Step | Hyp | Ref
| Expression |
1 | | pi1fval.g |
. . . . 5
β’ πΊ = (π½ Ο1 π) |
2 | | pi1fval.3 |
. . . . 5
β’ (π β π½ β (TopOnβπ)) |
3 | | pi1fval.4 |
. . . . 5
β’ (π β π β π) |
4 | | eqid 2732 |
. . . . 5
β’ (π½ Ξ©1 π) = (π½ Ξ©1 π) |
5 | 1, 2, 3, 4 | pi1val 24544 |
. . . 4
β’ (π β πΊ = ((π½ Ξ©1 π) /s (
βphβπ½))) |
6 | | pi1fval.b |
. . . . . 6
β’ π΅ = (BaseβπΊ) |
7 | 6 | a1i 11 |
. . . . 5
β’ (π β π΅ = (BaseβπΊ)) |
8 | | eqidd 2733 |
. . . . 5
β’ (π β (Baseβ(π½ Ξ©1 π)) = (Baseβ(π½ Ξ©1 π))) |
9 | 1, 2, 3, 4, 7, 8 | pi1buni 24547 |
. . . 4
β’ (π β βͺ π΅ =
(Baseβ(π½
Ξ©1 π))) |
10 | | fvexd 6903 |
. . . 4
β’ (π β (
βphβπ½) β V) |
11 | | ovexd 7440 |
. . . 4
β’ (π β (π½ Ξ©1 π) β V) |
12 | 1, 2, 3, 4, 7, 9 | pi1blem 24546 |
. . . . 5
β’ (π β (((
βphβπ½) β βͺ π΅) β βͺ π΅
β§ βͺ π΅ β (II Cn π½))) |
13 | 12 | simpld 495 |
. . . 4
β’ (π β ((
βphβπ½) β βͺ π΅) β βͺ π΅) |
14 | 5, 9, 10, 11, 13 | qusin 17486 |
. . 3
β’ (π β πΊ = ((π½ Ξ©1 π) /s ((
βphβπ½) β© (βͺ π΅ Γ βͺ π΅)))) |
15 | 4, 2, 3 | om1plusg 24541 |
. . 3
β’ (π β
(*πβπ½) = (+gβ(π½ Ξ©1 π))) |
16 | | phtpcer 24502 |
. . . . 5
β’ (
βphβπ½) Er (II Cn π½) |
17 | 16 | a1i 11 |
. . . 4
β’ (π β (
βphβπ½) Er (II Cn π½)) |
18 | 12 | simprd 496 |
. . . 4
β’ (π β βͺ π΅
β (II Cn π½)) |
19 | 17, 18 | erinxp 8781 |
. . 3
β’ (π β ((
βphβπ½) β© (βͺ π΅ Γ βͺ π΅))
Er βͺ π΅) |
20 | | eqid 2732 |
. . . . 5
β’ ((
βphβπ½) β© (βͺ π΅ Γ βͺ π΅))
= (( βphβπ½) β© (βͺ π΅ Γ βͺ π΅)) |
21 | | eqid 2732 |
. . . . 5
β’
(+gβ(π½ Ξ©1 π)) = (+gβ(π½ Ξ©1 π)) |
22 | 1, 2, 3, 7, 20, 4,
21 | pi1cpbl 24551 |
. . . 4
β’ (π β ((π(( βphβπ½) β© (βͺ π΅
Γ βͺ π΅))π β§ π(( βphβπ½) β© (βͺ π΅
Γ βͺ π΅))π) β (π(+gβ(π½ Ξ©1 π))π)(( βphβπ½) β© (βͺ π΅
Γ βͺ π΅))(π(+gβ(π½ Ξ©1 π))π))) |
23 | 15 | oveqd 7422 |
. . . . 5
β’ (π β (π(*πβπ½)π) = (π(+gβ(π½ Ξ©1 π))π)) |
24 | 15 | oveqd 7422 |
. . . . 5
β’ (π β (π(*πβπ½)π) = (π(+gβ(π½ Ξ©1 π))π)) |
25 | 23, 24 | breq12d 5160 |
