Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sdrgdvcl Structured version   Visualization version   GIF version

Theorem sdrgdvcl 33249
Description: A sub-division-ring is closed under the ring division operation. (Contributed by Thierry Arnoux, 15-Jan-2025.)
Hypotheses
Ref Expression
sdrgdvcl.i / = (/r𝑅)
sdrgdvcl.0 0 = (0g𝑅)
sdrgdvcl.a (𝜑𝐴 ∈ (SubDRing‘𝑅))
sdrgdvcl.x (𝜑𝑋𝐴)
sdrgdvcl.y (𝜑𝑌𝐴)
sdrgdvcl.1 (𝜑𝑌0 )
Assertion
Ref Expression
sdrgdvcl (𝜑 → (𝑋 / 𝑌) ∈ 𝐴)

Proof of Theorem sdrgdvcl
StepHypRef Expression
1 sdrgdvcl.a . . . . . 6 (𝜑𝐴 ∈ (SubDRing‘𝑅))
2 issdrg 20697 . . . . . 6 (𝐴 ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅) ∧ (𝑅s 𝐴) ∈ DivRing))
31, 2sylib 218 . . . . 5 (𝜑 → (𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅) ∧ (𝑅s 𝐴) ∈ DivRing))
43simp3d 1144 . . . 4 (𝜑 → (𝑅s 𝐴) ∈ DivRing)
54drngringd 20646 . . 3 (𝜑 → (𝑅s 𝐴) ∈ Ring)
6 sdrgdvcl.x . . . 4 (𝜑𝑋𝐴)
73simp2d 1143 . . . . 5 (𝜑𝐴 ∈ (SubRing‘𝑅))
8 eqid 2729 . . . . . 6 (𝑅s 𝐴) = (𝑅s 𝐴)
98subrgbas 20490 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 = (Base‘(𝑅s 𝐴)))
107, 9syl 17 . . . 4 (𝜑𝐴 = (Base‘(𝑅s 𝐴)))
116, 10eleqtrd 2830 . . 3 (𝜑𝑋 ∈ (Base‘(𝑅s 𝐴)))
12 sdrgdvcl.y . . . . 5 (𝜑𝑌𝐴)
1312, 10eleqtrd 2830 . . . 4 (𝜑𝑌 ∈ (Base‘(𝑅s 𝐴)))
14 sdrgdvcl.1 . . . . 5 (𝜑𝑌0 )
15 sdrgdvcl.0 . . . . . . 7 0 = (0g𝑅)
168, 15subrg0 20488 . . . . . 6 (𝐴 ∈ (SubRing‘𝑅) → 0 = (0g‘(𝑅s 𝐴)))
177, 16syl 17 . . . . 5 (𝜑0 = (0g‘(𝑅s 𝐴)))
1814, 17neeqtrd 2994 . . . 4 (𝜑𝑌 ≠ (0g‘(𝑅s 𝐴)))
19 eqid 2729 . . . . . 6 (Base‘(𝑅s 𝐴)) = (Base‘(𝑅s 𝐴))
20 eqid 2729 . . . . . 6 (Unit‘(𝑅s 𝐴)) = (Unit‘(𝑅s 𝐴))
21 eqid 2729 . . . . . 6 (0g‘(𝑅s 𝐴)) = (0g‘(𝑅s 𝐴))
2219, 20, 21drngunit 20643 . . . . 5 ((𝑅s 𝐴) ∈ DivRing → (𝑌 ∈ (Unit‘(𝑅s 𝐴)) ↔ (𝑌 ∈ (Base‘(𝑅s 𝐴)) ∧ 𝑌 ≠ (0g‘(𝑅s 𝐴)))))
2322biimpar 477 . . . 4 (((𝑅s 𝐴) ∈ DivRing ∧ (𝑌 ∈ (Base‘(𝑅s 𝐴)) ∧ 𝑌 ≠ (0g‘(𝑅s 𝐴)))) → 𝑌 ∈ (Unit‘(𝑅s 𝐴)))
244, 13, 18, 23syl12anc 836 . . 3 (𝜑𝑌 ∈ (Unit‘(𝑅s 𝐴)))
25 eqid 2729 . . . 4 (/r‘(𝑅s 𝐴)) = (/r‘(𝑅s 𝐴))
2619, 20, 25dvrcl 20313 . . 3 (((𝑅s 𝐴) ∈ Ring ∧ 𝑋 ∈ (Base‘(𝑅s 𝐴)) ∧ 𝑌 ∈ (Unit‘(𝑅s 𝐴))) → (𝑋(/r‘(𝑅s 𝐴))𝑌) ∈ (Base‘(𝑅s 𝐴)))
275, 11, 24, 26syl3anc 1373 . 2 (𝜑 → (𝑋(/r‘(𝑅s 𝐴))𝑌) ∈ (Base‘(𝑅s 𝐴)))
28 sdrgdvcl.i . . . 4 / = (/r𝑅)
298, 28, 20, 25subrgdv 20498 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝐴𝑌 ∈ (Unit‘(𝑅s 𝐴))) → (𝑋 / 𝑌) = (𝑋(/r‘(𝑅s 𝐴))𝑌))
307, 6, 24, 29syl3anc 1373 . 2 (𝜑 → (𝑋 / 𝑌) = (𝑋(/r‘(𝑅s 𝐴))𝑌))
3127, 30, 103eltr4d 2843 1 (𝜑 → (𝑋 / 𝑌) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  cfv 6511  (class class class)co 7387  Basecbs 17179  s cress 17200  0gc0g 17402  Ringcrg 20142  Unitcui 20264  /rcdvr 20309  SubRingcsubrg 20478  DivRingcdr 20638  SubDRingcsdrg 20695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-minusg 18869  df-subg 19055  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-oppr 20246  df-dvdsr 20266  df-unit 20267  df-invr 20297  df-dvr 20310  df-subrg 20479  df-drng 20640  df-sdrg 20696
This theorem is referenced by:  1fldgenq  33272  constrelextdg2  33737
  Copyright terms: Public domain W3C validator