![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > drnginvmuld | Structured version Visualization version GIF version |
Description: Inverse of a nonzero product. (Contributed by SN, 14-Aug-2024.) |
Ref | Expression |
---|---|
drnginvmuld.b | โข ๐ต = (Baseโ๐ ) |
drnginvmuld.z | โข 0 = (0gโ๐ ) |
drnginvmuld.t | โข ยท = (.rโ๐ ) |
drnginvmuld.i | โข ๐ผ = (invrโ๐ ) |
drnginvmuld.r | โข (๐ โ ๐ โ DivRing) |
drnginvmuld.x | โข (๐ โ ๐ โ ๐ต) |
drnginvmuld.y | โข (๐ โ ๐ โ ๐ต) |
drnginvmuld.1 | โข (๐ โ ๐ โ 0 ) |
drnginvmuld.2 | โข (๐ โ ๐ โ 0 ) |
Ref | Expression |
---|---|
drnginvmuld | โข (๐ โ (๐ผโ(๐ ยท ๐)) = ((๐ผโ๐) ยท (๐ผโ๐))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | drnginvmuld.b | . 2 โข ๐ต = (Baseโ๐ ) | |
2 | drnginvmuld.z | . 2 โข 0 = (0gโ๐ ) | |
3 | drnginvmuld.t | . 2 โข ยท = (.rโ๐ ) | |
4 | drnginvmuld.r | . 2 โข (๐ โ ๐ โ DivRing) | |
5 | drnginvmuld.i | . . 3 โข ๐ผ = (invrโ๐ ) | |
6 | 4 | drngringd 20509 | . . . 4 โข (๐ โ ๐ โ Ring) |
7 | drnginvmuld.x | . . . 4 โข (๐ โ ๐ โ ๐ต) | |
8 | drnginvmuld.y | . . . 4 โข (๐ โ ๐ โ ๐ต) | |
9 | 1, 3, 6, 7, 8 | ringcld 20152 | . . 3 โข (๐ โ (๐ ยท ๐) โ ๐ต) |
10 | drnginvmuld.1 | . . . 4 โข (๐ โ ๐ โ 0 ) | |
11 | drnginvmuld.2 | . . . 4 โข (๐ โ ๐ โ 0 ) | |
12 | 1, 2, 3, 4, 7, 8 | drngmulne0 20531 | . . . 4 โข (๐ โ ((๐ ยท ๐) โ 0 โ (๐ โ 0 โง ๐ โ 0 ))) |
13 | 10, 11, 12 | mpbir2and 710 | . . 3 โข (๐ โ (๐ ยท ๐) โ 0 ) |
14 | 1, 2, 5, 4, 9, 13 | drnginvrcld 20525 | . 2 โข (๐ โ (๐ผโ(๐ ยท ๐)) โ ๐ต) |
15 | 1, 2, 5, 4, 8, 11 | drnginvrcld 20525 | . . 3 โข (๐ โ (๐ผโ๐) โ ๐ต) |
16 | 1, 2, 5, 4, 7, 10 | drnginvrcld 20525 | . . 3 โข (๐ โ (๐ผโ๐) โ ๐ต) |
17 | 1, 3, 6, 15, 16 | ringcld 20152 | . 2 โข (๐ โ ((๐ผโ๐) ยท (๐ผโ๐)) โ ๐ต) |
18 | eqid 2731 | . . . . . . . . 9 โข (1rโ๐ ) = (1rโ๐ ) | |
19 | 1, 2, 3, 18, 5, 4, 7, 10 | drnginvrld 20528 | . . . . . . . 8 โข (๐ โ ((๐ผโ๐) ยท ๐) = (1rโ๐ )) |
20 | 19 | oveq1d 7427 | . . . . . . 7 โข (๐ โ (((๐ผโ๐) ยท ๐) ยท ๐) = ((1rโ๐ ) ยท ๐)) |
21 | 1, 3, 18, 6, 8 | ringlidmd 20161 | . . . . . . 7 โข (๐ โ ((1rโ๐ ) ยท ๐) = ๐) |