. . . 4
β’ (π β ((π(*πβπ½)π)(( βphβπ½) β© (βͺ π΅
Γ βͺ π΅))(π(*πβπ½)π) β (π(+gβ(π½ Ξ©1 π))π)(( βphβπ½) β© (βͺ π΅
Γ βͺ π΅))(π(+gβ(π½ Ξ©1 π))π))) |
26 | 22, 25 | sylibrd 258 |
. . 3
β’ (π β ((π(( βphβπ½) β© (βͺ π΅
Γ βͺ π΅))π β§ π(( βphβπ½) β© (βͺ π΅
Γ βͺ π΅))π) β (π(*πβπ½)π)(( βphβπ½) β© (βͺ π΅
Γ βͺ π΅))(π(*πβπ½)π))) |
27 | 2 | 3ad2ant1 1133 |
. . . 4
β’ ((π β§ π₯ β βͺ π΅ β§ π¦ β βͺ π΅) β π½ β (TopOnβπ)) |
28 | 3 | 3ad2ant1 1133 |
. . . 4
β’ ((π β§ π₯ β βͺ π΅ β§ π¦ β βͺ π΅) β π β π) |
29 | 9 | 3ad2ant1 1133 |
. . . 4
β’ ((π β§ π₯ β βͺ π΅ β§ π¦ β βͺ π΅) β βͺ π΅ =
(Baseβ(π½
Ξ©1 π))) |
30 | | simp2 1137 |
. . . 4
β’ ((π β§ π₯ β βͺ π΅ β§ π¦ β βͺ π΅) β π₯ β βͺ π΅) |
31 | | simp3 1138 |
. . . 4
β’ ((π β§ π₯ β βͺ π΅ β§ π¦ β βͺ π΅) β π¦ β βͺ π΅) |
32 | 4, 27, 28, 29, 30, 31 | om1addcl 24540 |
. . 3
β’ ((π β§ π₯ β βͺ π΅ β§ π¦ β βͺ π΅) β (π₯(*πβπ½)π¦) β βͺ π΅) |
33 | 2 | adantr 481 |
. . . . 5
β’ ((π β§ (π₯ β βͺ π΅ β§ π¦ β βͺ π΅ β§ π§ β βͺ π΅)) β π½ β (TopOnβπ)) |
34 | 3 | adantr 481 |
. . . . 5
β’ ((π β§ (π₯ β βͺ π΅ β§ π¦ β βͺ π΅ β§ π§ β βͺ π΅)) β π β π) |
35 | 9 | adantr 481 |
. . . . 5
β’ ((π β§ (π₯ β βͺ π΅ β§ π¦ β βͺ π΅ β§ π§ β βͺ π΅)) β βͺ π΅ =
(Baseβ(π½
Ξ©1 π))) |
36 | 32 | 3adant3r3 1184 |
. . . . 5
β’ ((π β§ (π₯ β βͺ π΅ β§ π¦ β βͺ π΅ β§ π§ β βͺ π΅)) β (π₯(*πβπ½)π¦) β βͺ π΅) |
37 | | simpr3 1196 |
. . . . 5
β’ ((π β§ (π₯ β βͺ π΅ β§ π¦ β βͺ π΅ β§ π§ β βͺ π΅)) β π§ β βͺ π΅) |
38 | 4, 33, 34, 35, 36, 37 | om1addcl 24540 |
. . . 4
β’ ((π β§ (π₯ β βͺ π΅ β§ π¦ β βͺ π΅ β§ π§ β βͺ π΅)) β ((π₯(*πβπ½)π¦)(*πβπ½)π§) β βͺ π΅) |
39 | | simpr1 1194 |
. . . . 5
β’ ((π β§ (π₯ β βͺ π΅ β§ π¦ β βͺ π΅ β§ π§ β βͺ π΅)) β π₯ β βͺ π΅) |
40 | | simpr2 1195 |
. . . . . 6
β’ ((π β§ (π₯ β βͺ π΅ β§ π¦ β βͺ π΅ β§ π§ β βͺ π΅)) β π¦ β βͺ π΅) |
41 | 4, 33, 34, 35, 40, 37 | om1addcl 24540 |
. . . . 5
β’ ((π β§ (π₯ β βͺ π΅ β§ π¦ β βͺ π΅ β§ π§ β βͺ π΅)) β (π¦(*πβπ½)π§) β βͺ π΅) |
