![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > drnginvmuld | Structured version Visualization version GIF version |
Description: Inverse of a nonzero product. (Contributed by SN, 14-Aug-2024.) |
Ref | Expression |
---|---|
drnginvmuld.b | ⊢ 𝐵 = (Base‘𝑅) |
drnginvmuld.z | ⊢ 0 = (0g‘𝑅) |
drnginvmuld.t | ⊢ · = (.r‘𝑅) |
drnginvmuld.i | ⊢ 𝐼 = (invr‘𝑅) |
drnginvmuld.r | ⊢ (𝜑 → 𝑅 ∈ DivRing) |
drnginvmuld.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
drnginvmuld.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
drnginvmuld.1 | ⊢ (𝜑 → 𝑋 ≠ 0 ) |
drnginvmuld.2 | ⊢ (𝜑 → 𝑌 ≠ 0 ) |
Ref | Expression |
---|---|
drnginvmuld | ⊢ (𝜑 → (𝐼‘(𝑋 · 𝑌)) = ((𝐼‘𝑌) · (𝐼‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | drnginvmuld.b | . 2 ⊢ 𝐵 = (Base‘𝑅) | |
2 | drnginvmuld.z | . 2 ⊢ 0 = (0g‘𝑅) | |
3 | drnginvmuld.t | . 2 ⊢ · = (.r‘𝑅) | |
4 | drnginvmuld.r | . 2 ⊢ (𝜑 → 𝑅 ∈ DivRing) | |
5 | drnginvmuld.i | . . 3 ⊢ 𝐼 = (invr‘𝑅) | |
6 | 4 | drngringd 20754 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) |
7 | drnginvmuld.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
8 | drnginvmuld.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
9 | 1, 3, 6, 7, 8 | ringcld 20277 | . . 3 ⊢ (𝜑 → (𝑋 · 𝑌) ∈ 𝐵) |
10 | drnginvmuld.1 | . . . 4 ⊢ (𝜑 → 𝑋 ≠ 0 ) | |
11 | drnginvmuld.2 | . . . 4 ⊢ (𝜑 → 𝑌 ≠ 0 ) | |
12 | 1, 2, 3, 4, 7, 8 | drngmulne0 20779 | . . . 4 ⊢ (𝜑 → ((𝑋 · 𝑌) ≠ 0 ↔ (𝑋 ≠ 0 ∧ 𝑌 ≠ 0 ))) |
13 | 10, 11, 12 | mpbir2and 713 | . . 3 ⊢ (𝜑 → (𝑋 · 𝑌) ≠ 0 ) |
14 | 1, 2, 5, 4, 9, 13 | drnginvrcld 20772 | . 2 ⊢ (𝜑 → (𝐼‘(𝑋 · 𝑌)) ∈ 𝐵) |
15 | 1, 2, 5, 4, 8, 11 | drnginvrcld 20772 | . . 3 ⊢ (𝜑 → (𝐼‘𝑌) ∈ 𝐵) |
16 | 1, 2, 5, 4, 7, 10 | drnginvrcld 20772 | . . 3 ⊢ (𝜑 → (𝐼‘𝑋) ∈ 𝐵) |
17 | 1, 3, 6, 15, 16 | ringcld 20277 | . 2 ⊢ (𝜑 → ((𝐼‘𝑌) · (𝐼‘𝑋)) ∈ 𝐵) |
18 | eqid 2735 | . . . . . . . . 9 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
19 | 1, 2, 3, 18, 5, 4, 7, 10 | drnginvrld 20775 | . . . . . . . 8 ⊢ (𝜑 → ((𝐼‘𝑋) · 𝑋) = (1r‘𝑅)) |
20 | 19 | oveq1d 7446 | . . . . . . 7 ⊢ (𝜑 → (((𝐼‘𝑋) · 𝑋) · 𝑌) = ((1r‘𝑅) · 𝑌)) |
21 | 1, 3, 18, 6, 8 | ringlidmd 20286 | . . . . . . 7 ⊢ (𝜑 → ((1r‘𝑅) · 𝑌) = 𝑌) |
22 | 20, 21 | eqtrd 2775 | . . . . . 6 ⊢ (𝜑 → (((𝐼‘𝑋) · 𝑋) · 𝑌) = 𝑌) |
23 | 22 | oveq2d 7447 | . . . . 5 ⊢ (𝜑 → ((𝐼‘𝑌) · (((𝐼‘𝑋) · 𝑋) · 𝑌)) = ((𝐼‘𝑌) · 𝑌)) |
24 | 23 | eqcomd 2741 | . . . 4 ⊢ (𝜑 → ((𝐼‘𝑌) · 𝑌) = ((𝐼‘𝑌) · (((𝐼‘𝑋) · 𝑋) · 𝑌))) |
25 | 1, 2, 3, 18, 5, 4, 8, 11 | drnginvrld 20775 | . . . 4 ⊢ (𝜑 → ((𝐼‘𝑌) · 𝑌) = (1r‘𝑅)) |
26 | 1, 3, 6, 16, 7, 8 | ringassd 20275 | . . . . 5 ⊢ (𝜑 → (((𝐼‘𝑋) · 𝑋) · 𝑌) = ((𝐼‘𝑋) · (𝑋 · 𝑌))) |
27 | 26 | oveq2d 7447 | . . . 4 ⊢ (𝜑 → ((𝐼‘𝑌) · (((𝐼‘𝑋) · 𝑋) · 𝑌)) = ((𝐼‘𝑌) · ((𝐼‘𝑋) · (𝑋 · 𝑌)))) |
28 | 24, 25, 27 | 3eqtr3d 2783 | . . 3 ⊢ (𝜑 → (1r‘𝑅) = ((𝐼‘𝑌) · ((𝐼‘𝑋) · (𝑋 · 𝑌)))) |
29 | 1, 2, 3, 18, 5, 4, 9, 13 | drnginvrld 20775 | . . 3 ⊢ (𝜑 → ((𝐼‘(𝑋 · 𝑌)) · (𝑋 · 𝑌)) = (1r‘𝑅)) |
30 | 1, 3, 6, 15, 16, 9 | ringassd 20275 | . . 3 ⊢ (𝜑 → (((𝐼‘𝑌) · (𝐼‘𝑋)) · (𝑋 · 𝑌)) = ((𝐼‘𝑌) · ((𝐼‘𝑋) · (𝑋 · 𝑌)))) |
31 | 28, 29, 30 | 3eqtr4d 2785 | . 2 ⊢ (𝜑 → ((𝐼‘(𝑋 · 𝑌)) · (𝑋 · 𝑌)) = (((𝐼‘𝑌) · (𝐼‘𝑋)) · (𝑋 · 𝑌))) |
32 | 1, 2, 3, 4, 14, 17, 9, 13, 31 | drngmulrcan 42513 | 1 ⊢ (𝜑 → (𝐼‘(𝑋 · 𝑌)) = ((𝐼‘𝑌) · (𝐼‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 .rcmulr 17299 0gc0g 17486 1rcur 20199 invrcinvr 20404 DivRingcdr 20746 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-tpos 8250 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-0g 17488 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-grp 18967 df-minusg 18968 df-sbg 18969 df-cmn 19815 df-abl 19816 df-mgp 20153 df-rng 20171 df-ur 20200 df-ring 20253 df-oppr 20351 df-dvdsr 20374 df-unit 20375 df-invr 20405 df-nzr 20530 df-rlreg 20711 df-domn 20712 df-drng 20748 |
This theorem is referenced by: prjspner1 42613 |
Copyright terms: Public domain | W3C validator |