![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > drnginvmuld | Structured version Visualization version GIF version |
Description: Inverse of a nonzero product. (Contributed by SN, 14-Aug-2024.) |
Ref | Expression |
---|---|
drnginvmuld.b | ⊢ 𝐵 = (Base‘𝑅) |
drnginvmuld.z | ⊢ 0 = (0g‘𝑅) |
drnginvmuld.t | ⊢ · = (.r‘𝑅) |
drnginvmuld.i | ⊢ 𝐼 = (invr‘𝑅) |
drnginvmuld.r | ⊢ (𝜑 → 𝑅 ∈ DivRing) |
drnginvmuld.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
drnginvmuld.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
drnginvmuld.1 | ⊢ (𝜑 → 𝑋 ≠ 0 ) |
drnginvmuld.2 | ⊢ (𝜑 → 𝑌 ≠ 0 ) |
Ref | Expression |
---|---|
drnginvmuld | ⊢ (𝜑 → (𝐼‘(𝑋 · 𝑌)) = ((𝐼‘𝑌) · (𝐼‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | drnginvmuld.b | . 2 ⊢ 𝐵 = (Base‘𝑅) | |
2 | drnginvmuld.z | . 2 ⊢ 0 = (0g‘𝑅) | |
3 | drnginvmuld.t | . 2 ⊢ · = (.r‘𝑅) | |
4 | drnginvmuld.r | . 2 ⊢ (𝜑 → 𝑅 ∈ DivRing) | |
5 | drnginvmuld.i | . . 3 ⊢ 𝐼 = (invr‘𝑅) | |
6 | 4 | drngringd 20512 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) |
7 | drnginvmuld.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
8 | drnginvmuld.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
9 | 1, 3, 6, 7, 8 | ringcld 20155 | . . 3 ⊢ (𝜑 → (𝑋 · 𝑌) ∈ 𝐵) |
10 | drnginvmuld.1 | . . . 4 ⊢ (𝜑 → 𝑋 ≠ 0 ) | |
11 | drnginvmuld.2 | . . . 4 ⊢ (𝜑 → 𝑌 ≠ 0 ) | |
12 | 1, 2, 3, 4, 7, 8 | drngmulne0 20534 | . . . 4 ⊢ (𝜑 → ((𝑋 · 𝑌) ≠ 0 ↔ (𝑋 ≠ 0 ∧ 𝑌 ≠ 0 ))) |
13 | 10, 11, 12 | mpbir2and 710 | . . 3 ⊢ (𝜑 → (𝑋 · 𝑌) ≠ 0 ) |
14 | 1, 2, 5, 4, 9, 13 | drnginvrcld 20528 | . 2 ⊢ (𝜑 → (𝐼‘(𝑋 · 𝑌)) ∈ 𝐵) |
15 | 1, 2, 5, 4, 8, 11 | drnginvrcld 20528 | . . 3 ⊢ (𝜑 → (𝐼‘𝑌) ∈ 𝐵) |
16 | 1, 2, 5, 4, 7, 10 | drnginvrcld 20528 | . . 3 ⊢ (𝜑 → (𝐼‘𝑋) ∈ 𝐵) |
17 | 1, 3, 6, 15, 16 | ringcld 20155 | . 2 ⊢ (𝜑 → ((𝐼‘𝑌) · (𝐼‘𝑋)) ∈ 𝐵) |
18 | eqid 2731 | . . . . . . . . 9 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
19 | 1, 2, 3, 18, 5, 4, 7, 10 | drnginvrld 20531 | . . . . . . . 8 ⊢ (𝜑 → ((𝐼‘𝑋) · 𝑋) = (1r‘𝑅)) |
20 | 19 | oveq1d 7427 | . . . . . . 7 ⊢ (𝜑 → (((𝐼‘𝑋) · 𝑋) · 𝑌) = ((1r‘𝑅) · 𝑌)) |
