![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > drngring | Structured version Visualization version GIF version |
Description: A division ring is a ring. (Contributed by NM, 8-Sep-2011.) |
Ref | Expression |
---|---|
drngring | β’ (π β DivRing β π β Ring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2726 | . . 3 β’ (Baseβπ ) = (Baseβπ ) | |
2 | eqid 2726 | . . 3 β’ (Unitβπ ) = (Unitβπ ) | |
3 | eqid 2726 | . . 3 β’ (0gβπ ) = (0gβπ ) | |
4 | 1, 2, 3 | isdrng 20591 | . 2 β’ (π β DivRing β (π β Ring β§ (Unitβπ ) = ((Baseβπ ) β {(0gβπ )}))) |
5 | 4 | simplbi 497 | 1 β’ (π β DivRing β π β Ring) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 β cdif 3940 {csn 4623 βcfv 6537 Basecbs 17153 0gc0g 17394 Ringcrg 20138 Unitcui 20257 DivRingcdr 20587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-iota 6489 df-fv 6545 df-drng 20589 |
This theorem is referenced by: drngringd 20595 drngid 20605 drngunz 20606 drngnzr 20607 drnginvrcl 20609 drnginvrn0 20610 drnginvrl 20612 drnginvrr 20613 drngmul0or 20616 drhmsubc 20632 drngcat 20633 sdrgid 20643 sdrgacs 20652 cntzsdrg 20653 primefld 20656 abvtriv 20684 rlmlvec 21060 drngnidl 21101 drnglpir 21185 drngdomn 21215 qsssubdrg 21320 frlmlvec 21656 frlmphllem 21675 mpllvec 21921 cvsdivcl 25015 qcvs 25030 cphsubrglem 25060 rrxcph 25275 rrx0 25280 drnguc1p 26063 ig1peu 26064 ig1pcl 26068 ig1pdvds 26069 ig1prsp 26070 ply1lpir 26071 padicabv 27518 ofldchr 32935 reofld 32962 rearchi 32964 xrge0slmod 32966 drng0mxidl 33098 drngmxidl 33099 sradrng 33188 drgext0gsca 33196 drgextlsp 33198 rlmdim 33212 rgmoddimOLD 33213 frlmdim 33214 matdim 33218 drngdimgt0 33221 fedgmullem1 33232 fedgmullem2 33233 fedgmul 33234 fldextid 33256 extdg1id 33260 ccfldsrarelvec 33264 zrhunitpreima 33488 elzrhunit 33489 qqhval2lem 33491 qqh0 33494 qqh1 33495 qqhf 33496 qqhghm 33498 qqhrhm 33499 qqhnm 33500 qqhucn 33502 zrhre 33529 qqhre 33530 lindsdom 36995 lindsenlbs 36996 matunitlindflem1 36997 matunitlindflem2 36998 matunitlindf 36999 dvalveclem 40409 dvhlveclem 40492 hlhilsrnglem 41341 fldhmf1 41471 ricdrng1 41658 0prjspnrel 41944 drhmsubcALTV 47276 drngcatALTV 47277 aacllem 48119 |
Copyright terms: Public domain | W3C validator |