![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > drngring | Structured version Visualization version GIF version |
Description: A division ring is a ring. (Contributed by NM, 8-Sep-2011.) |
Ref | Expression |
---|---|
drngring | β’ (π β DivRing β π β Ring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2728 | . . 3 β’ (Baseβπ ) = (Baseβπ ) | |
2 | eqid 2728 | . . 3 β’ (Unitβπ ) = (Unitβπ ) | |
3 | eqid 2728 | . . 3 β’ (0gβπ ) = (0gβπ ) | |
4 | 1, 2, 3 | isdrng 20642 | . 2 β’ (π β DivRing β (π β Ring β§ (Unitβπ ) = ((Baseβπ ) β {(0gβπ )}))) |
5 | 4 | simplbi 496 | 1 β’ (π β DivRing β π β Ring) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 β cdif 3946 {csn 4632 βcfv 6553 Basecbs 17189 0gc0g 17430 Ringcrg 20187 Unitcui 20308 DivRingcdr 20638 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2706 df-cleq 2720 df-clel 2806 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-iota 6505 df-fv 6561 df-drng 20640 |
This theorem is referenced by: drngringd 20646 drngid 20656 drngunz 20657 drngnzr 20658 drnginvrcl 20660 drnginvrn0 20661 drnginvrl 20663 drnginvrr 20664 drngmul0or 20667 drhmsubc 20683 drngcat 20684 sdrgid 20694 sdrgacs 20703 cntzsdrg 20704 primefld 20707 abvtriv 20735 rlmlvec 21111 drngnidl 21152 drnglpir 21236 drngdomn 21267 qsssubdrg 21373 frlmlvec 21709 frlmphllem 21728 mpllvec 21979 cvsdivcl 25088 qcvs 25103 cphsubrglem 25133 rrxcph 25348 rrx0 25353 drnguc1p 26136 ig1peu 26137 ig1pcl 26141 ig1pdvds 26142 ig1prsp 26143 ply1lpir 26144 padicabv 27591 ofldchr 33061 reofld 33088 rearchi 33090 xrge0slmod 33092 drng0mxidl 33222 drngmxidl 33223 zringfrac 33285 sradrng 33324 drgext0gsca 33332 drgextlsp 33334 rlmdim 33348 rgmoddimOLD 33349 frlmdim 33350 matdim 33354 drngdimgt0 33357 fedgmullem1 33368 fedgmullem2 33369 fedgmul 33370 fldextid 33392 extdg1id 33396 ccfldsrarelvec 33400 zrhunitpreima 33620 elzrhunit 33621 qqhval2lem 33623 qqh0 33626 qqh1 33627 qqhf 33628 qqhghm 33630 qqhrhm 33631 qqhnm 33632 qqhucn 33634 zrhre 33661 qqhre 33662 lindsdom 37128 lindsenlbs 37129 matunitlindflem1 37130 matunitlindflem2 37131 matunitlindf 37132 dvalveclem 40538 dvhlveclem 40621 hlhilsrnglem 41470 fldhmf1 41601 ricdrng1 41804 0prjspnrel 42100 drhmsubcALTV 47487 drngcatALTV 47488 aacllem 48330 |
Copyright terms: Public domain | W3C validator |