MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pi1grplem Structured version   Visualization version   GIF version

Theorem pi1grplem 25101
Description: Lemma for pi1grp 25102. (Contributed by Jeff Madsen, 11-Jun-2010.) (Revised by Mario Carneiro, 10-Aug-2015.)
Hypotheses
Ref Expression
pi1fval.g 𝐺 = (𝐽 π1 𝑌)
pi1fval.b 𝐵 = (Base‘𝐺)
pi1fval.3 (𝜑𝐽 ∈ (TopOn‘𝑋))
pi1fval.4 (𝜑𝑌𝑋)
pi1grplem.z 0 = ((0[,]1) × {𝑌})
Assertion
Ref Expression
pi1grplem (𝜑 → (𝐺 ∈ Grp ∧ [ 0 ]( ≃ph𝐽) = (0g𝐺)))

Proof of Theorem pi1grplem
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑢 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pi1fval.g . . . . 5 𝐺 = (𝐽 π1 𝑌)
2 pi1fval.3 . . . . 5 (𝜑𝐽 ∈ (TopOn‘𝑋))
3 pi1fval.4 . . . . 5 (𝜑𝑌𝑋)
4 eqid 2740 . . . . 5 (𝐽 Ω1 𝑌) = (𝐽 Ω1 𝑌)
51, 2, 3, 4pi1val 25089 . . . 4 (𝜑𝐺 = ((𝐽 Ω1 𝑌) /s ( ≃ph𝐽)))
6 pi1fval.b . . . . . 6 𝐵 = (Base‘𝐺)
76a1i 11 . . . . 5 (𝜑𝐵 = (Base‘𝐺))
8 eqidd 2741 . . . . 5 (𝜑 → (Base‘(𝐽 Ω1 𝑌)) = (Base‘(𝐽 Ω1 𝑌)))
91, 2, 3, 4, 7, 8pi1buni 25092 . . . 4 (𝜑 𝐵 = (Base‘(𝐽 Ω1 𝑌)))
10 fvexd 6935 . . . 4 (𝜑 → ( ≃ph𝐽) ∈ V)
11 ovexd 7483 . . . 4 (𝜑 → (𝐽 Ω1 𝑌) ∈ V)
121, 2, 3, 4, 7, 9pi1blem 25091 . . . . 5 (𝜑 → ((( ≃ph𝐽) “ 𝐵) ⊆ 𝐵 𝐵 ⊆ (II Cn 𝐽)))
1312simpld 494 . . . 4 (𝜑 → (( ≃ph𝐽) “ 𝐵) ⊆ 𝐵)
145, 9, 10, 11, 13qusin 17604 . . 3 (𝜑𝐺 = ((𝐽 Ω1 𝑌) /s (( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))))
154, 2, 3om1plusg 25086 . . 3 (𝜑 → (*𝑝𝐽) = (+g‘(𝐽 Ω1 𝑌)))
16 phtpcer 25046 . . . . 5 ( ≃ph𝐽) Er (II Cn 𝐽)
1716a1i 11 . . . 4 (𝜑 → ( ≃ph𝐽) Er (II Cn 𝐽))
1812simprd 495 . . . 4 (𝜑 𝐵 ⊆ (II Cn 𝐽))
1917, 18erinxp 8849 . . 3 (𝜑 → (( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)) Er 𝐵)
20 eqid 2740 . . . . 5 (( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)) = (( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))
21 eqid 2740 . . . . 5 (+g‘(𝐽 Ω1 𝑌)) = (+g‘(𝐽 Ω1 𝑌))
221, 2, 3, 7, 20, 4, 21pi1cpbl 25096 . . . 4 (𝜑 → ((𝑎(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))𝑐𝑏(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))𝑑) → (𝑎(+g‘(𝐽 Ω1 𝑌))𝑏)(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))(𝑐(+g‘(𝐽 Ω1 𝑌))𝑑)))
2315oveqd 7465 . . . . 5 (𝜑 → (𝑎(*𝑝𝐽)𝑏) = (𝑎(+g‘(𝐽 Ω1 𝑌))𝑏))
2415oveqd 7465 . . . . 5 (𝜑 → (𝑐(*𝑝𝐽)𝑑) = (𝑐(+g‘(𝐽 Ω1 𝑌))𝑑))
2523, 24breq12d 5179 . . . 4 (𝜑 → ((𝑎(*𝑝𝐽)𝑏)(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))(𝑐(*𝑝𝐽)𝑑) ↔ (𝑎(+g‘(𝐽 Ω1 𝑌))𝑏)(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))(𝑐(+g‘(𝐽 Ω1 𝑌))𝑑)))
2622, 25sylibrd 259 . . 3 (𝜑 → ((𝑎(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))𝑐𝑏(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))𝑑) → (𝑎(*𝑝𝐽)𝑏)(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))(𝑐(*𝑝𝐽)𝑑)))
