| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sdrgdvcl | Structured version Visualization version GIF version | ||
| Description: A sub-division-ring is closed under the ring division operation. (Contributed by Thierry Arnoux, 15-Jan-2025.) |
| Ref | Expression |
|---|---|
| sdrgdvcl.i | ⊢ / = (/r‘𝑅) |
| sdrgdvcl.0 | ⊢ 0 = (0g‘𝑅) |
| sdrgdvcl.a | ⊢ (𝜑 → 𝐴 ∈ (SubDRing‘𝑅)) |
| sdrgdvcl.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| sdrgdvcl.y | ⊢ (𝜑 → 𝑌 ∈ 𝐴) |
| sdrgdvcl.1 | ⊢ (𝜑 → 𝑌 ≠ 0 ) |
| Ref | Expression |
|---|---|
| sdrgdvcl | ⊢ (𝜑 → (𝑋 / 𝑌) ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sdrgdvcl.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ (SubDRing‘𝑅)) | |
| 2 | issdrg 20691 | . . . . . 6 ⊢ (𝐴 ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅) ∧ (𝑅 ↾s 𝐴) ∈ DivRing)) | |
| 3 | 1, 2 | sylib 218 | . . . . 5 ⊢ (𝜑 → (𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅) ∧ (𝑅 ↾s 𝐴) ∈ DivRing)) |
| 4 | 3 | simp3d 1144 | . . . 4 ⊢ (𝜑 → (𝑅 ↾s 𝐴) ∈ DivRing) |
| 5 | 4 | drngringd 20640 | . . 3 ⊢ (𝜑 → (𝑅 ↾s 𝐴) ∈ Ring) |
| 6 | sdrgdvcl.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 7 | 3 | simp2d 1143 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ (SubRing‘𝑅)) |
| 8 | eqid 2729 | . . . . . 6 ⊢ (𝑅 ↾s 𝐴) = (𝑅 ↾s 𝐴) | |
| 9 | 8 | subrgbas 20484 | . . . . 5 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 = (Base‘(𝑅 ↾s 𝐴))) |
| 10 | 7, 9 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐴 = (Base‘(𝑅 ↾s 𝐴))) |
| 11 | 6, 10 | eleqtrd 2830 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘(𝑅 ↾s 𝐴))) |
| 12 | sdrgdvcl.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐴) | |
| 13 | 12, 10 | eleqtrd 2830 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ (Base‘(𝑅 ↾s 𝐴))) |
| 14 | sdrgdvcl.1 | . . . . 5 ⊢ (𝜑 → 𝑌 ≠ 0 ) | |
| 15 | sdrgdvcl.0 | . . . . . . 7 ⊢ 0 = (0g‘𝑅) | |
| 16 | 8, 15 | subrg0 20482 | . . . . . 6 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 0 = (0g‘(𝑅 ↾s 𝐴))) |
| 17 | 7, 16 | syl 17 | . . . . 5 ⊢ (𝜑 → 0 = (0g‘(𝑅 ↾s 𝐴))) |
| 18 | 14, 17 | neeqtrd 2994 | . . . 4 ⊢ (𝜑 → 𝑌 ≠ (0g‘(𝑅 ↾s 𝐴))) |
| 19 | eqid 2729 | . . . . . 6 ⊢ (Base‘(𝑅 ↾s 𝐴)) = (Base‘(𝑅 ↾s 𝐴)) | |
| 20 | eqid 2729 | . . . . . 6 ⊢ (Unit‘(𝑅 ↾s 𝐴)) = (Unit‘(𝑅 ↾s 𝐴)) | |
| 21 | eqid 2729 | . . . . . 6 ⊢ (0g‘(𝑅 ↾s 𝐴)) = (0g‘(𝑅 ↾s 𝐴)) | |
| 22 | 19, 20, 21 | drngunit 20637 | . . . . 5 ⊢ ((𝑅 ↾s 𝐴) ∈ DivRing → (𝑌 ∈ (Unit‘(𝑅 ↾s 𝐴)) ↔ (𝑌 ∈ (Base‘(𝑅 ↾s 𝐴)) ∧ 𝑌 ≠ (0g‘(𝑅 ↾s 𝐴))))) |
| 23 | 22 | biimpar 477 | . . . 4 ⊢ (((𝑅 ↾s 𝐴) ∈ DivRing ∧ (𝑌 ∈ (Base‘(𝑅 ↾s 𝐴)) ∧ 𝑌 ≠ (0g‘(𝑅 ↾s 𝐴)))) → 𝑌 ∈ (Unit‘(𝑅 ↾s 𝐴))) |
| 24 | 4, 13, 18, 23 | syl12anc 836 | . . 3 ⊢ (𝜑 → 𝑌 ∈ (Unit‘(𝑅 ↾s 𝐴))) |
| 25 | eqid 2729 | . . . 4 ⊢ (/r‘(𝑅 ↾s 𝐴)) = (/r‘(𝑅 ↾s 𝐴)) | |
| 26 | 19, 20, 25 | dvrcl 20307 | . . 3 ⊢ (((𝑅 ↾s 𝐴) ∈ Ring ∧ 𝑋 ∈ (Base‘(𝑅 ↾s 𝐴)) ∧ 𝑌 ∈ (Unit‘(𝑅 ↾s 𝐴))) → (𝑋(/r‘(𝑅 ↾s 𝐴))𝑌) ∈ (Base‘(𝑅 ↾s 𝐴))) |
| 27 | 5, 11, 24, 26 | syl3anc 1373 | . 2 ⊢ (𝜑 → (𝑋(/r‘(𝑅 ↾s 𝐴))𝑌) ∈ (Base‘(𝑅 ↾s 𝐴))) |
| 28 | sdrgdvcl.i | . . . 4 ⊢ / = (/r‘𝑅) | |
| 29 | 8, 28, 20, 25 | subrgdv 20492 | . . 3 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ (Unit‘(𝑅 ↾s 𝐴))) → (𝑋 / 𝑌) = (𝑋(/r‘(𝑅 ↾s 𝐴))𝑌)) |
| 30 | 7, 6, 24, 29 | syl3anc 1373 | . 2 ⊢ (𝜑 → (𝑋 / 𝑌) = (𝑋(/r‘(𝑅 ↾s 𝐴))𝑌)) |
| 31 | 27, 30, 10 | 3eltr4d 2843 | 1 ⊢ (𝜑 → (𝑋 / 𝑌) ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 ↾s cress 17159 0gc0g 17361 Ringcrg 20136 Unitcui 20258 /rcdvr 20303 SubRingcsubrg 20472 DivRingcdr 20632 SubDRingcsdrg 20689 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-tpos 8166 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-0g 17363 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-grp 18833 df-minusg 18834 df-subg 19020 df-cmn 19679 df-abl 19680 df-mgp 20044 df-rng 20056 df-ur 20085 df-ring 20138 df-oppr 20240 df-dvdsr 20260 df-unit 20261 df-invr 20291 df-dvr 20304 df-subrg 20473 df-drng 20634 df-sdrg 20690 |
| This theorem is referenced by: 1fldgenq 33271 constrelextdg2 33713 |
| Copyright terms: Public domain | W3C validator |