22 | 20, 21 | eqtrd 2771 | . . . . . 6 โข (๐ โ (((๐ผโ๐) ยท ๐) ยท ๐) = ๐) |
23 | 22 | oveq2d 7428 | . . . . 5 โข (๐ โ ((๐ผโ๐) ยท (((๐ผโ๐) ยท ๐) ยท ๐)) = ((๐ผโ๐) ยท ๐)) |
24 | 23 | eqcomd 2737 | . . . 4 โข (๐ โ ((๐ผโ๐) ยท ๐) = ((๐ผโ๐) ยท (((๐ผโ๐) ยท ๐) ยท ๐))) |
25 | 1, 2, 3, 18, 5, 4, 8, 11 | drnginvrld 20528 | . . . 4 โข (๐ โ ((๐ผโ๐) ยท ๐) = (1rโ๐ )) |
26 | 1, 3, 6, 16, 7, 8 | ringassd 20151 | . . . . 5 โข (๐ โ (((๐ผโ๐) ยท ๐) ยท ๐) = ((๐ผโ๐) ยท (๐ ยท ๐))) |
27 | 26 | oveq2d 7428 | . . . 4 โข (๐ โ ((๐ผโ๐) ยท (((๐ผโ๐) ยท ๐) ยท ๐)) = ((๐ผโ๐) ยท ((๐ผโ๐) ยท (๐ ยท ๐)))) |
28 | 24, 25, 27 | 3eqtr3d 2779 | . . 3 โข (๐ โ (1rโ๐ ) = ((๐ผโ๐) ยท ((๐ผโ๐) ยท (๐ ยท ๐)))) |
29 | 1, 2, 3, 18, 5, 4, 9, 13 | drnginvrld 20528 | . . 3 โข (๐ โ ((๐ผโ(๐ ยท ๐)) ยท (๐ ยท ๐)) = (1rโ๐ )) |
30 | 1, 3, 6, 15, 16, 9 | ringassd 20151 | . . 3 โข (๐ โ (((๐ผโ๐) ยท (๐ผโ๐)) ยท (๐ ยท ๐)) = ((๐ผโ๐) ยท ((๐ผโ๐) ยท (๐ ยท ๐)))) |
31 | 28, 29, 30 | 3eqtr4d 2781 | . 2 โข (๐ โ ((๐ผโ(๐ ยท ๐)) ยท (๐ ยท ๐)) = (((๐ผโ๐) ยท (๐ผโ๐)) ยท (๐ ยท ๐))) |
32 | 1, 2, 3, 4, 14, 17, 9, 13, 31 | drngmulcan2ad 41405 | 1 โข (๐ โ (๐ผโ(๐ ยท ๐)) = ((๐ผโ๐) ยท (๐ผโ๐))) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 = wceq 1540 โ wcel 2105 โ wne 2939 โcfv 6544 (class class class)co 7412 Basecbs 17149 .rcmulr 17203 0gc0g 17390 1rcur 20076 invrcinvr 20279 DivRingcdr 20501 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-2nd 7979 df-tpos 8214 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-er 8706 df-en 8943 df-dom 8944 df-sdom 8945 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-2 12280 df-3 12281 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-ress 17179 df-plusg 17215 df-mulr 17216 df-0g 17392 df-mgm 18566 df-sgrp 18645 df-mnd 18661 df-grp 18859 df-minusg 18860 df-cmn 19692 df-abl 19693 df-mgp 20030 df-rng 20048 df-ur 20077 df-ring 20130 df-oppr 20226 df-dvdsr 20249 df-unit 20250 df-invr 20280 df-drng 20503 |
This theorem is referenced by: prjspner1 41671 |
Copyright terms: Public domain | W3C validator |