| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sdrgdvcl | Structured version Visualization version GIF version | ||
| Description: A sub-division-ring is closed under the ring division operation. (Contributed by Thierry Arnoux, 15-Jan-2025.) |
| Ref | Expression |
|---|---|
| sdrgdvcl.i | ⊢ / = (/r‘𝑅) |
| sdrgdvcl.0 | ⊢ 0 = (0g‘𝑅) |
| sdrgdvcl.a | ⊢ (𝜑 → 𝐴 ∈ (SubDRing‘𝑅)) |
| sdrgdvcl.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| sdrgdvcl.y | ⊢ (𝜑 → 𝑌 ∈ 𝐴) |
| sdrgdvcl.1 | ⊢ (𝜑 → 𝑌 ≠ 0 ) |
| Ref | Expression |
|---|---|
| sdrgdvcl | ⊢ (𝜑 → (𝑋 / 𝑌) ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sdrgdvcl.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ (SubDRing‘𝑅)) | |
| 2 | issdrg 20701 | . . . . . 6 ⊢ (𝐴 ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅) ∧ (𝑅 ↾s 𝐴) ∈ DivRing)) | |
| 3 | 1, 2 | sylib 218 | . . . . 5 ⊢ (𝜑 → (𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅) ∧ (𝑅 ↾s 𝐴) ∈ DivRing)) |
| 4 | 3 | simp3d 1144 | . . . 4 ⊢ (𝜑 → (𝑅 ↾s 𝐴) ∈ DivRing) |
| 5 | 4 | drngringd 20650 | . . 3 ⊢ (𝜑 → (𝑅 ↾s 𝐴) ∈ Ring) |
| 6 | sdrgdvcl.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 7 | 3 | simp2d 1143 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ (SubRing‘𝑅)) |
| 8 | eqid 2731 | . . . . . 6 ⊢ (𝑅 ↾s 𝐴) = (𝑅 ↾s 𝐴) | |
| 9 | 8 | subrgbas 20494 | . . . . 5 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 = (Base‘(𝑅 ↾s 𝐴))) |
| 10 | 7, 9 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐴 = (Base‘(𝑅 ↾s 𝐴))) |
| 11 | 6, 10 | eleqtrd 2833 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘(𝑅 ↾s 𝐴))) |
| 12 | sdrgdvcl.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐴) | |
| 13 | 12, 10 | eleqtrd 2833 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ (Base‘(𝑅 ↾s 𝐴))) |
| 14 | sdrgdvcl.1 | . . . . 5 ⊢ (𝜑 → 𝑌 ≠ 0 ) | |
| 15 | sdrgdvcl.0 | . . . . . . 7 ⊢ 0 = (0g‘𝑅) | |
| 16 | 8, 15 | subrg0 20492 | . . . . . 6 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 0 = (0g‘(𝑅 ↾s 𝐴))) |
| 17 | 7, 16 | syl 17 | . . . . 5 ⊢ (𝜑 → 0 = (0g‘(𝑅 ↾s 𝐴))) |
| 18 | 14, 17 | neeqtrd 2997 | . . . 4 ⊢ (𝜑 → 𝑌 ≠ (0g‘(𝑅 ↾s 𝐴))) |
| 19 | eqid 2731 | . . . . . 6 ⊢ (Base‘(𝑅 ↾s 𝐴)) = (Base‘(𝑅 ↾s 𝐴)) | |
| 20 | eqid 2731 | . . . . . 6 ⊢ (Unit‘(𝑅 ↾s 𝐴)) = (Unit‘(𝑅 ↾s 𝐴)) | |
| 21 | eqid 2731 | . . . . . 6 ⊢ (0g‘(𝑅 ↾s 𝐴)) = (0g‘(𝑅 ↾s 𝐴)) | |
| 22 | 19, 20, 21 | drngunit 20647 | . . . . 5 ⊢ ((𝑅 ↾s 𝐴) ∈ DivRing → (𝑌 ∈ (Unit‘(𝑅 ↾s 𝐴)) ↔ (𝑌 ∈ (Base‘(𝑅 ↾s 𝐴)) ∧ 𝑌 ≠ (0g‘(𝑅 ↾s 𝐴))))) |
| 23 | 22 | biimpar 477 | . . . 4 ⊢ (((𝑅 ↾s 𝐴) ∈ DivRing ∧ (𝑌 ∈ (Base‘(𝑅 ↾s 𝐴)) ∧ 𝑌 ≠ (0g‘(𝑅 ↾s 𝐴)))) → 𝑌 ∈ (Unit‘(𝑅 ↾s 𝐴))) |
| 24 | 4, 13, 18, 23 | syl12anc 836 | . . 3 ⊢ (𝜑 → 𝑌 ∈ (Unit‘(𝑅 ↾s 𝐴))) |
| 25 | eqid 2731 | . . . 4 ⊢ (/r‘(𝑅 ↾s 𝐴)) = (/r‘(𝑅 ↾s 𝐴)) | |
| 26 | 19, 20, 25 | dvrcl 20320 | . . 3 ⊢ (((𝑅 ↾s 𝐴) ∈ Ring ∧ 𝑋 ∈ (Base‘(𝑅 ↾s 𝐴)) ∧ 𝑌 ∈ (Unit‘(𝑅 ↾s 𝐴))) → (𝑋(/r‘(𝑅 ↾s 𝐴))𝑌) ∈ (Base‘(𝑅 ↾s 𝐴))) |
| 27 | 5, 11, 24, 26 | syl3anc 1373 | . 2 ⊢ (𝜑 → (𝑋(/r‘(𝑅 ↾s 𝐴))𝑌) ∈ (Base‘(𝑅 ↾s 𝐴))) |
| 28 | sdrgdvcl.i | . . . 4 ⊢ / = (/r‘𝑅) | |
| 29 | 8, 28, 20, 25 | subrgdv 20502 | . . 3 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ (Unit‘(𝑅 ↾s 𝐴))) → (𝑋 / 𝑌) = (𝑋(/r‘(𝑅 ↾s 𝐴))𝑌)) |
| 30 | 7, 6, 24, 29 | syl3anc 1373 | . 2 ⊢ (𝜑 → (𝑋 / 𝑌) = (𝑋(/r‘(𝑅 ↾s 𝐴))𝑌)) |
| 31 | 27, 30, 10 | 3eltr4d 2846 | 1 ⊢ (𝜑 → (𝑋 / 𝑌) ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ‘cfv 6481 (class class class)co 7346 Basecbs 17117 ↾s cress 17138 0gc0g 17340 Ringcrg 20149 Unitcui 20271 /rcdvr 20316 SubRingcsubrg 20482 DivRingcdr 20642 SubDRingcsdrg 20699 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-2 12185 df-3 12186 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-ress 17139 df-plusg 17171 df-mulr 17172 df-0g 17342 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-grp 18846 df-minusg 18847 df-subg 19033 df-cmn 19692 df-abl 19693 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-oppr 20253 df-dvdsr 20273 df-unit 20274 df-invr 20304 df-dvr 20317 df-subrg 20483 df-drng 20644 df-sdrg 20700 |
| This theorem is referenced by: 1fldgenq 33283 constrelextdg2 33755 |
| Copyright terms: Public domain | W3C validator |