ (0..^𝑁) ↦ (𝑘(.g‘(mulGrp‘𝑃))(var1𝑅)))))
8887, 81eqtrd 2764 1 (𝜑 → (dim‘𝐸) = 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  wral 3053  Vcvv 3466  wss 3940   class class class wbr 5138  cmpt 5221  ccnv 5665  ran crn 5667  cima 5669   Fn wfn 6528  wf 6529  1-1wf1 6530  cfv 6533  (class class class)co 7401  Fincfn 8934  0cc0 11105  -∞cmnf 11242  *cxr 11243   < clt 11244  cle 11245  0cn0 12468  [,)cico 13322  ..^cfzo 13623  chash 14286  Basecbs 17142  s cress 17171  Mndcmnd 18656  .gcmg 18984  mulGrpcmgp 20028  Ringcrg 20127  NzRingcnzr 20403  DivRingcdr 20576  LSubSpclss 20767  LBasisclbs 20911  LVecclvec 20939  var1cv1 22017  Poly1cpl1 22018   deg1 cdg1 25908  dimcldim 33128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11161  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181  ax-pre-mulgt0 11182  ax-pre-sup 11183  ax-addf 11184  ax-mulf 11185
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-tp 4625  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-iin 4990  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-se 5622  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-isom 6542  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-of 7663  df-ofr 7664  df-om 7849  df-1st 7968  df-2nd 7969  df-supp 8141  df-tpos 8206  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-er 8698  df-map 8817  df-pm 8818  df-ixp 8887  df-en 8935  df-dom 8936  df-sdom 8937  df-fin 8938  df-fsupp 9357  df-sup 9432  df-oi 9500  df-card 9929  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-xnn0 12541  df-z 12555  df-dec 12674  df-uz 12819  df-ico 13326  df-fz 13481  df-fzo 13624  df-seq 13963  df-hash 14287  df-struct 17078  df-sets 17095  df-slot 17113  df-ndx 17125  df-base 17143  df-ress 17172  df-plusg 17208  df-mulr 17209  df-starv 17210  df-sca 17211  df-vsca 17212  df-ip 17213  df-tset 17214  df-ple 17215  df-ds 17217  df-unif 17218  df-hom 17219  df-cco 17220  df-0g 17385  df-gsum 17386  df-prds 17391  df-pws 17393  df-mre 17528  df-mrc 17529  df-mri 17530  df-acs 17531  df-mgm 18562  df-sgrp 18641  df-mnd 18657  df-mhm 18702  df-submnd 18703  df-grp 18855  df-minusg 18856  df-sbg 18857  df-mulg 18985  df-subg 19039  df-ghm 19128  df-cntz 19222  df-cmn 19691  df-abl 19692  df-mgp 20029  df-rng 20047  df-ur 20076  df-srg 20081  df-ring 20129  df-cring 20130  df-oppr 20225  df-dvdsr 20248  df-unit 20249  df-invr 20279  df-nzr 20404  df-subrng 20435  df-subrg 20460  df-drng 20578  df-lmod 20697  df-lss 20768  df-lsp 20808  df-lmhm 20859  df-lbs 20912  df-lvec 20940  df-sra 21010  df-rgmod 21011  df-cnfld 21228  df-dsmm 21594  df-frlm 21609  df-uvc 21645  df-lindf 21668  df-linds 21669  df-psr 21770  df-mvr 21771  df-mpl 21772  df-opsr 21774  df-psr1 22021  df-vr1 22022  df-ply1 22023  df-coe1 22024  df-mdeg 25909  df-deg1 25910  df-dim 33129
This theorem is referenced by:  algextdeglem8  33226
  Copyright terms: Public domain W3C validator