![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > drngring | Structured version Visualization version GIF version |
Description: A division ring is a ring. (Contributed by NM, 8-Sep-2011.) |
Ref | Expression |
---|---|
drngring | ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2734 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
2 | eqid 2734 | . . 3 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
3 | eqid 2734 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
4 | 1, 2, 3 | isdrng 20749 | . 2 ⊢ (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ (Unit‘𝑅) = ((Base‘𝑅) ∖ {(0g‘𝑅)}))) |
5 | 4 | simplbi 497 | 1 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1536 ∈ wcel 2105 ∖ cdif 3959 {csn 4630 ‘cfv 6562 Basecbs 17244 0gc0g 17485 Ringcrg 20250 Unitcui 20371 DivRingcdr 20745 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-iota 6515 df-fv 6570 df-drng 20747 |
This theorem is referenced by: drngringd 20753 drngid 20762 drngunz 20763 drngnzr 20764 drngdomn 20765 drngmcl 20766 drnginvrcl 20769 drnginvrn0 20770 drnginvrl 20772 drnginvrr 20773 drngmul0orOLD 20777 drhmsubc 20798 drngcat 20799 sdrgid 20809 sdrgacs 20818 cntzsdrg 20819 primefld 20822 rlmlvec 21228 drngnidl 21270 drnglpir 21359 qsssubdrg 21461 frlmlvec 21798 frlmphllem 21817 mpllvec 22057 cvsdivcl 25179 qcvs 25194 cphsubrglem 25224 rrxcph 25439 rrx0 25444 drnguc1p 26227 ig1peu 26228 ig1pcl 26232 ig1pdvds 26233 ig1prsp 26234 ply1lpir 26235 padicabv 27688 ofldchr 33323 reofld 33351 rearchi 33353 xrge0slmod 33355 drng0mxidl 33483 drngmxidl 33484 zringfrac 33561 sradrng 33612 drgext0gsca 33620 drgextlsp 33622 rlmdim 33636 rgmoddimOLD 33637 frlmdim 33638 matdim 33642 drngdimgt0 33645 fedgmullem1 33656 fedgmullem2 33657 fedgmul 33658 fldextid 33686 extdg1id 33690 ccfldsrarelvec 33695 zrhunitpreima 33938 elzrhunit 33939 qqhval2lem 33943 qqh0 33946 qqh1 33947 qqhf 33948 qqhghm 33950 qqhrhm 33951 qqhnm 33952 qqhucn 33954 zrhre 33981 qqhre 33982 lindsdom 37600 lindsenlbs 37601 matunitlindflem1 37602 matunitlindflem2 37603 matunitlindf 37604 dvalveclem 41007 dvhlveclem 41090 hlhilsrnglem 41939 fldhmf1 42071 ricdrng1 42514 0prjspnrel 42613 drhmsubcALTV 48172 drngcatALTV 48173 aacllem 49031 |
Copyright terms: Public domain | W3C validator |