21 | 1, 3, 18, 6, 8 | ringlidmd 20164 | . . . . . . 7 ⊢ (𝜑 → ((1r‘𝑅) · 𝑌) = 𝑌) |
22 | 20, 21 | eqtrd 2771 | . . . . . 6 ⊢ (𝜑 → (((𝐼‘𝑋) · 𝑋) · 𝑌) = 𝑌) |
23 | 22 | oveq2d 7428 | . . . . 5 ⊢ (𝜑 → ((𝐼‘𝑌) · (((𝐼‘𝑋) · 𝑋) · 𝑌)) = ((𝐼‘𝑌) · 𝑌)) |
24 | 23 | eqcomd 2737 | . . . 4 ⊢ (𝜑 → ((𝐼‘𝑌) · 𝑌) = ((𝐼‘𝑌) · (((𝐼‘𝑋) · 𝑋) · 𝑌))) |
25 | 1, 2, 3, 18, 5, 4, 8, 11 | drnginvrld 20531 | . . . 4 ⊢ (𝜑 → ((𝐼‘𝑌) · 𝑌) = (1r‘𝑅)) |
26 | 1, 3, 6, 16, 7, 8 | ringassd 20154 | . . . . 5 ⊢ (𝜑 → (((𝐼‘𝑋) · 𝑋) · 𝑌) = ((𝐼‘𝑋) · (𝑋 · 𝑌))) |
27 | 26 | oveq2d 7428 | . . . 4 ⊢ (𝜑 → ((𝐼‘𝑌) · (((𝐼‘𝑋) · 𝑋) · 𝑌)) = ((𝐼‘𝑌) · ((𝐼‘𝑋) · (𝑋 · 𝑌)))) |
28 | 24, 25, 27 | 3eqtr3d 2779 | . . 3 ⊢ (𝜑 → (1r‘𝑅) = ((𝐼‘𝑌) · ((𝐼‘𝑋) · (𝑋 · 𝑌)))) |
29 | 1, 2, 3, 18, 5, 4, 9, 13 | drnginvrld 20531 | . . 3 ⊢ (𝜑 → ((𝐼‘(𝑋 · 𝑌)) · (𝑋 · 𝑌)) = (1r‘𝑅)) |
30 | 1, 3, 6, 15, 16, 9 | ringassd 20154 | . . 3 ⊢ (𝜑 → (((𝐼‘𝑌) · (𝐼‘𝑋)) · (𝑋 · 𝑌)) = ((𝐼‘𝑌) · ((𝐼‘𝑋) · (𝑋 · 𝑌)))) |
31 | 28, 29, 30 | 3eqtr4d 2781 | . 2 ⊢ (𝜑 → ((𝐼‘(𝑋 · 𝑌)) · (𝑋 · 𝑌)) = (((𝐼‘𝑌) · (𝐼‘𝑋)) · (𝑋 · 𝑌))) |
32 | 1, 2, 3, 4, 14, 17, 9, 13, 31 | drngmulcan2ad 41417 | 1 ⊢ (𝜑 → (𝐼‘(𝑋 · 𝑌)) = ((𝐼‘𝑌) · (𝐼‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ≠ wne 2939 ‘cfv 6543 (class class class)co 7412 Basecbs 17151 .rcmulr 17205 0gc0g 17392 1rcur 20079 invrcinvr 20282 DivRingcdr 20504 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-2nd 7980 df-tpos 8217 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-er 8709 df-en 8946 df-dom 8947 df-sdom 8948 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-nn 12220 df-2 12282 df-3 12283 df-sets 17104 df-slot 17122 df-ndx 17134 df-base 17152 df-ress 17181 df-plusg 17217 df-mulr 17218 df-0g 17394 df-mgm 18568 df-sgrp 18647 df-mnd 18663 df-grp 18861 df-minusg 18862 df-cmn 19695 df-abl 19696 df-mgp 20033 df-rng 20051 df-ur 20080 df-ring 20133 df-oppr 20229 df-dvdsr 20252 df-unit 20253 df-invr 20283 df-drng 20506 |
This theorem is referenced by: prjspner1 41683 |
Copyright terms: Public domain | W3C validator |