| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > drngring | Structured version Visualization version GIF version | ||
| Description: A division ring is a ring. (Contributed by NM, 8-Sep-2011.) |
| Ref | Expression |
|---|---|
| drngring | ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2735 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 2 | eqid 2735 | . . 3 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
| 3 | eqid 2735 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 4 | 1, 2, 3 | isdrng 20693 | . 2 ⊢ (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ (Unit‘𝑅) = ((Base‘𝑅) ∖ {(0g‘𝑅)}))) |
| 5 | 4 | simplbi 497 | 1 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ∖ cdif 3923 {csn 4601 ‘cfv 6531 Basecbs 17228 0gc0g 17453 Ringcrg 20193 Unitcui 20315 DivRingcdr 20689 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-iota 6484 df-fv 6539 df-drng 20691 |
| This theorem is referenced by: drngringd 20697 drngid 20706 drngunz 20707 drngnzr 20708 drngdomn 20709 drngmcl 20710 drnginvrcl 20713 drnginvrn0 20714 drnginvrl 20716 drnginvrr 20717 drngmul0orOLD 20721 drhmsubc 20741 drngcat 20742 sdrgid 20752 sdrgacs 20761 cntzsdrg 20762 primefld 20765 rlmlvec 21162 drngnidl 21204 drnglpir 21293 qsssubdrg 21394 frlmlvec 21721 frlmphllem 21740 mpllvec 21980 cvsdivcl 25084 qcvs 25099 cphsubrglem 25129 rrxcph 25344 rrx0 25349 drnguc1p 26131 ig1peu 26132 ig1pcl 26136 ig1pdvds 26137 ig1prsp 26138 ply1lpir 26139 padicabv 27593 ofldchr 33336 reofld 33359 rearchi 33361 xrge0slmod 33363 drng0mxidl 33491 drngmxidl 33492 zringfrac 33569 sradrng 33622 drgext0gsca 33631 drgextlsp 33633 rlmdim 33649 rgmoddimOLD 33650 frlmdim 33651 matdim 33655 drngdimgt0 33658 fedgmullem1 33669 fedgmullem2 33670 fedgmul 33671 fldextid 33701 extdg1id 33707 ccfldsrarelvec 33712 zrhunitpreima 34007 elzrhunit 34008 qqhval2lem 34012 qqh0 34015 qqh1 34016 qqhf 34017 qqhghm 34019 qqhrhm 34020 qqhnm 34021 qqhucn 34023 zrhre 34050 qqhre 34051 lindsdom 37638 lindsenlbs 37639 matunitlindflem1 37640 matunitlindflem2 37641 matunitlindf 37642 dvalveclem 41044 dvhlveclem 41127 hlhilsrnglem 41972 fldhmf1 42103 ricdrng1 42551 0prjspnrel 42650 drhmsubcALTV 48304 drngcatALTV 48305 aacllem 49665 |
| Copyright terms: Public domain | W3C validator |