| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > drngring | Structured version Visualization version GIF version | ||
| Description: A division ring is a ring. (Contributed by NM, 8-Sep-2011.) |
| Ref | Expression |
|---|---|
| drngring | ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 2 | eqid 2733 | . . 3 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
| 3 | eqid 2733 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 4 | 1, 2, 3 | isdrng 20650 | . 2 ⊢ (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ (Unit‘𝑅) = ((Base‘𝑅) ∖ {(0g‘𝑅)}))) |
| 5 | 4 | simplbi 497 | 1 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ∖ cdif 3895 {csn 4575 ‘cfv 6486 Basecbs 17122 0gc0g 17345 Ringcrg 20153 Unitcui 20275 DivRingcdr 20646 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-iota 6442 df-fv 6494 df-drng 20648 |
| This theorem is referenced by: drngringd 20654 drngid 20663 drngunz 20664 drngnzr 20665 drngdomn 20666 drngmcl 20667 drnginvrcl 20670 drnginvrn0 20671 drnginvrl 20673 drnginvrr 20674 drngmul0orOLD 20678 drhmsubc 20698 drngcat 20699 sdrgid 20709 sdrgacs 20718 cntzsdrg 20719 primefld 20722 rlmlvec 21140 drngnidl 21182 drnglpir 21271 qsssubdrg 21365 ofldchr 21515 frlmlvec 21700 frlmphllem 21719 mpllvec 21958 cvsdivcl 25061 qcvs 25075 cphsubrglem 25105 rrxcph 25320 rrx0 25325 drnguc1p 26107 ig1peu 26108 ig1pcl 26112 ig1pdvds 26113 ig1prsp 26114 ply1lpir 26115 padicabv 27569 reofld 33315 rearchi 33318 xrge0slmod 33320 drng0mxidl 33448 drngmxidl 33449 zringfrac 33526 sradrng 33615 drgext0gsca 33625 drgextlsp 33627 rlmdim 33643 rgmoddimOLD 33644 frlmdim 33645 matdim 33649 drngdimgt0 33652 fedgmullem1 33663 fedgmullem2 33664 fedgmul 33665 fldextid 33693 extdg1id 33700 ccfldsrarelvec 33705 zrhunitpreima 34010 elzrhunit 34011 qqhval2lem 34015 qqh0 34018 qqh1 34019 qqhf 34020 qqhghm 34022 qqhrhm 34023 qqhnm 34024 qqhucn 34026 zrhre 34053 qqhre 34054 lindsdom 37674 lindsenlbs 37675 matunitlindflem1 37676 matunitlindflem2 37677 matunitlindf 37678 dvalveclem 41144 dvhlveclem 41227 hlhilsrnglem 42072 fldhmf1 42203 ricdrng1 42646 0prjspnrel 42745 drhmsubcALTV 48453 drngcatALTV 48454 aacllem 49926 |
| Copyright terms: Public domain | W3C validator |