Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sdrgdvcl Structured version   Visualization version   GIF version

Theorem sdrgdvcl 33280
Description: A sub-division-ring is closed under the ring division operation. (Contributed by Thierry Arnoux, 15-Jan-2025.)
Hypotheses
Ref Expression
sdrgdvcl.i / = (/r𝑅)
sdrgdvcl.0 0 = (0g𝑅)
sdrgdvcl.a (𝜑𝐴 ∈ (SubDRing‘𝑅))
sdrgdvcl.x (𝜑𝑋𝐴)
sdrgdvcl.y (𝜑𝑌𝐴)
sdrgdvcl.1 (𝜑𝑌0 )
Assertion
Ref Expression
sdrgdvcl (𝜑 → (𝑋 / 𝑌) ∈ 𝐴)

Proof of Theorem sdrgdvcl
StepHypRef Expression
1 sdrgdvcl.a . . . . . 6 (𝜑𝐴 ∈ (SubDRing‘𝑅))
2 issdrg 20805 . . . . . 6 (𝐴 ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅) ∧ (𝑅s 𝐴) ∈ DivRing))
31, 2sylib 218 . . . . 5 (𝜑 → (𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅) ∧ (𝑅s 𝐴) ∈ DivRing))
43simp3d 1143 . . . 4 (𝜑 → (𝑅s 𝐴) ∈ DivRing)
54drngringd 20753 . . 3 (𝜑 → (𝑅s 𝐴) ∈ Ring)
6 sdrgdvcl.x . . . 4 (𝜑𝑋𝐴)
73simp2d 1142 . . . . 5 (𝜑𝐴 ∈ (SubRing‘𝑅))
8 eqid 2734 . . . . . 6 (𝑅s 𝐴) = (𝑅s 𝐴)
98subrgbas 20597 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 = (Base‘(𝑅s 𝐴)))
107, 9syl 17 . . . 4 (𝜑𝐴 = (Base‘(𝑅s 𝐴)))
116, 10eleqtrd 2840 . . 3 (𝜑𝑋 ∈ (Base‘(𝑅s 𝐴)))
12 sdrgdvcl.y . . . . 5 (𝜑𝑌𝐴)
1312, 10eleqtrd 2840 . . . 4 (𝜑𝑌 ∈ (Base‘(𝑅s 𝐴)))
14 sdrgdvcl.1 . . . . 5 (𝜑𝑌0 )
15 sdrgdvcl.0 . . . . . . 7 0 = (0g𝑅)
168, 15subrg0 20595 . . . . . 6 (𝐴 ∈ (SubRing‘𝑅) → 0 = (0g‘(𝑅s 𝐴)))
177, 16syl 17 . . . . 5 (𝜑0 = (0g‘(𝑅s 𝐴)))
1814, 17neeqtrd 3007 . . . 4 (𝜑𝑌 ≠ (0g‘(𝑅s 𝐴)))
19 eqid 2734 . . . . . 6 (Base‘(𝑅s 𝐴)) = (Base‘(𝑅s 𝐴))
20 eqid 2734 . . . . . 6 (Unit‘(𝑅s 𝐴)) = (Unit‘(𝑅s 𝐴))
21 eqid 2734 . . . . . 6 (0g‘(𝑅s 𝐴)) = (0g‘(𝑅s 𝐴))
2219, 20, 21drngunit 20750 . . . . 5 ((𝑅s 𝐴) ∈ DivRing → (𝑌 ∈ (Unit‘(𝑅s 𝐴)) ↔ (𝑌 ∈ (Base‘(𝑅s 𝐴)) ∧ 𝑌 ≠ (0g‘(𝑅s 𝐴)))))
2322biimpar 477 . . . 4 (((𝑅s 𝐴) ∈ DivRing ∧ (𝑌 ∈ (Base‘(𝑅s 𝐴)) ∧ 𝑌 ≠ (0g‘(𝑅s 𝐴)))) → 𝑌 ∈ (Unit‘(𝑅s 𝐴)))
244, 13, 18, 23syl12anc 837 . . 3 (𝜑𝑌 ∈ (Unit‘(𝑅s 𝐴)))
25 eqid 2734 . . . 4 (/r‘(𝑅s 𝐴)) = (/r‘(𝑅s 𝐴))
2619, 20, 25dvrcl 20420 . . 3 (((𝑅s 𝐴) ∈ Ring ∧ 𝑋 ∈ (Base‘(𝑅s 𝐴)) ∧ 𝑌 ∈ (Unit‘(𝑅s 𝐴))) → (𝑋(/r‘(𝑅s 𝐴))𝑌) ∈ (Base‘(𝑅s 𝐴)))
275, 11, 24, 26syl3anc 1370 . 2 (𝜑 → (𝑋(/r‘(𝑅s 𝐴))𝑌) ∈ (Base‘(𝑅s 𝐴)))
28 sdrgdvcl.i . . . 4 / = (/r𝑅)
298, 28, 20, 25subrgdv 20605 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝐴𝑌 ∈ (Unit‘(𝑅s 𝐴))) → (𝑋 / 𝑌) = (𝑋(/r‘(𝑅s 𝐴))𝑌))
307, 6, 24, 29syl3anc 1370 . 2 (𝜑 → (𝑋 / 𝑌) = (𝑋(/r‘(𝑅s 𝐴))𝑌))
3127, 30, 103eltr4d 2853 1 (𝜑 → (𝑋 / 𝑌) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1536  wcel 2105  wne 2937  cfv 6562  (class class class)co 7430  Basecbs 17244  s cress 17273  0gc0g 17485  Ringcrg 20250  Unitcui 20371  /rcdvr 20416  SubRingcsubrg 20585  DivRingcdr 20745  SubDRingcsdrg 20803
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-tpos 8249  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-2 12326  df-3 12327  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-0g 17487  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-grp 18966  df-minusg 18967  df-subg 19153  df-cmn 19814  df-abl 19815  df-mgp 20152  df-rng 20170  df-ur 20199  df-ring 20252  df-oppr 20350  df-dvdsr 20373  df-unit 20374  df-invr 20404  df-dvr 20417  df-subrg 20586  df-drng 20747  df-sdrg 20804
This theorem is referenced by:  1fldgenq  33303  constrelextdg2  33751
  Copyright terms: Public domain W3C validator