Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > drngring | Structured version Visualization version GIF version |
Description: A division ring is a ring. (Contributed by NM, 8-Sep-2011.) |
Ref | Expression |
---|---|
drngring | ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
2 | eqid 2738 | . . 3 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
3 | eqid 2738 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
4 | 1, 2, 3 | isdrng 19910 | . 2 ⊢ (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ (Unit‘𝑅) = ((Base‘𝑅) ∖ {(0g‘𝑅)}))) |
5 | 4 | simplbi 497 | 1 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ∖ cdif 3880 {csn 4558 ‘cfv 6418 Basecbs 16840 0gc0g 17067 Ringcrg 19698 Unitcui 19796 DivRingcdr 19906 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-drng 19908 |
This theorem is referenced by: drnggrp 19914 drngid 19920 drngunz 19921 drnginvrcl 19923 drnginvrn0 19924 drnginvrl 19925 drnginvrr 19926 drngmul0or 19927 sdrgid 19979 sdrgacs 19984 cntzsdrg 19985 primefld 19988 abvtriv 20016 rlmlvec 20389 drngnidl 20413 drnglpir 20437 drngnzr 20446 drngdomn 20487 qsssubdrg 20569 frlmlvec 20878 frlmphllem 20897 frlmphl 20898 mpllvec 21135 cvsdivcl 24202 qcvs 24216 cphsubrglem 24246 rrxcph 24461 rrx0 24466 drnguc1p 25240 ig1peu 25241 ig1pcl 25245 ig1pdvds 25246 ig1prsp 25247 ply1lpir 25248 padicabv 26683 ofldchr 31415 reofld 31446 rearchi 31448 xrge0slmod 31450 sradrng 31575 drgext0gsca 31581 drgextlsp 31583 rgmoddim 31595 frlmdim 31596 matdim 31600 drngdimgt0 31603 fedgmullem1 31612 fedgmullem2 31613 fedgmul 31614 fldextid 31636 extdg1id 31640 ccfldsrarelvec 31643 zrhunitpreima 31828 elzrhunit 31829 qqhval2lem 31831 qqh0 31834 qqh1 31835 qqhf 31836 qqhghm 31838 qqhrhm 31839 qqhnm 31840 qqhucn 31842 zrhre 31869 qqhre 31870 lindsdom 35698 lindsenlbs 35699 matunitlindflem1 35700 matunitlindflem2 35701 matunitlindf 35702 dvalveclem 38966 dvhlveclem 39049 hlhilsrnglem 39898 drngringd 40172 0prjspnrel 40385 drhmsubc 45526 drngcat 45527 drhmsubcALTV 45544 drngcatALTV 45545 aacllem 46391 |
Copyright terms: Public domain | W3C validator |