Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  drnginvmuld Structured version   Visualization version   GIF version

Theorem drnginvmuld 39836
Description: Inverse of a nonzero product. (Contributed by SN, 14-Aug-2024.)
Hypotheses
Ref Expression
drnginvmuld.b 𝐵 = (Base‘𝑅)
drnginvmuld.z 0 = (0g𝑅)
drnginvmuld.t · = (.r𝑅)
drnginvmuld.i 𝐼 = (invr𝑅)
drnginvmuld.r (𝜑𝑅 ∈ DivRing)
drnginvmuld.x (𝜑𝑋𝐵)
drnginvmuld.y (𝜑𝑌𝐵)
drnginvmuld.1 (𝜑𝑋0 )
drnginvmuld.2 (𝜑𝑌0 )
Assertion
Ref Expression
drnginvmuld (𝜑 → (𝐼‘(𝑋 · 𝑌)) = ((𝐼𝑌) · (𝐼𝑋)))

Proof of Theorem drnginvmuld
StepHypRef Expression
1 drnginvmuld.b . 2 𝐵 = (Base‘𝑅)
2 drnginvmuld.z . 2 0 = (0g𝑅)
3 drnginvmuld.t . 2 · = (.r𝑅)
4 drnginvmuld.r . 2 (𝜑𝑅 ∈ DivRing)
5 drnginvmuld.i . . 3 𝐼 = (invr𝑅)
64drngringd 39828 . . . 4 (𝜑𝑅 ∈ Ring)
7 drnginvmuld.x . . . 4 (𝜑𝑋𝐵)
8 drnginvmuld.y . . . 4 (𝜑𝑌𝐵)
91, 3, 6, 7, 8ringcld 39822 . . 3 (𝜑 → (𝑋 · 𝑌) ∈ 𝐵)
10 drnginvmuld.1 . . . 4 (𝜑𝑋0 )
11 drnginvmuld.2 . . . 4 (𝜑𝑌0 )
121, 2, 3, 4, 7, 8drngmulne0 19643 . . . 4 (𝜑 → ((𝑋 · 𝑌) ≠ 0 ↔ (𝑋0𝑌0 )))
1310, 11, 12mpbir2and 713 . . 3 (𝜑 → (𝑋 · 𝑌) ≠ 0 )
141, 2, 5, 4, 9, 13drnginvrcld 39830 . 2 (𝜑 → (𝐼‘(𝑋 · 𝑌)) ∈ 𝐵)
151, 2, 5, 4, 8, 11drnginvrcld 39830 . . 3 (𝜑 → (𝐼𝑌) ∈ 𝐵)
161, 2, 5, 4, 7, 10drnginvrcld 39830 . . 3 (𝜑 → (𝐼𝑋) ∈ 𝐵)
171, 3, 6, 15, 16ringcld 39822 . 2 (𝜑 → ((𝐼𝑌) · (𝐼𝑋)) ∈ 𝐵)
18 eqid 2738 . . . . . . . . 9 (1r𝑅) = (1r𝑅)
191, 2, 3, 18, 5, 4, 7, 10drnginvrld 39832 . . . . . . . 8 (𝜑 → ((𝐼𝑋) · 𝑋) = (1r𝑅))
2019oveq1d 7185 . . . . . . 7 (𝜑 → (((𝐼𝑋) · 𝑋) · 𝑌) = ((1r𝑅) · 𝑌))
211, 3, 18, 6, 8ringlidmd 39824 . . . . . . 7 (𝜑 → ((1r𝑅) · 𝑌) = 𝑌)
2220, 21eqtrd 2773 . . . . . 6 (𝜑 → (((𝐼𝑋) · 𝑋) · 𝑌) = 𝑌)
2322oveq2d 7186 . . . . 5 (𝜑 → ((𝐼𝑌) · (((𝐼𝑋) · 𝑋) · 𝑌)) = ((𝐼𝑌) · 𝑌))
2423eqcomd 2744 . . . 4 (𝜑 → ((𝐼𝑌) · 𝑌) = ((𝐼𝑌) · (((𝐼𝑋) · 𝑋) · 𝑌)))
251, 2, 3, 18, 5, 4, 8, 11drnginvrld 39832 . . . 4 (𝜑 → ((𝐼𝑌) · 𝑌) = (1r𝑅))
261, 3, 6, 16, 7, 8ringassd 39823 . . . . 5 (𝜑 → (((𝐼𝑋) · 𝑋) · 𝑌) = ((𝐼𝑋) · (𝑋 · 𝑌)))
2726oveq2d 7186 . . . 4 (𝜑 → ((𝐼𝑌) · (((𝐼𝑋) · 𝑋) · 𝑌)) = ((𝐼𝑌) · ((𝐼𝑋) · (𝑋 · 𝑌))))
2824, 25, 273eqtr3d 2781 . . 3 (𝜑 → (1r𝑅) = ((𝐼𝑌) · ((𝐼𝑋) · (𝑋 · 𝑌))))
291, 2, 3, 18, 5, 4, 9, 13drnginvrld 39832 . . 3 (𝜑 → ((𝐼‘(𝑋 · 𝑌)) · (𝑋 · 𝑌)) = (1r𝑅))
301, 3, 6, 15, 16, 9ringassd 39823 . . 3 (𝜑 → (((𝐼𝑌) · (𝐼𝑋)) · (𝑋 · 𝑌)) = ((𝐼𝑌) · ((𝐼𝑋) · (𝑋 · 𝑌))))
3128, 29, 303eqtr4d 2783 . 2 (𝜑 → ((𝐼‘(𝑋 · 𝑌)) · (𝑋 · 𝑌)) = (((𝐼𝑌) · (𝐼𝑋)) · (𝑋 · 𝑌)))
321, 2, 3, 4, 14, 17, 9, 13, 31drngmulcan2ad 39835 1 (𝜑 → (𝐼‘(𝑋 · 𝑌)) = ((𝐼𝑌) · (𝐼𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2114  wne 2934  cfv 6339  (class class class)co 7170  Basecbs 16586  .rcmulr 16669  0gc0g 16816  1rcur 19370  invrcinvr 19543  DivRingcdr 19621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-om 7600  df-tpos 7921  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-er 8320  df-en 8556  df-dom 8557  df-sdom 8558  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-nn 11717  df-2 11779  df-3 11780  df-ndx 16589  df-slot 16590  df-base 16592  df-sets 16593  df-ress 16594  df-plusg 16681  df-mulr 16682  df-0g 16818  df-mgm 17968  df-sgrp 18017  df-mnd 18028  df-grp 18222  df-minusg 18223  df-mgp 19359  df-ur 19371  df-ring 19418  df-oppr 19495  df-dvdsr 19513  df-unit 19514  df-invr 19544  df-drng 19623
This theorem is referenced by:  prjspner1  40040
  Copyright terms: Public domain W3C validator