42 | 4, 33, 34, 35, 39, 41 | om1addcl 24540 |
. . . 4
β’ ((π β§ (π₯ β βͺ π΅ β§ π¦ β βͺ π΅ β§ π§ β βͺ π΅)) β (π₯(*πβπ½)(π¦(*πβπ½)π§)) β βͺ π΅) |
43 | 1, 2, 3, 7 | pi1eluni 24549 |
. . . . . . . 8
β’ (π β (π₯ β βͺ π΅ β (π₯ β (II Cn π½) β§ (π₯β0) = π β§ (π₯β1) = π))) |
44 | 43 | biimpa 477 |
. . . . . . 7
β’ ((π β§ π₯ β βͺ π΅) β (π₯ β (II Cn π½) β§ (π₯β0) = π β§ (π₯β1) = π)) |
45 | 44 | 3ad2antr1 1188 |
. . . . . 6
β’ ((π β§ (π₯ β βͺ π΅ β§ π¦ β βͺ π΅ β§ π§ β βͺ π΅)) β (π₯ β (II Cn π½) β§ (π₯β0) = π β§ (π₯β1) = π)) |
46 | 45 | simp1d 1142 |
. . . . 5
β’ ((π β§ (π₯ β βͺ π΅ β§ π¦ β βͺ π΅ β§ π§ β βͺ π΅)) β π₯ β (II Cn π½)) |
47 | 6 | a1i 11 |
. . . . . . . 8
β’ ((π β§ (π₯ β βͺ π΅ β§ π¦ β βͺ π΅ β§ π§ β βͺ π΅)) β π΅ = (BaseβπΊ)) |
48 | 1, 33, 34, 47 | pi1eluni 24549 |
. . . . . . 7
β’ ((π β§ (π₯ β βͺ π΅ β§ π¦ β βͺ π΅ β§ π§ β βͺ π΅)) β (π¦ β βͺ π΅ β (π¦ β (II Cn π½) β§ (π¦β0) = π β§ (π¦β1) = π))) |
49 | 40, 48 | mpbid 231 |
. . . . . 6
β’ ((π β§ (π₯ β βͺ π΅ β§ π¦ β βͺ π΅ β§ π§ β βͺ π΅)) β (π¦ β (II Cn π½) β§ (π¦β0) = π β§ (π¦β1) = π)) |
50 | 49 | simp1d 1142 |
. . . . 5
β’ ((π β§ (π₯ β βͺ π΅ β§ π¦ β βͺ π΅ β§ π§ β βͺ π΅)) β π¦ β (II Cn π½)) |
51 | 1, 33, 34, 47 | pi1eluni 24549 |
. . . . . . 7
β’ ((π β§ (π₯ β βͺ π΅ β§ π¦ β βͺ π΅ β§ π§ β βͺ π΅)) β (π§ β βͺ π΅ β (π§ β (II Cn π½) β§ (π§β0) = π β§ (π§β1) = π))) |
52 | 37, 51 | mpbid 231 |
. . . . . 6
β’ ((π β§ (π₯ β βͺ π΅ β§ π¦ β βͺ π΅ β§ π§ β βͺ π΅)) β (π§ β (II Cn π½) β§ (π§β0) = π β§ (π§β1) = π)) |
53 | 52 | simp1d 1142 |
. . . . 5
β’ ((π β§ (π₯ β βͺ π΅ β§ π¦ β βͺ π΅ β§ π§ β βͺ π΅)) β π§ β (II Cn π½)) |
54 | 45 | simp3d 1144 |
. . . . . 6
β’ ((π β§ (π₯ β βͺ π΅ β§ π¦ β βͺ π΅ β§ π§ β βͺ π΅)) β (π₯β1) = π) |
55 | 49 | simp2d 1143 |
. . . . . 6
β’ ((π β§ (π₯ β βͺ π΅ β§ π¦ β βͺ π΅ β§ π§ β βͺ π΅)) β (π¦β0) = π) |
56 | 54, 55 | eqtr4d 2775 |
. . . . 5
β’ ((π β§ (π₯ β βͺ π΅ β§ π¦ β βͺ π΅ β§ π§ β βͺ π΅)) β (π₯β1) = (π¦β0)) |
