| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > drngring | Structured version Visualization version GIF version | ||
| Description: A division ring is a ring. (Contributed by NM, 8-Sep-2011.) |
| Ref | Expression |
|---|---|
| drngring | ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 2 | eqid 2731 | . . 3 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
| 3 | eqid 2731 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 4 | 1, 2, 3 | isdrng 20646 | . 2 ⊢ (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ (Unit‘𝑅) = ((Base‘𝑅) ∖ {(0g‘𝑅)}))) |
| 5 | 4 | simplbi 497 | 1 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∖ cdif 3899 {csn 4576 ‘cfv 6481 Basecbs 17117 0gc0g 17340 Ringcrg 20149 Unitcui 20271 DivRingcdr 20642 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-iota 6437 df-fv 6489 df-drng 20644 |
| This theorem is referenced by: drngringd 20650 drngid 20659 drngunz 20660 drngnzr 20661 drngdomn 20662 drngmcl 20663 drnginvrcl 20666 drnginvrn0 20667 drnginvrl 20669 drnginvrr 20670 drngmul0orOLD 20674 drhmsubc 20694 drngcat 20695 sdrgid 20705 sdrgacs 20714 cntzsdrg 20715 primefld 20718 rlmlvec 21136 drngnidl 21178 drnglpir 21267 qsssubdrg 21361 ofldchr 21511 frlmlvec 21696 frlmphllem 21715 mpllvec 21955 cvsdivcl 25058 qcvs 25072 cphsubrglem 25102 rrxcph 25317 rrx0 25322 drnguc1p 26104 ig1peu 26105 ig1pcl 26109 ig1pdvds 26110 ig1prsp 26111 ply1lpir 26112 padicabv 27566 reofld 33303 rearchi 33306 xrge0slmod 33308 drng0mxidl 33436 drngmxidl 33437 zringfrac 33514 sradrng 33589 drgext0gsca 33599 drgextlsp 33601 rlmdim 33617 rgmoddimOLD 33618 frlmdim 33619 matdim 33623 drngdimgt0 33626 fedgmullem1 33637 fedgmullem2 33638 fedgmul 33639 fldextid 33667 extdg1id 33674 ccfldsrarelvec 33679 zrhunitpreima 33984 elzrhunit 33985 qqhval2lem 33989 qqh0 33992 qqh1 33993 qqhf 33994 qqhghm 33996 qqhrhm 33997 qqhnm 33998 qqhucn 34000 zrhre 34027 qqhre 34028 lindsdom 37653 lindsenlbs 37654 matunitlindflem1 37655 matunitlindflem2 37656 matunitlindf 37657 dvalveclem 41063 dvhlveclem 41146 hlhilsrnglem 41991 fldhmf1 42122 ricdrng1 42560 0prjspnrel 42659 drhmsubcALTV 48359 drngcatALTV 48360 aacllem 49832 |
| Copyright terms: Public domain | W3C validator |