2723ad2ant1 1133 . . . 4 ((𝜑𝑥 𝐵𝑦 𝐵) → 𝐽 ∈ (TopOn‘𝑋))
2833ad2ant1 1133 . . . 4 ((𝜑𝑥 𝐵𝑦 𝐵) → 𝑌𝑋)
2993ad2ant1 1133 . . . 4 ((𝜑𝑥 𝐵𝑦 𝐵) → 𝐵 = (Base‘(𝐽 Ω1 𝑌)))
30 simp2 1137 . . . 4 ((𝜑𝑥 𝐵𝑦 𝐵) → 𝑥 𝐵)
31 simp3 1138 . . . 4 ((𝜑𝑥 𝐵𝑦 𝐵) → 𝑦 𝐵)
324, 27, 28, 29, 30, 31om1addcl 25085 . . 3 ((𝜑𝑥 𝐵𝑦 𝐵) → (𝑥(*𝑝𝐽)𝑦) ∈ 𝐵)
332adantr 480 . . . . 5 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → 𝐽 ∈ (TopOn‘𝑋))
343adantr 480 . . . . 5 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → 𝑌𝑋)
359adantr 480 . . . . 5 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → 𝐵 = (Base‘(𝐽 Ω1 𝑌)))
36323adant3r3 1184 . . . . 5 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → (𝑥(*𝑝𝐽)𝑦) ∈ 𝐵)
37 simpr3 1196 . . . . 5 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → 𝑧 𝐵)
384, 33, 34, 35, 36, 37om1addcl 25085 . . . 4 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → ((𝑥(*𝑝𝐽)𝑦)(*𝑝𝐽)𝑧) ∈ 𝐵)
39 simpr1 1194 . . . . 5 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → 𝑥 𝐵)
40 simpr2 1195 . . . . . 6 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → 𝑦 𝐵)
414, 33, 34, 35, 40, 37om1addcl 25085 . . . . 5 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → (𝑦(*𝑝𝐽)𝑧) ∈ 𝐵)
424, 33, 34, 35, 39, 41om1addcl 25085 . . . 4 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → (𝑥(*𝑝𝐽)(𝑦(*𝑝𝐽)𝑧)) ∈ 𝐵)
431, 2, 3, 7pi1eluni 25094 . . . . . . . 8 (𝜑 → (𝑥 𝐵 ↔ (𝑥 ∈ (II Cn 𝐽) ∧ (𝑥‘0) = 𝑌 ∧ (𝑥‘1) = 𝑌)))
4443biimpa 476 . . . . . . 7 ((𝜑𝑥 𝐵) → (𝑥 ∈ (II Cn 𝐽) ∧ (𝑥‘0) = 𝑌 ∧ (𝑥‘1) = 𝑌))
45443ad2antr1 1188 . . . . . 6 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → (𝑥 ∈ (II Cn 𝐽) ∧ (𝑥‘0) = 𝑌 ∧ (𝑥‘1) = 𝑌))
4645simp1d 1142 . . . . 5 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → 𝑥 ∈ (II Cn 𝐽))
476a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → 𝐵 = (Base‘𝐺))
481, 33, 34, 47pi1eluni 25094 . . . . . . 7 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → (𝑦 𝐵 ↔ (𝑦 ∈ (II Cn 𝐽) ∧ (𝑦‘0) = 𝑌 ∧ (𝑦‘1) = 𝑌)))
4940, 48mpbid 232 . . . . . 6 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → (𝑦 ∈ (II Cn 𝐽) ∧ (𝑦‘0) = 𝑌 ∧ (𝑦‘1) = 𝑌))
5049simp1d 1142 . . . . 5 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → 𝑦 ∈ (II Cn 𝐽))
511, 33, 34, 47pi1eluni 25094 . . . . . . 7 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → (𝑧 𝐵 ↔ (𝑧 ∈ (II Cn 𝐽) ∧ (𝑧‘0) = 𝑌 ∧ (𝑧‘1) = 𝑌)))
5237, 51mpbid 232 . . . . . 6 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → (𝑧 ∈ (II Cn 𝐽) ∧ (𝑧‘0) = 𝑌 ∧ (𝑧‘1) = 𝑌))
