Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sdrgdvcl Structured version   Visualization version   GIF version

Theorem sdrgdvcl 33301
Description: A sub-division-ring is closed under the ring division operation. (Contributed by Thierry Arnoux, 15-Jan-2025.)
Hypotheses
Ref Expression
sdrgdvcl.i / = (/r𝑅)
sdrgdvcl.0 0 = (0g𝑅)
sdrgdvcl.a (𝜑𝐴 ∈ (SubDRing‘𝑅))
sdrgdvcl.x (𝜑𝑋𝐴)
sdrgdvcl.y (𝜑𝑌𝐴)
sdrgdvcl.1 (𝜑𝑌0 )
Assertion
Ref Expression
sdrgdvcl (𝜑 → (𝑋 / 𝑌) ∈ 𝐴)

Proof of Theorem sdrgdvcl
StepHypRef Expression
1 sdrgdvcl.a . . . . . 6 (𝜑𝐴 ∈ (SubDRing‘𝑅))
2 issdrg 20789 . . . . . 6 (𝐴 ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅) ∧ (𝑅s 𝐴) ∈ DivRing))
31, 2sylib 218 . . . . 5 (𝜑 → (𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅) ∧ (𝑅s 𝐴) ∈ DivRing))
43simp3d 1145 . . . 4 (𝜑 → (𝑅s 𝐴) ∈ DivRing)
54drngringd 20737 . . 3 (𝜑 → (𝑅s 𝐴) ∈ Ring)
6 sdrgdvcl.x . . . 4 (𝜑𝑋𝐴)
73simp2d 1144 . . . . 5 (𝜑𝐴 ∈ (SubRing‘𝑅))
8 eqid 2737 . . . . . 6 (𝑅s 𝐴) = (𝑅s 𝐴)
98subrgbas 20581 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 = (Base‘(𝑅s 𝐴)))
107, 9syl 17 . . . 4 (𝜑𝐴 = (Base‘(𝑅s 𝐴)))
116, 10eleqtrd 2843 . . 3 (𝜑𝑋 ∈ (Base‘(𝑅s 𝐴)))
12 sdrgdvcl.y . . . . 5 (𝜑𝑌𝐴)
1312, 10eleqtrd 2843 . . . 4 (𝜑𝑌 ∈ (Base‘(𝑅s 𝐴)))
14 sdrgdvcl.1 . . . . 5 (𝜑𝑌0 )
15 sdrgdvcl.0 . . . . . . 7 0 = (0g𝑅)
168, 15subrg0 20579 . . . . . 6 (𝐴 ∈ (SubRing‘𝑅) → 0 = (0g‘(𝑅s 𝐴)))
177, 16syl 17 . . . . 5 (𝜑0 = (0g‘(𝑅s 𝐴)))
1814, 17neeqtrd 3010 . . . 4 (𝜑𝑌 ≠ (0g‘(𝑅s 𝐴)))
19 eqid 2737 . . . . . 6 (Base‘(𝑅s 𝐴)) = (Base‘(𝑅s 𝐴))
20 eqid 2737 . . . . . 6 (Unit‘(𝑅s 𝐴)) = (Unit‘(𝑅s 𝐴))
21 eqid 2737 . . . . . 6 (0g‘(𝑅s 𝐴)) = (0g‘(𝑅s 𝐴))
2219, 20, 21drngunit 20734 . . . . 5 ((𝑅s 𝐴) ∈ DivRing → (𝑌 ∈ (Unit‘(𝑅s 𝐴)) ↔ (𝑌 ∈ (Base‘(𝑅s 𝐴)) ∧ 𝑌 ≠ (0g‘(𝑅s 𝐴)))))
2322biimpar 477 . . . 4 (((𝑅s 𝐴) ∈ DivRing ∧ (𝑌 ∈ (Base‘(𝑅s 𝐴)) ∧ 𝑌 ≠ (0g‘(𝑅s 𝐴)))) → 𝑌 ∈ (Unit‘(𝑅s 𝐴)))
244, 13, 18, 23syl12anc 837 . . 3 (𝜑𝑌 ∈ (Unit‘(𝑅s 𝐴)))
25 eqid 2737 . . . 4 (/r‘(𝑅s 𝐴)) = (/r‘(𝑅s 𝐴))
2619, 20, 25dvrcl 20404 . . 3 (((𝑅s 𝐴) ∈ Ring ∧ 𝑋 ∈ (Base‘(𝑅s 𝐴)) ∧ 𝑌 ∈ (Unit‘(𝑅s 𝐴))) → (𝑋(/r‘(𝑅s 𝐴))𝑌) ∈ (Base‘(𝑅s 𝐴)))
275, 11, 24, 26syl3anc 1373 . 2 (𝜑 → (𝑋(/r‘(𝑅s 𝐴))𝑌) ∈ (Base‘(𝑅s 𝐴)))
28 sdrgdvcl.i . . . 4 / = (/r𝑅)
298, 28, 20, 25subrgdv 20589 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝐴𝑌 ∈ (Unit‘(𝑅s 𝐴))) → (𝑋 / 𝑌) = (𝑋(/r‘(𝑅s 𝐴))𝑌))
307, 6, 24, 29syl3anc 1373 . 2 (𝜑 → (𝑋 / 𝑌) = (𝑋(/r‘(𝑅s 𝐴))𝑌))
3127, 30, 103eltr4d 2856 1 (𝜑 → (𝑋 / 𝑌) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940  cfv 6561  (class class class)co 7431  Basecbs 17247  s cress 17274  0gc0g 17484  Ringcrg 20230  Unitcui 20355  /rcdvr 20400  SubRingcsubrg 20569  DivRingcdr 20729  SubDRingcsdrg 20787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-tpos 8251  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-minusg 18955  df-subg 19141  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-oppr 20334  df-dvdsr 20357  df-unit 20358  df-invr 20388  df-dvr 20401  df-subrg 20570  df-drng 20731  df-sdrg 20788
This theorem is referenced by:  1fldgenq  33324  constrelextdg2  33788
  Copyright terms: Public domain W3C validator