57 | 49 | simp3d 1144 |
. . . . . 6
β’ ((π β§ (π₯ β βͺ π΅ β§ π¦ β βͺ π΅ β§ π§ β βͺ π΅)) β (π¦β1) = π) |
58 | 52 | simp2d 1143 |
. . . . . 6
β’ ((π β§ (π₯ β βͺ π΅ β§ π¦ β βͺ π΅ β§ π§ β βͺ π΅)) β (π§β0) = π) |
59 | 57, 58 | eqtr4d 2775 |
. . . . 5
β’ ((π β§ (π₯ β βͺ π΅ β§ π¦ β βͺ π΅ β§ π§ β βͺ π΅)) β (π¦β1) = (π§β0)) |
60 | | eqid 2732 |
. . . . 5
β’ (π’ β (0[,]1) β¦ if(π’ β€ (1 / 2), if(π’ β€ (1 / 4), (2 Β· π’), (π’ + (1 / 4))), ((π’ / 2) + (1 / 2)))) = (π’ β (0[,]1) β¦ if(π’ β€ (1 / 2), if(π’ β€ (1 / 4), (2 Β· π’), (π’ + (1 / 4))), ((π’ / 2) + (1 / 2)))) |
61 | 46, 50, 53, 56, 59, 60 | pcoass 24531 |
. . . 4
β’ ((π β§ (π₯ β βͺ π΅ β§ π¦ β βͺ π΅ β§ π§ β βͺ π΅)) β ((π₯(*πβπ½)π¦)(*πβπ½)π§)( βphβπ½)(π₯(*πβπ½)(π¦(*πβπ½)π§))) |
62 | | brinxp2 5751 |
. . . 4
β’ (((π₯(*πβπ½)π¦)(*πβπ½)π§)(( βphβπ½) β© (βͺ π΅
Γ βͺ π΅))(π₯(*πβπ½)(π¦(*πβπ½)π§)) β ((((π₯(*πβπ½)π¦)(*πβπ½)π§) β βͺ π΅ β§ (π₯(*πβπ½)(π¦(*πβπ½)π§)) β βͺ π΅) β§ ((π₯(*πβπ½)π¦)(*πβπ½)π§)( βphβπ½)(π₯(*πβπ½)(π¦(*πβπ½)π§)))) |
63 | 38, 42, 61, 62 | syl21anbrc 1344 |
. . 3
β’ ((π β§ (π₯ β βͺ π΅ β§ π¦ β βͺ π΅ β§ π§ β βͺ π΅)) β ((π₯(*πβπ½)π¦)(*πβπ½)π§)(( βphβπ½) β© (βͺ π΅
Γ βͺ π΅))(π₯(*πβπ½)(π¦(*πβπ½)π§))) |
64 | | pi1grplem.z |
. . . . . 6
β’ 0 = ((0[,]1)
Γ {π}) |
65 | 64 | pcoptcl 24528 |
. . . . 5
β’ ((π½ β (TopOnβπ) β§ π β π) β ( 0 β (II Cn π½) β§ ( 0 β0) = π β§ ( 0 β1) = π)) |
66 | 2, 3, 65 | syl2anc 584 |
. . . 4
β’ (π β ( 0 β (II Cn π½) β§ ( 0 β0) = π β§ ( 0 β1) = π)) |
67 | 1, 2, 3, 7 | pi1eluni 24549 |
. . . 4
β’ (π β ( 0 β βͺ π΅
β ( 0 β (II Cn π½) β§ ( 0 β0) = π β§ ( 0 β1) = π))) |
68 | 66, 67 | mpbird 256 |
. . 3
β’ (π β 0 β βͺ π΅) |
69 | 2 | adantr 481 |
. . . . 5
β’ ((π β§ π₯ β βͺ π΅) β π½ β (TopOnβπ)) |
70 | 3 | adantr 481 |
. . . . 5
β’ ((π β§ π₯ β βͺ π΅) β π β π) |
71 | 9 | adantr 481 |
. . . . 5
β’ ((π β§ π₯ β βͺ π΅) β βͺ π΅ =
(Baseβ(π½
Ξ©1 π))) |
