Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > drngring | Structured version Visualization version GIF version |
Description: A division ring is a ring. (Contributed by NM, 8-Sep-2011.) |
Ref | Expression |
---|---|
drngring | ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2739 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
2 | eqid 2739 | . . 3 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
3 | eqid 2739 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
4 | 1, 2, 3 | isdrng 20004 | . 2 ⊢ (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ (Unit‘𝑅) = ((Base‘𝑅) ∖ {(0g‘𝑅)}))) |
5 | 4 | simplbi 498 | 1 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ∖ cdif 3885 {csn 4562 ‘cfv 6437 Basecbs 16921 0gc0g 17159 Ringcrg 19792 Unitcui 19890 DivRingcdr 20000 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2069 df-clab 2717 df-cleq 2731 df-clel 2817 df-rab 3074 df-v 3435 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-br 5076 df-iota 6395 df-fv 6445 df-drng 20002 |
This theorem is referenced by: drnggrp 20008 drngid 20014 drngunz 20015 drnginvrcl 20017 drnginvrn0 20018 drnginvrl 20019 drnginvrr 20020 drngmul0or 20021 sdrgid 20073 sdrgacs 20078 cntzsdrg 20079 primefld 20082 abvtriv 20110 rlmlvec 20485 drngnidl 20509 drnglpir 20533 drngnzr 20542 drngdomn 20583 qsssubdrg 20666 frlmlvec 20977 frlmphllem 20996 frlmphl 20997 mpllvec 21234 cvsdivcl 24305 qcvs 24320 cphsubrglem 24350 rrxcph 24565 rrx0 24570 drnguc1p 25344 ig1peu 25345 ig1pcl 25349 ig1pdvds 25350 ig1prsp 25351 ply1lpir 25352 padicabv 26787 ofldchr 31522 reofld 31553 rearchi 31555 xrge0slmod 31557 sradrng 31682 drgext0gsca 31688 drgextlsp 31690 rgmoddim 31702 frlmdim 31703 matdim 31707 drngdimgt0 31710 fedgmullem1 31719 fedgmullem2 31720 fedgmul 31721 fldextid 31743 extdg1id 31747 ccfldsrarelvec 31750 zrhunitpreima 31937 elzrhunit 31938 qqhval2lem 31940 qqh0 31943 qqh1 31944 qqhf 31945 qqhghm 31947 qqhrhm 31948 qqhnm 31949 qqhucn 31951 zrhre 31978 qqhre 31979 lindsdom 35780 lindsenlbs 35781 matunitlindflem1 35782 matunitlindflem2 35783 matunitlindf 35784 dvalveclem 39046 dvhlveclem 39129 hlhilsrnglem 39978 drngringd 40253 0prjspnrel 40471 drhmsubc 45649 drngcat 45650 drhmsubcALTV 45667 drngcatALTV 45668 aacllem 46516 |
Copyright terms: Public domain | W3C validator |