Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > drngmulcanad | Structured version Visualization version GIF version |
Description: Cancellation of a nonzero factor on the left for multiplication. (mulcanad 11593 analog). (Contributed by SN, 14-Aug-2024.) |
Ref | Expression |
---|---|
drngmulcanad.b | ⊢ 𝐵 = (Base‘𝑅) |
drngmulcanad.0 | ⊢ 0 = (0g‘𝑅) |
drngmulcanad.t | ⊢ · = (.r‘𝑅) |
drngmulcanad.r | ⊢ (𝜑 → 𝑅 ∈ DivRing) |
drngmulcanad.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
drngmulcanad.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
drngmulcanad.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
drngmulcanad.1 | ⊢ (𝜑 → 𝑍 ≠ 0 ) |
drngmulcanad.2 | ⊢ (𝜑 → (𝑍 · 𝑋) = (𝑍 · 𝑌)) |
Ref | Expression |
---|---|
drngmulcanad | ⊢ (𝜑 → 𝑋 = 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | drngmulcanad.2 | . . 3 ⊢ (𝜑 → (𝑍 · 𝑋) = (𝑍 · 𝑌)) | |
2 | 1 | oveq2d 7284 | . 2 ⊢ (𝜑 → (((invr‘𝑅)‘𝑍) · (𝑍 · 𝑋)) = (((invr‘𝑅)‘𝑍) · (𝑍 · 𝑌))) |
3 | drngmulcanad.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
4 | drngmulcanad.0 | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
5 | drngmulcanad.t | . . . . 5 ⊢ · = (.r‘𝑅) | |
6 | eqid 2739 | . . . . 5 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
7 | eqid 2739 | . . . . 5 ⊢ (invr‘𝑅) = (invr‘𝑅) | |
8 | drngmulcanad.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ DivRing) | |
9 | drngmulcanad.z | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
10 | drngmulcanad.1 | . . . . 5 ⊢ (𝜑 → 𝑍 ≠ 0 ) | |
11 | 3, 4, 5, 6, 7, 8, 9, 10 | drnginvrld 40230 | . . . 4 ⊢ (𝜑 → (((invr‘𝑅)‘𝑍) · 𝑍) = (1r‘𝑅)) |
12 | 11 | oveq1d 7283 | . . 3 ⊢ (𝜑 → ((((invr‘𝑅)‘𝑍) · 𝑍) · 𝑋) = ((1r‘𝑅) · 𝑋)) |
13 | 8 | drngringd 40226 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) |
14 | 3, 4, 7, 8, 9, 10 | drnginvrcld 40228 | . . . 4 ⊢ (𝜑 → ((invr‘𝑅)‘𝑍) ∈ 𝐵) |
15 | drngmulcanad.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
16 | 3, 5, 13, 14, 9, 15 | ringassd 40221 | . . 3 ⊢ (𝜑 → ((((invr‘𝑅)‘𝑍) · 𝑍) · 𝑋) = (((invr‘𝑅)‘𝑍) · (𝑍 · 𝑋))) |
17 | 3, 5, 6, 13, 15 | ringlidmd 40222 | . . 3 ⊢ (𝜑 → ((1r‘𝑅) · 𝑋) = 𝑋) |
18 | 12, 16, 17 | 3eqtr3d 2787 | . 2 ⊢ (𝜑 → (((invr‘𝑅)‘𝑍) · (𝑍 · 𝑋)) = 𝑋) |
19 | 11 | oveq1d 7283 | . . 3 ⊢ (𝜑 → ((((invr‘𝑅)‘𝑍) · 𝑍) · 𝑌) = ((1r‘𝑅) · 𝑌)) |
20 | drngmulcanad.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
21 | 3, 5, 13, 14, 9, 20 | ringassd 40221 | . . 3 ⊢ (𝜑 → ((((invr‘𝑅)‘𝑍) · 𝑍) · 𝑌) = (((invr‘𝑅)‘𝑍) · (𝑍 · 𝑌))) |
22 | 3, 5, 6, 13, 20 | ringlidmd 40222 | . . 3 ⊢ (𝜑 → ((1r‘𝑅) · 𝑌) = 𝑌) |
23 | 19, 21, 22 | 3eqtr3d 2787 | . 2 ⊢ (𝜑 → (((invr‘𝑅)‘𝑍) · (𝑍 · 𝑌)) = 𝑌) |
24 | 2, 18, 23 | 3eqtr3d 2787 | 1 ⊢ (𝜑 → 𝑋 = 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2109 ≠ wne 2944 ‘cfv 6430 (class class class)co 7268 Basecbs 16893 .rcmulr 16944 0gc0g 17131 1rcur 19718 invrcinvr 19894 DivRingcdr 19972 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-2nd 7818 df-tpos 8026 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-nn 11957 df-2 12019 df-3 12020 df-sets 16846 df-slot 16864 df-ndx 16876 df-base 16894 df-ress 16923 df-plusg 16956 df-mulr 16957 df-0g 17133 df-mgm 18307 df-sgrp 18356 df-mnd 18367 df-grp 18561 df-minusg 18562 df-mgp 19702 df-ur 19719 df-ring 19766 df-oppr 19843 df-dvdsr 19864 df-unit 19865 df-invr 19895 df-drng 19974 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |