![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > drngmulcan2ad | Structured version Visualization version GIF version |
Description: Cancellation of a nonzero factor on the right for multiplication. (mulcan2ad 11875 analog). (Contributed by SN, 14-Aug-2024.) |
Ref | Expression |
---|---|
drngmulcanad.b | โข ๐ต = (Baseโ๐ ) |
drngmulcanad.0 | โข 0 = (0gโ๐ ) |
drngmulcanad.t | โข ยท = (.rโ๐ ) |
drngmulcanad.r | โข (๐ โ ๐ โ DivRing) |
drngmulcanad.x | โข (๐ โ ๐ โ ๐ต) |
drngmulcanad.y | โข (๐ โ ๐ โ ๐ต) |
drngmulcanad.z | โข (๐ โ ๐ โ ๐ต) |
drngmulcanad.1 | โข (๐ โ ๐ โ 0 ) |
drngmulcan2ad.2 | โข (๐ โ (๐ ยท ๐) = (๐ ยท ๐)) |
Ref | Expression |
---|---|
drngmulcan2ad | โข (๐ โ ๐ = ๐) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | drngmulcan2ad.2 | . . 3 โข (๐ โ (๐ ยท ๐) = (๐ ยท ๐)) | |
2 | 1 | oveq1d 7428 | . 2 โข (๐ โ ((๐ ยท ๐) ยท ((invrโ๐ )โ๐)) = ((๐ ยท ๐) ยท ((invrโ๐ )โ๐))) |
3 | drngmulcanad.b | . . . 4 โข ๐ต = (Baseโ๐ ) | |
4 | drngmulcanad.t | . . . 4 โข ยท = (.rโ๐ ) | |
5 | drngmulcanad.r | . . . . 5 โข (๐ โ ๐ โ DivRing) | |
6 | 5 | drngringd 20631 | . . . 4 โข (๐ โ ๐ โ Ring) |
7 | drngmulcanad.x | . . . 4 โข (๐ โ ๐ โ ๐ต) | |
8 | drngmulcanad.z | . . . 4 โข (๐ โ ๐ โ ๐ต) | |
9 | drngmulcanad.0 | . . . . 5 โข 0 = (0gโ๐ ) | |
10 | eqid 2725 | . . . . 5 โข (invrโ๐ ) = (invrโ๐ ) | |
11 | drngmulcanad.1 | . . . . 5 โข (๐ โ ๐ โ 0 ) | |
12 | 3, 9, 10, 5, 8, 11 | drnginvrcld 20647 | . . . 4 โข (๐ โ ((invrโ๐ )โ๐) โ ๐ต) |
13 | 3, 4, 6, 7, 8, 12 | ringassd 20196 | . . 3 โข (๐ โ ((๐ ยท ๐) ยท ((invrโ๐ )โ๐)) = (๐ ยท (๐ ยท ((invrโ๐ )โ๐)))) |
14 | eqid 2725 | . . . . 5 โข (1rโ๐ ) = (1rโ๐ ) | |
15 | 3, 9, 4, 14, 10, 5, 8, 11 | drnginvrrd 20651 | . . . 4 โข (๐ โ (๐ ยท ((invrโ๐ )โ๐)) = (1rโ๐ )) |
16 | 15 | oveq2d 7429 | . . 3 โข (๐ โ (๐ ยท (๐ ยท ((invrโ๐ )โ๐))) = (๐ ยท (1rโ๐ ))) |
17 | 3, 4, 14, 6, 7 | ringridmd 20208 | . . 3 โข (๐ โ (๐ ยท (1rโ๐ )) = ๐) |
18 | 13, 16, 17 | 3eqtrd 2769 | . 2 โข (๐ โ ((๐ ยท ๐) ยท ((invrโ๐ )โ๐)) = ๐) |
19 | drngmulcanad.y | . . . 4 โข (๐ โ ๐ โ ๐ต) | |
20 | 3, 4, 6, 19, 8, 12 | ringassd 20196 | . . 3 โข (๐ โ ((๐ ยท ๐) ยท ((invrโ๐ )โ๐)) = (๐ ยท (๐ ยท ((invrโ๐ )โ๐)))) |
21 | 15 | oveq2d 7429 | . . 3 โข (๐ โ (๐ ยท (๐ ยท ((invrโ๐ )โ๐))) = (๐ ยท (1rโ๐ ))) |
22 | 3, 4, 14, 6, 19 | ringridmd 20208 | . . 3 โข (๐ โ (๐ ยท (1rโ๐ )) = ๐) |
23 | 20, 21, 22 | 3eqtrd 2769 | . 2 โข (๐ โ ((๐ ยท ๐) ยท ((invrโ๐ )โ๐)) = ๐) |
24 | 2, 18, 23 | 3eqtr3d 2773 | 1 โข (๐ โ ๐ = ๐) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 = wceq 1533 โ wcel 2098 โ wne 2930 โcfv 6543 (class class class)co 7413 Basecbs 17174 .rcmulr 17228 0gc0g 17415 1rcur 20120 invrcinvr 20325 DivRingcdr 20623 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3961 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-iun 4994 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7866 df-2nd 7988 df-tpos 8225 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-nn 12238 df-2 12300 df-3 12301 df-sets 17127 df-slot 17145 df-ndx 17157 df-base 17175 df-ress 17204 df-plusg 17240 df-mulr 17241 df-0g 17417 df-mgm 18594 df-sgrp 18673 df-mnd 18689 df-grp 18892 df-minusg 18893 df-cmn 19736 df-abl 19737 df-mgp 20074 df-rng 20092 df-ur 20121 df-ring 20174 df-oppr 20272 df-dvdsr 20295 df-unit 20296 df-invr 20326 df-drng 20625 |
This theorem is referenced by: drnginvmuld 41815 |
Copyright terms: Public domain | W3C validator |