Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sdrgdvcl Structured version   Visualization version   GIF version

Theorem sdrgdvcl 33256
Description: A sub-division-ring is closed under the ring division operation. (Contributed by Thierry Arnoux, 15-Jan-2025.)
Hypotheses
Ref Expression
sdrgdvcl.i / = (/r𝑅)
sdrgdvcl.0 0 = (0g𝑅)
sdrgdvcl.a (𝜑𝐴 ∈ (SubDRing‘𝑅))
sdrgdvcl.x (𝜑𝑋𝐴)
sdrgdvcl.y (𝜑𝑌𝐴)
sdrgdvcl.1 (𝜑𝑌0 )
Assertion
Ref Expression
sdrgdvcl (𝜑 → (𝑋 / 𝑌) ∈ 𝐴)

Proof of Theorem sdrgdvcl
StepHypRef Expression
1 sdrgdvcl.a . . . . . 6 (𝜑𝐴 ∈ (SubDRing‘𝑅))
2 issdrg 20704 . . . . . 6 (𝐴 ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅) ∧ (𝑅s 𝐴) ∈ DivRing))
31, 2sylib 218 . . . . 5 (𝜑 → (𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅) ∧ (𝑅s 𝐴) ∈ DivRing))
43simp3d 1144 . . . 4 (𝜑 → (𝑅s 𝐴) ∈ DivRing)
54drngringd 20653 . . 3 (𝜑 → (𝑅s 𝐴) ∈ Ring)
6 sdrgdvcl.x . . . 4 (𝜑𝑋𝐴)
73simp2d 1143 . . . . 5 (𝜑𝐴 ∈ (SubRing‘𝑅))
8 eqid 2730 . . . . . 6 (𝑅s 𝐴) = (𝑅s 𝐴)
98subrgbas 20497 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 = (Base‘(𝑅s 𝐴)))
107, 9syl 17 . . . 4 (𝜑𝐴 = (Base‘(𝑅s 𝐴)))
116, 10eleqtrd 2831 . . 3 (𝜑𝑋 ∈ (Base‘(𝑅s 𝐴)))
12 sdrgdvcl.y . . . . 5 (𝜑𝑌𝐴)
1312, 10eleqtrd 2831 . . . 4 (𝜑𝑌 ∈ (Base‘(𝑅s 𝐴)))
14 sdrgdvcl.1 . . . . 5 (𝜑𝑌0 )
15 sdrgdvcl.0 . . . . . . 7 0 = (0g𝑅)
168, 15subrg0 20495 . . . . . 6 (𝐴 ∈ (SubRing‘𝑅) → 0 = (0g‘(𝑅s 𝐴)))
177, 16syl 17 . . . . 5 (𝜑0 = (0g‘(𝑅s 𝐴)))
1814, 17neeqtrd 2995 . . . 4 (𝜑𝑌 ≠ (0g‘(𝑅s 𝐴)))
19 eqid 2730 . . . . . 6 (Base‘(𝑅s 𝐴)) = (Base‘(𝑅s 𝐴))
20 eqid 2730 . . . . . 6 (Unit‘(𝑅s 𝐴)) = (Unit‘(𝑅s 𝐴))
21 eqid 2730 . . . . . 6 (0g‘(𝑅s 𝐴)) = (0g‘(𝑅s 𝐴))
2219, 20, 21drngunit 20650 . . . . 5 ((𝑅s 𝐴) ∈ DivRing → (𝑌 ∈ (Unit‘(𝑅s 𝐴)) ↔ (𝑌 ∈ (Base‘(𝑅s 𝐴)) ∧ 𝑌 ≠ (0g‘(𝑅s 𝐴)))))
2322biimpar 477 . . . 4 (((𝑅s 𝐴) ∈ DivRing ∧ (𝑌 ∈ (Base‘(𝑅s 𝐴)) ∧ 𝑌 ≠ (0g‘(𝑅s 𝐴)))) → 𝑌 ∈ (Unit‘(𝑅s 𝐴)))
244, 13, 18, 23syl12anc 836 . . 3 (𝜑𝑌 ∈ (Unit‘(𝑅s 𝐴)))
25 eqid 2730 . . . 4 (/r‘(𝑅s 𝐴)) = (/r‘(𝑅s 𝐴))
2619, 20, 25dvrcl 20320 . . 3 (((𝑅s 𝐴) ∈ Ring ∧ 𝑋 ∈ (Base‘(𝑅s 𝐴)) ∧ 𝑌 ∈ (Unit‘(𝑅s 𝐴))) → (𝑋(/r‘(𝑅s 𝐴))𝑌) ∈ (Base‘(𝑅s 𝐴)))
275, 11, 24, 26syl3anc 1373 . 2 (𝜑 → (𝑋(/r‘(𝑅s 𝐴))𝑌) ∈ (Base‘(𝑅s 𝐴)))
28 sdrgdvcl.i . . . 4 / = (/r𝑅)
298, 28, 20, 25subrgdv 20505 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝐴𝑌 ∈ (Unit‘(𝑅s 𝐴))) → (𝑋 / 𝑌) = (𝑋(/r‘(𝑅s 𝐴))𝑌))
307, 6, 24, 29syl3anc 1373 . 2 (𝜑 → (𝑋 / 𝑌) = (𝑋(/r‘(𝑅s 𝐴))𝑌))
3127, 30, 103eltr4d 2844 1 (𝜑 → (𝑋 / 𝑌) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  cfv 6514  (class class class)co 7390  Basecbs 17186  s cress 17207  0gc0g 17409  Ringcrg 20149  Unitcui 20271  /rcdvr 20316  SubRingcsubrg 20485  DivRingcdr 20645  SubDRingcsdrg 20702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-minusg 18876  df-subg 19062  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-dvr 20317  df-subrg 20486  df-drng 20647  df-sdrg 20703
This theorem is referenced by:  1fldgenq  33279  constrelextdg2  33744
  Copyright terms: Public domain W3C validator