![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > drngmulcan2ad | Structured version Visualization version GIF version |
Description: Cancellation of a nonzero factor on the right for multiplication. (mulcan2ad 11872 analog). (Contributed by SN, 14-Aug-2024.) |
Ref | Expression |
---|---|
drngmulcanad.b | โข ๐ต = (Baseโ๐ ) |
drngmulcanad.0 | โข 0 = (0gโ๐ ) |
drngmulcanad.t | โข ยท = (.rโ๐ ) |
drngmulcanad.r | โข (๐ โ ๐ โ DivRing) |
drngmulcanad.x | โข (๐ โ ๐ โ ๐ต) |
drngmulcanad.y | โข (๐ โ ๐ โ ๐ต) |
drngmulcanad.z | โข (๐ โ ๐ โ ๐ต) |
drngmulcanad.1 | โข (๐ โ ๐ โ 0 ) |
drngmulcan2ad.2 | โข (๐ โ (๐ ยท ๐) = (๐ ยท ๐)) |
Ref | Expression |
---|---|
drngmulcan2ad | โข (๐ โ ๐ = ๐) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | drngmulcan2ad.2 | . . 3 โข (๐ โ (๐ ยท ๐) = (๐ ยท ๐)) | |
2 | 1 | oveq1d 7429 | . 2 โข (๐ โ ((๐ ยท ๐) ยท ((invrโ๐ )โ๐)) = ((๐ ยท ๐) ยท ((invrโ๐ )โ๐))) |
3 | drngmulcanad.b | . . . 4 โข ๐ต = (Baseโ๐ ) | |
4 | drngmulcanad.t | . . . 4 โข ยท = (.rโ๐ ) | |
5 | drngmulcanad.r | . . . . 5 โข (๐ โ ๐ โ DivRing) | |
6 | 5 | drngringd 20621 | . . . 4 โข (๐ โ ๐ โ Ring) |
7 | drngmulcanad.x | . . . 4 โข (๐ โ ๐ โ ๐ต) | |
8 | drngmulcanad.z | . . . 4 โข (๐ โ ๐ โ ๐ต) | |
9 | drngmulcanad.0 | . . . . 5 โข 0 = (0gโ๐ ) | |
10 | eqid 2727 | . . . . 5 โข (invrโ๐ ) = (invrโ๐ ) | |
11 | drngmulcanad.1 | . . . . 5 โข (๐ โ ๐ โ 0 ) | |
12 | 3, 9, 10, 5, 8, 11 | drnginvrcld 20637 | . . . 4 โข (๐ โ ((invrโ๐ )โ๐) โ ๐ต) |
13 | 3, 4, 6, 7, 8, 12 | ringassd 20187 | . . 3 โข (๐ โ ((๐ ยท ๐) ยท ((invrโ๐ )โ๐)) = (๐ ยท (๐ ยท ((invrโ๐ )โ๐)))) |
14 | eqid 2727 | . . . . 5 โข (1rโ๐ ) = (1rโ๐ ) | |
15 | 3, 9, 4, 14, 10, 5, 8, 11 | drnginvrrd 20641 | . . . 4 โข (๐ โ (๐ ยท ((invrโ๐ )โ๐)) = (1rโ๐ )) |
16 | 15 | oveq2d 7430 | . . 3 โข (๐ โ (๐ ยท (๐ ยท ((invrโ๐ )โ๐))) = (๐ ยท (1rโ๐ ))) |
17 | 3, 4, 14, 6, 7 | ringridmd 20198 | . . 3 โข (๐ โ (๐ ยท (1rโ๐ )) = ๐) |
18 | 13, 16, 17 | 3eqtrd 2771 | . 2 โข (๐ โ ((๐ ยท ๐) ยท ((invrโ๐ )โ๐)) = ๐) |
19 | drngmulcanad.y | . . . 4 โข (๐ โ ๐ โ ๐ต) | |
20 | 3, 4, 6, 19, 8, 12 | ringassd 20187 | . . 3 โข (๐ โ ((๐ ยท ๐) ยท ((invrโ๐ )โ๐)) = (๐ ยท (๐ ยท ((invrโ๐ )โ๐)))) |
21 | 15 | oveq2d 7430 | . . 3 โข (๐ โ (๐ ยท (๐ ยท ((invrโ๐ )โ๐))) = (๐ ยท (1rโ๐ ))) |
22 | 3, 4, 14, 6, 19 | ringridmd 20198 | . . 3 โข (๐ โ (๐ ยท (1rโ๐ )) = ๐) |
23 | 20, 21, 22 | 3eqtrd 2771 | . 2 โข (๐ โ ((๐ ยท ๐) ยท ((invrโ๐ )โ๐)) = ๐) |
24 | 2, 18, 23 | 3eqtr3d 2775 | 1 โข (๐ โ ๐ = ๐) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 = wceq 1534 โ wcel 2099 โ wne 2935 โcfv 6542 (class class class)co 7414 Basecbs 17171 .rcmulr 17225 0gc0g 17412 1rcur 20112 invrcinvr 20315 DivRingcdr 20613 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11186 ax-resscn 11187 ax-1cn 11188 ax-icn 11189 ax-addcl 11190 ax-addrcl 11191 ax-mulcl 11192 ax-mulrcl 11193 ax-mulcom 11194 ax-addass 11195 ax-mulass 11196 ax-distr 11197 ax-i2m1 11198 ax-1ne0 11199 ax-1rid 11200 ax-rnegex 11201 ax-rrecex 11202 ax-cnre 11203 ax-pre-lttri 11204 ax-pre-lttrn 11205 ax-pre-ltadd 11206 ax-pre-mulgt0 11207 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-2nd 7988 df-tpos 8225 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8718 df-en 8956 df-dom 8957 df-sdom 8958 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 df-le 11276 df-sub 11468 df-neg 11469 df-nn 12235 df-2 12297 df-3 12298 df-sets 17124 df-slot 17142 df-ndx 17154 df-base 17172 df-ress 17201 df-plusg 17237 df-mulr 17238 df-0g 17414 df-mgm 18591 df-sgrp 18670 df-mnd 18686 df-grp 18884 df-minusg 18885 df-cmn 19728 df-abl 19729 df-mgp 20066 df-rng 20084 df-ur 20113 df-ring 20166 df-oppr 20262 df-dvdsr 20285 df-unit 20286 df-invr 20316 df-drng 20615 |
This theorem is referenced by: drnginvmuld 41685 |
Copyright terms: Public domain | W3C validator |