| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > drngring | Structured version Visualization version GIF version | ||
| Description: A division ring is a ring. (Contributed by NM, 8-Sep-2011.) |
| Ref | Expression |
|---|---|
| drngring | ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2734 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 2 | eqid 2734 | . . 3 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
| 3 | eqid 2734 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 4 | 1, 2, 3 | isdrng 20680 | . 2 ⊢ (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ (Unit‘𝑅) = ((Base‘𝑅) ∖ {(0g‘𝑅)}))) |
| 5 | 4 | simplbi 497 | 1 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ∖ cdif 3921 {csn 4599 ‘cfv 6528 Basecbs 17215 0gc0g 17440 Ringcrg 20180 Unitcui 20302 DivRingcdr 20676 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3414 df-v 3459 df-dif 3927 df-un 3929 df-ss 3941 df-nul 4307 df-if 4499 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-br 5118 df-iota 6481 df-fv 6536 df-drng 20678 |
| This theorem is referenced by: drngringd 20684 drngid 20693 drngunz 20694 drngnzr 20695 drngdomn 20696 drngmcl 20697 drnginvrcl 20700 drnginvrn0 20701 drnginvrl 20703 drnginvrr 20704 drngmul0orOLD 20708 drhmsubc 20728 drngcat 20729 sdrgid 20739 sdrgacs 20748 cntzsdrg 20749 primefld 20752 rlmlvec 21149 drngnidl 21191 drnglpir 21280 qsssubdrg 21381 frlmlvec 21708 frlmphllem 21727 mpllvec 21967 cvsdivcl 25071 qcvs 25086 cphsubrglem 25116 rrxcph 25331 rrx0 25336 drnguc1p 26118 ig1peu 26119 ig1pcl 26123 ig1pdvds 26124 ig1prsp 26125 ply1lpir 26126 padicabv 27579 ofldchr 33273 reofld 33296 rearchi 33298 xrge0slmod 33300 drng0mxidl 33428 drngmxidl 33429 zringfrac 33506 sradrng 33557 drgext0gsca 33566 drgextlsp 33568 rlmdim 33584 rgmoddimOLD 33585 frlmdim 33586 matdim 33590 drngdimgt0 33593 fedgmullem1 33604 fedgmullem2 33605 fedgmul 33606 fldextid 33636 extdg1id 33642 ccfldsrarelvec 33647 zrhunitpreima 33936 elzrhunit 33937 qqhval2lem 33941 qqh0 33944 qqh1 33945 qqhf 33946 qqhghm 33948 qqhrhm 33949 qqhnm 33950 qqhucn 33952 zrhre 33979 qqhre 33980 lindsdom 37567 lindsenlbs 37568 matunitlindflem1 37569 matunitlindflem2 37570 matunitlindf 37571 dvalveclem 40973 dvhlveclem 41056 hlhilsrnglem 41901 fldhmf1 42032 ricdrng1 42483 0prjspnrel 42582 drhmsubcALTV 48198 drngcatALTV 48199 aacllem 49506 |
| Copyright terms: Public domain | W3C validator |