| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > drngring | Structured version Visualization version GIF version | ||
| Description: A division ring is a ring. (Contributed by NM, 8-Sep-2011.) |
| Ref | Expression |
|---|---|
| drngring | ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 2 | eqid 2730 | . . 3 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
| 3 | eqid 2730 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 4 | 1, 2, 3 | isdrng 20649 | . 2 ⊢ (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ (Unit‘𝑅) = ((Base‘𝑅) ∖ {(0g‘𝑅)}))) |
| 5 | 4 | simplbi 497 | 1 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∖ cdif 3914 {csn 4592 ‘cfv 6514 Basecbs 17186 0gc0g 17409 Ringcrg 20149 Unitcui 20271 DivRingcdr 20645 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-drng 20647 |
| This theorem is referenced by: drngringd 20653 drngid 20662 drngunz 20663 drngnzr 20664 drngdomn 20665 drngmcl 20666 drnginvrcl 20669 drnginvrn0 20670 drnginvrl 20672 drnginvrr 20673 drngmul0orOLD 20677 drhmsubc 20697 drngcat 20698 sdrgid 20708 sdrgacs 20717 cntzsdrg 20718 primefld 20721 rlmlvec 21118 drngnidl 21160 drnglpir 21249 qsssubdrg 21350 frlmlvec 21677 frlmphllem 21696 mpllvec 21936 cvsdivcl 25040 qcvs 25054 cphsubrglem 25084 rrxcph 25299 rrx0 25304 drnguc1p 26086 ig1peu 26087 ig1pcl 26091 ig1pdvds 26092 ig1prsp 26093 ply1lpir 26094 padicabv 27548 ofldchr 33299 reofld 33322 rearchi 33324 xrge0slmod 33326 drng0mxidl 33454 drngmxidl 33455 zringfrac 33532 sradrng 33585 drgext0gsca 33594 drgextlsp 33596 rlmdim 33612 rgmoddimOLD 33613 frlmdim 33614 matdim 33618 drngdimgt0 33621 fedgmullem1 33632 fedgmullem2 33633 fedgmul 33634 fldextid 33662 extdg1id 33668 ccfldsrarelvec 33673 zrhunitpreima 33973 elzrhunit 33974 qqhval2lem 33978 qqh0 33981 qqh1 33982 qqhf 33983 qqhghm 33985 qqhrhm 33986 qqhnm 33987 qqhucn 33989 zrhre 34016 qqhre 34017 lindsdom 37615 lindsenlbs 37616 matunitlindflem1 37617 matunitlindflem2 37618 matunitlindf 37619 dvalveclem 41026 dvhlveclem 41109 hlhilsrnglem 41954 fldhmf1 42085 ricdrng1 42523 0prjspnrel 42622 drhmsubcALTV 48321 drngcatALTV 48322 aacllem 49794 |
| Copyright terms: Public domain | W3C validator |