Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > drngring | Structured version Visualization version GIF version |
Description: A division ring is a ring. (Contributed by NM, 8-Sep-2011.) |
Ref | Expression |
---|---|
drngring | ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2758 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
2 | eqid 2758 | . . 3 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
3 | eqid 2758 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
4 | 1, 2, 3 | isdrng 19587 | . 2 ⊢ (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ (Unit‘𝑅) = ((Base‘𝑅) ∖ {(0g‘𝑅)}))) |
5 | 4 | simplbi 501 | 1 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∈ wcel 2111 ∖ cdif 3857 {csn 4525 ‘cfv 6340 Basecbs 16554 0gc0g 16784 Ringcrg 19378 Unitcui 19473 DivRingcdr 19583 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-ex 1782 df-nf 1786 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-rab 3079 df-v 3411 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-br 5037 df-iota 6299 df-fv 6348 df-drng 19585 |
This theorem is referenced by: drnggrp 19591 drngid 19597 drngunz 19598 drnginvrcl 19600 drnginvrn0 19601 drnginvrl 19602 drnginvrr 19603 drngmul0or 19604 sdrgid 19656 sdrgacs 19661 cntzsdrg 19662 primefld 19665 abvtriv 19693 rlmlvec 20059 drngnidl 20083 drnglpir 20107 drngnzr 20116 drngdomn 20157 qsssubdrg 20238 frlmlvec 20539 frlmphllem 20558 frlmphl 20559 mpllvec 20797 cvsdivcl 23847 qcvs 23861 cphsubrglem 23891 rrxcph 24105 rrx0 24110 drnguc1p 24883 ig1peu 24884 ig1pcl 24888 ig1pdvds 24889 ig1prsp 24890 ply1lpir 24891 padicabv 26326 ofldchr 31051 reofld 31077 rearchi 31079 xrge0slmod 31081 sradrng 31206 drgext0gsca 31212 drgextlsp 31214 rgmoddim 31226 frlmdim 31227 matdim 31231 drngdimgt0 31234 fedgmullem1 31243 fedgmullem2 31244 fedgmul 31245 fldextid 31267 extdg1id 31271 ccfldsrarelvec 31274 zrhunitpreima 31459 elzrhunit 31460 qqhval2lem 31462 qqh0 31465 qqh1 31466 qqhf 31467 qqhghm 31469 qqhrhm 31470 qqhnm 31471 qqhucn 31473 zrhre 31500 qqhre 31501 lindsdom 35365 lindsenlbs 35366 matunitlindflem1 35367 matunitlindflem2 35368 matunitlindf 35369 dvalveclem 38635 dvhlveclem 38718 hlhilsrnglem 39563 drngringd 39789 0prjspnrel 39996 drhmsubc 45120 drngcat 45121 drhmsubcALTV 45138 drngcatALTV 45139 aacllem 45814 |
Copyright terms: Public domain | W3C validator |