| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > drngring | Structured version Visualization version GIF version | ||
| Description: A division ring is a ring. (Contributed by NM, 8-Sep-2011.) |
| Ref | Expression |
|---|---|
| drngring | ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 2 | eqid 2729 | . . 3 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
| 3 | eqid 2729 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 4 | 1, 2, 3 | isdrng 20636 | . 2 ⊢ (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ (Unit‘𝑅) = ((Base‘𝑅) ∖ {(0g‘𝑅)}))) |
| 5 | 4 | simplbi 497 | 1 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∖ cdif 3902 {csn 4579 ‘cfv 6486 Basecbs 17138 0gc0g 17361 Ringcrg 20136 Unitcui 20258 DivRingcdr 20632 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-iota 6442 df-fv 6494 df-drng 20634 |
| This theorem is referenced by: drngringd 20640 drngid 20649 drngunz 20650 drngnzr 20651 drngdomn 20652 drngmcl 20653 drnginvrcl 20656 drnginvrn0 20657 drnginvrl 20659 drnginvrr 20660 drngmul0orOLD 20664 drhmsubc 20684 drngcat 20685 sdrgid 20695 sdrgacs 20704 cntzsdrg 20705 primefld 20708 rlmlvec 21126 drngnidl 21168 drnglpir 21257 qsssubdrg 21351 ofldchr 21501 frlmlvec 21686 frlmphllem 21705 mpllvec 21945 cvsdivcl 25049 qcvs 25063 cphsubrglem 25093 rrxcph 25308 rrx0 25313 drnguc1p 26095 ig1peu 26096 ig1pcl 26100 ig1pdvds 26101 ig1prsp 26102 ply1lpir 26103 padicabv 27557 reofld 33291 rearchi 33293 xrge0slmod 33295 drng0mxidl 33423 drngmxidl 33424 zringfrac 33501 sradrng 33554 drgext0gsca 33563 drgextlsp 33565 rlmdim 33581 rgmoddimOLD 33582 frlmdim 33583 matdim 33587 drngdimgt0 33590 fedgmullem1 33601 fedgmullem2 33602 fedgmul 33603 fldextid 33631 extdg1id 33637 ccfldsrarelvec 33642 zrhunitpreima 33942 elzrhunit 33943 qqhval2lem 33947 qqh0 33950 qqh1 33951 qqhf 33952 qqhghm 33954 qqhrhm 33955 qqhnm 33956 qqhucn 33958 zrhre 33985 qqhre 33986 lindsdom 37593 lindsenlbs 37594 matunitlindflem1 37595 matunitlindflem2 37596 matunitlindf 37597 dvalveclem 41004 dvhlveclem 41087 hlhilsrnglem 41932 fldhmf1 42063 ricdrng1 42501 0prjspnrel 42600 drhmsubcALTV 48314 drngcatALTV 48315 aacllem 49787 |
| Copyright terms: Public domain | W3C validator |