![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > drngring | Structured version Visualization version GIF version |
Description: A division ring is a ring. (Contributed by NM, 8-Sep-2011.) |
Ref | Expression |
---|---|
drngring | β’ (π β DivRing β π β Ring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2730 | . . 3 β’ (Baseβπ ) = (Baseβπ ) | |
2 | eqid 2730 | . . 3 β’ (Unitβπ ) = (Unitβπ ) | |
3 | eqid 2730 | . . 3 β’ (0gβπ ) = (0gβπ ) | |
4 | 1, 2, 3 | isdrng 20504 | . 2 β’ (π β DivRing β (π β Ring β§ (Unitβπ ) = ((Baseβπ ) β {(0gβπ )}))) |
5 | 4 | simplbi 496 | 1 β’ (π β DivRing β π β Ring) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1539 β wcel 2104 β cdif 3944 {csn 4627 βcfv 6542 Basecbs 17148 0gc0g 17389 Ringcrg 20127 Unitcui 20246 DivRingcdr 20500 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-iota 6494 df-fv 6550 df-drng 20502 |
This theorem is referenced by: drngringd 20508 drngid 20518 drngunz 20519 drngnzr 20520 drnginvrcl 20522 drnginvrn0 20523 drnginvrl 20525 drnginvrr 20526 drngmul0or 20529 sdrgid 20551 sdrgacs 20560 cntzsdrg 20561 primefld 20564 abvtriv 20592 rlmlvec 20973 drngnidl 21003 drnglpir 21091 drngdomn 21121 qsssubdrg 21204 frlmlvec 21535 frlmphllem 21554 mpllvec 21798 cvsdivcl 24880 qcvs 24895 cphsubrglem 24925 rrxcph 25140 rrx0 25145 drnguc1p 25923 ig1peu 25924 ig1pcl 25928 ig1pdvds 25929 ig1prsp 25930 ply1lpir 25931 padicabv 27369 ofldchr 32702 reofld 32729 rearchi 32731 xrge0slmod 32733 drng0mxidl 32866 drngmxidl 32867 sradrng 32958 drgext0gsca 32966 drgextlsp 32968 rlmdim 32982 rgmoddimOLD 32983 frlmdim 32984 matdim 32988 drngdimgt0 32991 fedgmullem1 33002 fedgmullem2 33003 fedgmul 33004 fldextid 33026 extdg1id 33030 ccfldsrarelvec 33034 zrhunitpreima 33256 elzrhunit 33257 qqhval2lem 33259 qqh0 33262 qqh1 33263 qqhf 33264 qqhghm 33266 qqhrhm 33267 qqhnm 33268 qqhucn 33270 zrhre 33297 qqhre 33298 lindsdom 36785 lindsenlbs 36786 matunitlindflem1 36787 matunitlindflem2 36788 matunitlindf 36789 dvalveclem 40199 dvhlveclem 40282 hlhilsrnglem 41131 fldhmf1 41261 ricdrng1 41406 0prjspnrel 41671 drhmsubc 47066 drngcat 47067 drhmsubcALTV 47084 drngcatALTV 47085 aacllem 47935 |
Copyright terms: Public domain | W3C validator |