Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ig1pnunit Structured version   Visualization version   GIF version

Theorem ig1pnunit 33561
Description: The polynomial ideal generator is not a unit polynomial. (Contributed by Thierry Arnoux, 19-Mar-2025.)
Hypotheses
Ref Expression
ig1pirred.p 𝑃 = (Poly1𝑅)
ig1pirred.g 𝐺 = (idlGen1p𝑅)
ig1pirred.u 𝑈 = (Base‘𝑃)
ig1pirred.r (𝜑𝑅 ∈ DivRing)
ig1pirred.1 (𝜑𝐼 ∈ (LIdeal‘𝑃))
ig1pirred.2 (𝜑𝐼𝑈)
Assertion
Ref Expression
ig1pnunit (𝜑 → ¬ (𝐺𝐼) ∈ (Unit‘𝑃))

Proof of Theorem ig1pnunit
StepHypRef Expression
1 ig1pirred.u . . 3 𝑈 = (Base‘𝑃)
2 eqid 2731 . . 3 (Unit‘𝑃) = (Unit‘𝑃)
3 simpr 484 . . 3 ((𝜑 ∧ (𝐺𝐼) ∈ (Unit‘𝑃)) → (𝐺𝐼) ∈ (Unit‘𝑃))
4 ig1pirred.r . . . . 5 (𝜑𝑅 ∈ DivRing)
5 ig1pirred.1 . . . . 5 (𝜑𝐼 ∈ (LIdeal‘𝑃))
6 ig1pirred.p . . . . . 6 𝑃 = (Poly1𝑅)
7 ig1pirred.g . . . . . 6 𝐺 = (idlGen1p𝑅)
8 eqid 2731 . . . . . 6 (LIdeal‘𝑃) = (LIdeal‘𝑃)
96, 7, 8ig1pcl 26111 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ (LIdeal‘𝑃)) → (𝐺𝐼) ∈ 𝐼)
104, 5, 9syl2anc 584 . . . 4 (𝜑 → (𝐺𝐼) ∈ 𝐼)
1110adantr 480 . . 3 ((𝜑 ∧ (𝐺𝐼) ∈ (Unit‘𝑃)) → (𝐺𝐼) ∈ 𝐼)
124drngringd 20652 . . . . 5 (𝜑𝑅 ∈ Ring)
136ply1ring 22160 . . . . 5 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
1412, 13syl 17 . . . 4 (𝜑𝑃 ∈ Ring)
1514adantr 480 . . 3 ((𝜑 ∧ (𝐺𝐼) ∈ (Unit‘𝑃)) → 𝑃 ∈ Ring)
165adantr 480 . . 3 ((𝜑 ∧ (𝐺𝐼) ∈ (Unit‘𝑃)) → 𝐼 ∈ (LIdeal‘𝑃))
171, 2, 3, 11, 15, 16lidlunitel 33388 . 2 ((𝜑 ∧ (𝐺𝐼) ∈ (Unit‘𝑃)) → 𝐼 = 𝑈)
18 ig1pirred.2 . . . 4 (𝜑𝐼𝑈)
1918adantr 480 . . 3 ((𝜑 ∧ (𝐺𝐼) ∈ (Unit‘𝑃)) → 𝐼𝑈)
2019neneqd 2933 . 2 ((𝜑 ∧ (𝐺𝐼) ∈ (Unit‘𝑃)) → ¬ 𝐼 = 𝑈)
2117, 20pm2.65da 816 1 (𝜑 → ¬ (𝐺𝐼) ∈ (Unit‘𝑃))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  cfv 6481  Basecbs 17120  Ringcrg 20151  Unitcui 20273  DivRingcdr 20644  LIdealclidl 21143  Poly1cpl1 22089  idlGen1pcig1p 26062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-ofr 7611  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-fzo 13555  df-seq 13909  df-hash 14238  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-submnd 18692  df-grp 18849  df-minusg 18850  df-sbg 18851  df-mulg 18981  df-subg 19036  df-ghm 19125  df-cntz 19229  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-ring 20153  df-cring 20154  df-oppr 20255  df-dvdsr 20275  df-unit 20276  df-invr 20306  df-subrng 20461  df-subrg 20485  df-rlreg 20609  df-drng 20646  df-lmod 20795  df-lss 20865  df-sra 21107  df-rgmod 21108  df-lidl 21145  df-cnfld 21292  df-ascl 21792  df-psr 21846  df-mvr 21847  df-mpl 21848  df-opsr 21850  df-psr1 22092  df-vr1 22093  df-ply1 22094  df-coe1 22095  df-mdeg 25987  df-deg1 25988  df-mon1 26063  df-uc1p 26064  df-ig1p 26067
This theorem is referenced by:  minplyirred  33724
  Copyright terms: Public domain W3C validator