5352simp1d 1142 . . . . 5 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → 𝑧 ∈ (II Cn 𝐽))
5445simp3d 1144 . . . . . 6 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → (𝑥‘1) = 𝑌)
5549simp2d 1143 . . . . . 6 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → (𝑦‘0) = 𝑌)
5654, 55eqtr4d 2783 . . . . 5 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → (𝑥‘1) = (𝑦‘0))
5749simp3d 1144 . . . . . 6 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → (𝑦‘1) = 𝑌)
5852simp2d 1143 . . . . . 6 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → (𝑧‘0) = 𝑌)
5957, 58eqtr4d 2783 . . . . 5 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → (𝑦‘1) = (𝑧‘0))
60 eqid 2740 . . . . 5 (𝑢 ∈ (0[,]1) ↦ if(𝑢 ≤ (1 / 2), if(𝑢 ≤ (1 / 4), (2 · 𝑢), (𝑢 + (1 / 4))), ((𝑢 / 2) + (1 / 2)))) = (𝑢 ∈ (0[,]1) ↦ if(𝑢 ≤ (1 / 2), if(𝑢 ≤ (1 / 4), (2 · 𝑢), (𝑢 + (1 / 4))), ((𝑢 / 2) + (1 / 2))))
6146, 50, 53, 56, 59, 60pcoass 25076 . . . 4 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → ((𝑥(*𝑝𝐽)𝑦)(*𝑝𝐽)𝑧)( ≃ph𝐽)(𝑥(*𝑝𝐽)(𝑦(*𝑝𝐽)𝑧)))
62 brinxp2 5777 . . . 4 (((𝑥(*𝑝𝐽)𝑦)(*𝑝𝐽)𝑧)(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))(𝑥(*𝑝𝐽)(𝑦(*𝑝𝐽)𝑧)) ↔ ((((𝑥(*𝑝𝐽)𝑦)(*𝑝𝐽)𝑧) ∈ 𝐵 ∧ (𝑥(*𝑝𝐽)(𝑦(*𝑝𝐽)𝑧)) ∈ 𝐵) ∧ ((𝑥(*𝑝𝐽)𝑦)(*𝑝𝐽)𝑧)( ≃ph𝐽)(𝑥(*𝑝𝐽)(𝑦(*𝑝𝐽)𝑧))))
6338, 42, 61, 62syl21anbrc 1344 . . 3 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → ((𝑥(*𝑝𝐽)𝑦)(*𝑝𝐽)𝑧)(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))(𝑥(*𝑝𝐽)(𝑦(*𝑝𝐽)𝑧)))
64 pi1grplem.z . . . . . 6 0 = ((0[,]1) × {𝑌})
6564pcoptcl 25073 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌𝑋) → ( 0 ∈ (II Cn 𝐽) ∧ ( 0 ‘0) = 𝑌 ∧ ( 0 ‘1) = 𝑌))
662, 3, 65syl2anc 583 . . . 4 (𝜑 → ( 0 ∈ (II Cn 𝐽) ∧ ( 0 ‘0) = 𝑌 ∧ ( 0 ‘1) = 𝑌))
671, 2, 3, 7pi1eluni 25094 . . . 4 (𝜑 → ( 0 𝐵 ↔ ( 0 ∈ (II Cn 𝐽) ∧ ( 0 ‘0) = 𝑌 ∧ ( 0 ‘1) = 𝑌)))
6866, 67mpbird 257 . . 3 (𝜑0 𝐵)
692adantr 480 . . . . 5 ((𝜑𝑥 𝐵) → 𝐽 ∈ (TopOn‘𝑋))
703adantr 480 . . . . 5 ((𝜑𝑥 𝐵) → 𝑌𝑋)
719adantr 480 . . . . 5 ((𝜑𝑥 𝐵) → 𝐵 = (Base‘(𝐽 Ω1 𝑌)))
7268adantr 480 . . . . 5 ((𝜑𝑥 𝐵) → 0 𝐵)
73 simpr 484 . . . . 5 ((𝜑𝑥 𝐵) → 𝑥 𝐵)
744, 69, 70, 71, 72, 73om1addcl 25085 . . . 4 ((𝜑𝑥 𝐵) → ( 0 (*𝑝𝐽)𝑥) ∈ 𝐵)
7518sselda 4008 . . . . 5 ((𝜑𝑥 𝐵) → 𝑥 ∈ (II Cn 𝐽))
7644simp2d 1143 . . . . 5 ((𝜑𝑥 𝐵) → (𝑥‘0) = 𝑌)
7764pcopt 25074 . . . . 5 ((𝑥 ∈ (II Cn 𝐽) ∧ (𝑥‘0) = 𝑌) → ( 0 (*𝑝𝐽)𝑥)( ≃ph𝐽)𝑥)
7875, 76, 77syl2anc 583 . . . 4 ((𝜑𝑥 𝐵) → ( 0 (*𝑝𝐽)𝑥)( ≃ph𝐽)𝑥)
79 brinxp2 5777 . . . 4 (( 0 (*𝑝𝐽)𝑥)(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))𝑥 ↔ ((( 0 (*𝑝𝐽)𝑥) ∈ 𝐵𝑥 𝐵) ∧ ( 0 (*𝑝𝐽)𝑥)( ≃ph𝐽)𝑥))
8074, 73, 78, 79syl21anbrc 1344 . . 3 ((𝜑𝑥 𝐵) → ( 0 (*𝑝𝐽)𝑥)(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))𝑥)
