![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sdrgdvcl | Structured version Visualization version GIF version |
Description: A sub-division-ring is closed under the ring division operation. (Contributed by Thierry Arnoux, 15-Jan-2025.) |
Ref | Expression |
---|---|
sdrgdvcl.i | β’ / = (/rβπ ) |
sdrgdvcl.0 | β’ 0 = (0gβπ ) |
sdrgdvcl.a | β’ (π β π΄ β (SubDRingβπ )) |
sdrgdvcl.x | β’ (π β π β π΄) |
sdrgdvcl.y | β’ (π β π β π΄) |
sdrgdvcl.1 | β’ (π β π β 0 ) |
Ref | Expression |
---|---|
sdrgdvcl | β’ (π β (π / π) β π΄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sdrgdvcl.a | . . . . . 6 β’ (π β π΄ β (SubDRingβπ )) | |
2 | issdrg 20547 | . . . . . 6 β’ (π΄ β (SubDRingβπ ) β (π β DivRing β§ π΄ β (SubRingβπ ) β§ (π βΎs π΄) β DivRing)) | |
3 | 1, 2 | sylib 217 | . . . . 5 β’ (π β (π β DivRing β§ π΄ β (SubRingβπ ) β§ (π βΎs π΄) β DivRing)) |
4 | 3 | simp3d 1142 | . . . 4 β’ (π β (π βΎs π΄) β DivRing) |
5 | 4 | drngringd 20508 | . . 3 β’ (π β (π βΎs π΄) β Ring) |
6 | sdrgdvcl.x | . . . 4 β’ (π β π β π΄) | |
7 | 3 | simp2d 1141 | . . . . 5 β’ (π β π΄ β (SubRingβπ )) |
8 | eqid 2730 | . . . . . 6 β’ (π βΎs π΄) = (π βΎs π΄) | |
9 | 8 | subrgbas 20471 | . . . . 5 β’ (π΄ β (SubRingβπ ) β π΄ = (Baseβ(π βΎs π΄))) |
10 | 7, 9 | syl 17 | . . . 4 β’ (π β π΄ = (Baseβ(π βΎs π΄))) |
11 | 6, 10 | eleqtrd 2833 | . . 3 β’ (π β π β (Baseβ(π βΎs π΄))) |
12 | sdrgdvcl.y | . . . . 5 β’ (π β π β π΄) | |
13 | 12, 10 | eleqtrd 2833 | . . . 4 β’ (π β π β (Baseβ(π βΎs π΄))) |
14 | sdrgdvcl.1 | . . . . 5 β’ (π β π β 0 ) | |
15 | sdrgdvcl.0 | . . . . . . 7 β’ 0 = (0gβπ ) | |
16 | 8, 15 | subrg0 20469 | . . . . . 6 β’ (π΄ β (SubRingβπ ) β 0 = (0gβ(π βΎs π΄))) |
17 | 7, 16 | syl 17 | . . . . 5 β’ (π β 0 = (0gβ(π βΎs π΄))) |
18 | 14, 17 | neeqtrd 3008 | . . . 4 β’ (π β π β (0gβ(π βΎs π΄))) |
19 | eqid 2730 | . . . . . 6 β’ (Baseβ(π βΎs π΄)) = (Baseβ(π βΎs π΄)) | |
20 | eqid 2730 | . . . . . 6 β’ (Unitβ(π βΎs π΄)) = (Unitβ(π βΎs π΄)) | |
21 | eqid 2730 | . . . . . 6 β’ (0gβ(π βΎs π΄)) = (0gβ(π βΎs π΄)) | |
22 | 19, 20, 21 | drngunit 20505 | . . . . 5 β’ ((π βΎs π΄) β DivRing β (π β (Unitβ(π βΎs π΄)) β (π β (Baseβ(π βΎs π΄)) β§ π β (0gβ(π βΎs π΄))))) |
23 | 22 | biimpar 476 | . . . 4 β’ (((π βΎs π΄) β DivRing β§ (π β (Baseβ(π βΎs π΄)) β§ π β (0gβ(π βΎs π΄)))) β π β (Unitβ(π βΎs π΄))) |
24 | 4, 13, 18, 23 | syl12anc 833 | . . 3 β’ (π β π β (Unitβ(π βΎs π΄))) |
25 | eqid 2730 | . . . 4 β’ (/rβ(π βΎs π΄)) = (/rβ(π βΎs π΄)) | |
26 | 19, 20, 25 | dvrcl 20295 | . . 3 β’ (((π βΎs π΄) β Ring β§ π β (Baseβ(π βΎs π΄)) β§ π β (Unitβ(π βΎs π΄))) β (π(/rβ(π βΎs π΄))π) β (Baseβ(π βΎs π΄))) |
27 | 5, 11, 24, 26 | syl3anc 1369 | . 2 β’ (π β (π(/rβ(π βΎs π΄))π) β (Baseβ(π βΎs π΄))) |
28 | sdrgdvcl.i | . . . 4 β’ / = (/rβπ ) | |
29 | 8, 28, 20, 25 | subrgdv 20479 | . . 3 β’ ((π΄ β (SubRingβπ ) β§ π β π΄ β§ π β (Unitβ(π βΎs π΄))) β (π / π) = (π(/rβ(π βΎs π΄))π)) |
30 | 7, 6, 24, 29 | syl3anc 1369 | . 2 β’ (π β (π / π) = (π(/rβ(π βΎs π΄))π)) |
31 | 27, 30, 10 | 3eltr4d 2846 | 1 β’ (π β (π / π) β π΄) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 β§ w3a 1085 = wceq 1539 β wcel 2104 β wne 2938 βcfv 6542 (class class class)co 7411 Basecbs 17148 βΎs cress 17177 0gc0g 17389 Ringcrg 20127 Unitcui 20246 /rcdvr 20291 SubRingcsubrg 20457 DivRingcdr 20500 SubDRingcsdrg 20545 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-tpos 8213 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-sets 17101 df-slot 17119 df-ndx 17131 df-base 17149 df-ress 17178 df-plusg 17214 df-mulr 17215 df-0g 17391 df-mgm 18565 df-sgrp 18644 df-mnd 18660 df-grp 18858 df-minusg 18859 df-subg 19039 df-cmn 19691 df-abl 19692 df-mgp 20029 df-rng 20047 df-ur 20076 df-ring 20129 df-oppr 20225 df-dvdsr 20248 df-unit 20249 df-invr 20279 df-dvr 20292 df-subrg 20459 df-drng 20502 df-sdrg 20546 |
This theorem is referenced by: 1fldgenq 32682 |
Copyright terms: Public domain | W3C validator |