Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sdrgdvcl Structured version   Visualization version   GIF version

Theorem sdrgdvcl 33260
Description: A sub-division-ring is closed under the ring division operation. (Contributed by Thierry Arnoux, 15-Jan-2025.)
Hypotheses
Ref Expression
sdrgdvcl.i / = (/r𝑅)
sdrgdvcl.0 0 = (0g𝑅)
sdrgdvcl.a (𝜑𝐴 ∈ (SubDRing‘𝑅))
sdrgdvcl.x (𝜑𝑋𝐴)
sdrgdvcl.y (𝜑𝑌𝐴)
sdrgdvcl.1 (𝜑𝑌0 )
Assertion
Ref Expression
sdrgdvcl (𝜑 → (𝑋 / 𝑌) ∈ 𝐴)

Proof of Theorem sdrgdvcl
StepHypRef Expression
1 sdrgdvcl.a . . . . . 6 (𝜑𝐴 ∈ (SubDRing‘𝑅))
2 issdrg 20701 . . . . . 6 (𝐴 ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅) ∧ (𝑅s 𝐴) ∈ DivRing))
31, 2sylib 218 . . . . 5 (𝜑 → (𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅) ∧ (𝑅s 𝐴) ∈ DivRing))
43simp3d 1144 . . . 4 (𝜑 → (𝑅s 𝐴) ∈ DivRing)
54drngringd 20650 . . 3 (𝜑 → (𝑅s 𝐴) ∈ Ring)
6 sdrgdvcl.x . . . 4 (𝜑𝑋𝐴)
73simp2d 1143 . . . . 5 (𝜑𝐴 ∈ (SubRing‘𝑅))
8 eqid 2731 . . . . . 6 (𝑅s 𝐴) = (𝑅s 𝐴)
98subrgbas 20494 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 = (Base‘(𝑅s 𝐴)))
107, 9syl 17 . . . 4 (𝜑𝐴 = (Base‘(𝑅s 𝐴)))
116, 10eleqtrd 2833 . . 3 (𝜑𝑋 ∈ (Base‘(𝑅s 𝐴)))
12 sdrgdvcl.y . . . . 5 (𝜑𝑌𝐴)
1312, 10eleqtrd 2833 . . . 4 (𝜑𝑌 ∈ (Base‘(𝑅s 𝐴)))
14 sdrgdvcl.1 . . . . 5 (𝜑𝑌0 )
15 sdrgdvcl.0 . . . . . . 7 0 = (0g𝑅)
168, 15subrg0 20492 . . . . . 6 (𝐴 ∈ (SubRing‘𝑅) → 0 = (0g‘(𝑅s 𝐴)))
177, 16syl 17 . . . . 5 (𝜑0 = (0g‘(𝑅s 𝐴)))
1814, 17neeqtrd 2997 . . . 4 (𝜑𝑌 ≠ (0g‘(𝑅s 𝐴)))
19 eqid 2731 . . . . . 6 (Base‘(𝑅s 𝐴)) = (Base‘(𝑅s 𝐴))
20 eqid 2731 . . . . . 6 (Unit‘(𝑅s 𝐴)) = (Unit‘(𝑅s 𝐴))
21 eqid 2731 . . . . . 6 (0g‘(𝑅s 𝐴)) = (0g‘(𝑅s 𝐴))
2219, 20, 21drngunit 20647 . . . . 5 ((𝑅s 𝐴) ∈ DivRing → (𝑌 ∈ (Unit‘(𝑅s 𝐴)) ↔ (𝑌 ∈ (Base‘(𝑅s 𝐴)) ∧ 𝑌 ≠ (0g‘(𝑅s 𝐴)))))
2322biimpar 477 . . . 4 (((𝑅s 𝐴) ∈ DivRing ∧ (𝑌 ∈ (Base‘(𝑅s 𝐴)) ∧ 𝑌 ≠ (0g‘(𝑅s 𝐴)))) → 𝑌 ∈ (Unit‘(𝑅s 𝐴)))
244, 13, 18, 23syl12anc 836 . . 3 (𝜑𝑌 ∈ (Unit‘(𝑅s 𝐴)))
25 eqid 2731 . . . 4 (/r‘(𝑅s 𝐴)) = (/r‘(𝑅s 𝐴))
2619, 20, 25dvrcl 20320 . . 3 (((𝑅s 𝐴) ∈ Ring ∧ 𝑋 ∈ (Base‘(𝑅s 𝐴)) ∧ 𝑌 ∈ (Unit‘(𝑅s 𝐴))) → (𝑋(/r‘(𝑅s 𝐴))𝑌) ∈ (Base‘(𝑅s 𝐴)))
275, 11, 24, 26syl3anc 1373 . 2 (𝜑 → (𝑋(/r‘(𝑅s 𝐴))𝑌) ∈ (Base‘(𝑅s 𝐴)))
28 sdrgdvcl.i . . . 4 / = (/r𝑅)
298, 28, 20, 25subrgdv 20502 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝐴𝑌 ∈ (Unit‘(𝑅s 𝐴))) → (𝑋 / 𝑌) = (𝑋(/r‘(𝑅s 𝐴))𝑌))
307, 6, 24, 29syl3anc 1373 . 2 (𝜑 → (𝑋 / 𝑌) = (𝑋(/r‘(𝑅s 𝐴))𝑌))
3127, 30, 103eltr4d 2846 1 (𝜑 → (𝑋 / 𝑌) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  cfv 6481  (class class class)co 7346  Basecbs 17117  s cress 17138  0gc0g 17340  Ringcrg 20149  Unitcui 20271  /rcdvr 20316  SubRingcsubrg 20482  DivRingcdr 20642  SubDRingcsdrg 20699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-2 12185  df-3 12186  df-sets 17072  df-slot 17090  df-ndx 17102  df-base 17118  df-ress 17139  df-plusg 17171  df-mulr 17172  df-0g 17342  df-mgm 18545  df-sgrp 18624  df-mnd 18640  df-grp 18846  df-minusg 18847  df-subg 19033  df-cmn 19692  df-abl 19693  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-dvr 20317  df-subrg 20483  df-drng 20644  df-sdrg 20700
This theorem is referenced by:  1fldgenq  33283  constrelextdg2  33755
  Copyright terms: Public domain W3C validator