81 eqid 2740 . . . . . . 7 (𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎))) = (𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))
8281pcorevcl 25077 . . . . . 6 (𝑥 ∈ (II Cn 𝐽) → ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎))) ∈ (II Cn 𝐽) ∧ ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))‘0) = (𝑥‘1) ∧ ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))‘1) = (𝑥‘0)))
8375, 82syl 17 . . . . 5 ((𝜑𝑥 𝐵) → ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎))) ∈ (II Cn 𝐽) ∧ ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))‘0) = (𝑥‘1) ∧ ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))‘1) = (𝑥‘0)))
8483simp1d 1142 . . . 4 ((𝜑𝑥 𝐵) → (𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎))) ∈ (II Cn 𝐽))
8583simp2d 1143 . . . . 5 ((𝜑𝑥 𝐵) → ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))‘0) = (𝑥‘1))
8644simp3d 1144 . . . . 5 ((𝜑𝑥 𝐵) → (𝑥‘1) = 𝑌)
8785, 86eqtrd 2780 . . . 4 ((𝜑𝑥 𝐵) → ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))‘0) = 𝑌)
8883simp3d 1144 . . . . 5 ((𝜑𝑥 𝐵) → ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))‘1) = (𝑥‘0))
8988, 76eqtrd 2780 . . . 4 ((𝜑𝑥 𝐵) → ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))‘1) = 𝑌)
901, 2, 3, 7pi1eluni 25094 . . . . 5 (𝜑 → ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎))) ∈ 𝐵 ↔ ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎))) ∈ (II Cn 𝐽) ∧ ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))‘0) = 𝑌 ∧ ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))‘1) = 𝑌)))
9190adantr 480 . . . 4 ((𝜑𝑥 𝐵) → ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎))) ∈ 𝐵 ↔ ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎))) ∈ (II Cn 𝐽) ∧ ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))‘0) = 𝑌 ∧ ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))‘1) = 𝑌)))
9284, 87, 89, 91mpbir3and 1342 . . 3 ((𝜑𝑥 𝐵) → (𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎))) ∈ 𝐵)
934, 69, 70, 71, 92, 73om1addcl 25085 . . . 4 ((𝜑𝑥 𝐵) → ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))(*𝑝𝐽)𝑥) ∈ 𝐵)
94 eqid 2740 . . . . . . 7 ((0[,]1) × {(𝑥‘1)}) = ((0[,]1) × {(𝑥‘1)})
9581, 94pcorev 25079 . . . . . 6 (𝑥 ∈ (II Cn 𝐽) → ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))(*𝑝𝐽)𝑥)( ≃ph𝐽)((0[,]1) × {(𝑥‘1)}))
9675, 95syl 17 . . . . 5 ((𝜑𝑥 𝐵) → ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))(*𝑝𝐽)𝑥)( ≃ph𝐽)((0[,]1) × {(𝑥‘1)}))
9786sneqd 4660 . . . . . . 7 ((𝜑𝑥 𝐵) → {(𝑥‘1)} = {𝑌})
9897xpeq2d 5730 . . . . . 6 ((𝜑𝑥 𝐵) → ((0[,]1) × {(𝑥‘1)}) = ((0[,]1) × {𝑌}))
