| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > drngring | Structured version Visualization version GIF version | ||
| Description: A division ring is a ring. (Contributed by NM, 8-Sep-2011.) |
| Ref | Expression |
|---|---|
| drngring | ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 2 | eqid 2729 | . . 3 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
| 3 | eqid 2729 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 4 | 1, 2, 3 | isdrng 20642 | . 2 ⊢ (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ (Unit‘𝑅) = ((Base‘𝑅) ∖ {(0g‘𝑅)}))) |
| 5 | 4 | simplbi 497 | 1 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∖ cdif 3911 {csn 4589 ‘cfv 6511 Basecbs 17179 0gc0g 17402 Ringcrg 20142 Unitcui 20264 DivRingcdr 20638 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-drng 20640 |
| This theorem is referenced by: drngringd 20646 drngid 20655 drngunz 20656 drngnzr 20657 drngdomn 20658 drngmcl 20659 drnginvrcl 20662 drnginvrn0 20663 drnginvrl 20665 drnginvrr 20666 drngmul0orOLD 20670 drhmsubc 20690 drngcat 20691 sdrgid 20701 sdrgacs 20710 cntzsdrg 20711 primefld 20714 rlmlvec 21111 drngnidl 21153 drnglpir 21242 qsssubdrg 21343 frlmlvec 21670 frlmphllem 21689 mpllvec 21929 cvsdivcl 25033 qcvs 25047 cphsubrglem 25077 rrxcph 25292 rrx0 25297 drnguc1p 26079 ig1peu 26080 ig1pcl 26084 ig1pdvds 26085 ig1prsp 26086 ply1lpir 26087 padicabv 27541 ofldchr 33292 reofld 33315 rearchi 33317 xrge0slmod 33319 drng0mxidl 33447 drngmxidl 33448 zringfrac 33525 sradrng 33578 drgext0gsca 33587 drgextlsp 33589 rlmdim 33605 rgmoddimOLD 33606 frlmdim 33607 matdim 33611 drngdimgt0 33614 fedgmullem1 33625 fedgmullem2 33626 fedgmul 33627 fldextid 33655 extdg1id 33661 ccfldsrarelvec 33666 zrhunitpreima 33966 elzrhunit 33967 qqhval2lem 33971 qqh0 33974 qqh1 33975 qqhf 33976 qqhghm 33978 qqhrhm 33979 qqhnm 33980 qqhucn 33982 zrhre 34009 qqhre 34010 lindsdom 37608 lindsenlbs 37609 matunitlindflem1 37610 matunitlindflem2 37611 matunitlindf 37612 dvalveclem 41019 dvhlveclem 41102 hlhilsrnglem 41947 fldhmf1 42078 ricdrng1 42516 0prjspnrel 42615 drhmsubcALTV 48317 drngcatALTV 48318 aacllem 49790 |
| Copyright terms: Public domain | W3C validator |