9964, 98eqtr4id 2799 . . . . 5 ((𝜑𝑥 𝐵) → 0 = ((0[,]1) × {(𝑥‘1)}))
10096, 99breqtrrd 5194 . . . 4 ((𝜑𝑥 𝐵) → ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))(*𝑝𝐽)𝑥)( ≃ph𝐽) 0 )
101 brinxp2 5777 . . . 4 (((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))(*𝑝𝐽)𝑥)(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)) 0 ↔ ((((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))(*𝑝𝐽)𝑥) ∈ 𝐵0 𝐵) ∧ ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))(*𝑝𝐽)𝑥)( ≃ph𝐽) 0 ))
10293, 72, 100, 101syl21anbrc 1344 . . 3 ((𝜑𝑥 𝐵) → ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))(*𝑝𝐽)𝑥)(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)) 0 )
10314, 9, 15, 19, 11, 26, 32, 63, 68, 80, 92, 102qusgrp2 19098 . 2 (𝜑 → (𝐺 ∈ Grp ∧ [ 0 ](( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)) = (0g𝐺)))
104 ecinxp 8850 . . . . 5 (((( ≃ph𝐽) “ 𝐵) ⊆ 𝐵0 𝐵) → [ 0 ]( ≃ph𝐽) = [ 0 ](( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)))
10513, 68, 104syl2anc 583 . . . 4 (𝜑 → [ 0 ]( ≃ph𝐽) = [ 0 ](( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)))
106105eqeq1d 2742 . . 3 (𝜑 → ([ 0 ]( ≃ph𝐽) = (0g𝐺) ↔ [ 0 ](( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)) = (0g𝐺)))
107106anbi2d 629 . 2 (𝜑 → ((𝐺 ∈ Grp ∧ [ 0 ]( ≃ph𝐽) = (0g𝐺)) ↔ (𝐺 ∈ Grp ∧ [ 0 ](( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)) = (0g𝐺))))
108103, 107mpbird 257 1 (𝜑 → (𝐺 ∈ Grp ∧ [ 0 ]( ≃ph𝐽) = (0g𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  Vcvv 3488  cin 3975  wss 3976  ifcif 4548  {csn 4648   cuni 4931   class class class wbr 5166  cmpt 5249   × cxp 5698  cima 5703  cfv 6573  (class class class)co 7448   Er wer 8760  [cec 8761  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189  cle 11325  cmin 11520   / cdiv 11947  2c2 12348  4c4 12350  [,]cicc 13410  Basecbs 17258  +gcplusg 17311  0gc0g 17499  Grpcgrp 18973  TopOnctopon 22937   Cn ccn 23253  IIcii 24920  phcphtpc 25020  *𝑝cpco 25052   Ω1 comi 25053   π1 cpi1 25055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-ec 8765  df-qs 8769  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-icc 13414  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-qus 17569  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-grp 18976  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-cn 23256  df-cnp 23257  df-tx 23591  df-hmeo 23784  df-xms 24351  df-ms 24352  df-tms 24353  df-ii 24922  df-htpy 25021  df-phtpy 25022  df-phtpc 25043  df-pco 25057  df-om1 25058  df-pi1 25060
This theorem is referenced by:  pi1grp  25102  pi1id  25103  pi1inv  25104
  Copyright terms: Public domain W3C validator