72 | 68 | adantr 481 |
. . . . 5
β’ ((π β§ π₯ β βͺ π΅) β 0 β βͺ π΅) |
73 | | simpr 485 |
. . . . 5
β’ ((π β§ π₯ β βͺ π΅) β π₯ β βͺ π΅) |
74 | 4, 69, 70, 71, 72, 73 | om1addcl 24540 |
. . . 4
β’ ((π β§ π₯ β βͺ π΅) β ( 0
(*πβπ½)π₯) β βͺ π΅) |
75 | 18 | sselda 3981 |
. . . . 5
β’ ((π β§ π₯ β βͺ π΅) β π₯ β (II Cn π½)) |
76 | 44 | simp2d 1143 |
. . . . 5
β’ ((π β§ π₯ β βͺ π΅) β (π₯β0) = π) |
77 | 64 | pcopt 24529 |
. . . . 5
β’ ((π₯ β (II Cn π½) β§ (π₯β0) = π) β ( 0
(*πβπ½)π₯)( βphβπ½)π₯) |
78 | 75, 76, 77 | syl2anc 584 |
. . . 4
β’ ((π β§ π₯ β βͺ π΅) β ( 0
(*πβπ½)π₯)( βphβπ½)π₯) |
79 | | brinxp2 5751 |
. . . 4
β’ (( 0
(*πβπ½)π₯)(( βphβπ½) β© (βͺ π΅
Γ βͺ π΅))π₯ β ((( 0
(*πβπ½)π₯) β βͺ π΅ β§ π₯ β βͺ π΅) β§ ( 0
(*πβπ½)π₯)( βphβπ½)π₯)) |
80 | 74, 73, 78, 79 | syl21anbrc 1344 |
. . 3
β’ ((π β§ π₯ β βͺ π΅) β ( 0
(*πβπ½)π₯)(( βphβπ½) β© (βͺ π΅
Γ βͺ π΅))π₯) |
81 | | eqid 2732 |
. . . . . . 7
β’ (π β (0[,]1) β¦ (π₯β(1 β π))) = (π β (0[,]1) β¦ (π₯β(1 β π))) |
82 | 81 | pcorevcl 24532 |
. . . . . 6
β’ (π₯ β (II Cn π½) β ((π β (0[,]1) β¦ (π₯β(1 β π))) β (II Cn π½) β§ ((π β (0[,]1) β¦ (π₯β(1 β π)))β0) = (π₯β1) β§ ((π β (0[,]1) β¦ (π₯β(1 β π)))β1) = (π₯β0))) |
83 | 75, 82 | syl 17 |
. . . . 5
β’ ((π β§ π₯ β βͺ π΅) β ((π β (0[,]1) β¦ (π₯β(1 β π))) β (II Cn π½) β§ ((π β (0[,]1) β¦ (π₯β(1 β π)))β0) = (π₯β1) β§ ((π β (0[,]1) β¦ (π₯β(1 β π)))β1) = (π₯β0))) |
84 | 83 | simp1d 1142 |
. . . 4
β’ ((π β§ π₯ β βͺ π΅) β (π β (0[,]1) β¦ (π₯β(1 β π))) β (II Cn π½)) |
85 | 83 | simp2d 1143 |
. . . . 5
β’ ((π β§ π₯ β βͺ π΅) β ((π β (0[,]1) β¦ (π₯β(1 β π)))β0) = (π₯β1)) |
86 | 44 | simp3d 1144 |
. . . . 5
β’ ((π β§ π₯ β βͺ π΅) β (π₯β1) = π) |
87 | 85, 86 | eqtrd 2772 |
. . . 4
β’ ((π β§ π₯ β βͺ π΅) β ((π β (0[,]1) β¦ (π₯β(1 β π)))β0) = π) |
88 | 83 | simp3d 1144 |
. . . . 5
β’ ((π β§ π₯ β βͺ π΅) β ((π β (0[,]1) β¦ (π₯β(1 β π)))β1) = (π₯β0)) |
89 | 88, 76 | eqtrd 2772 |
. . . 4
β’ ((π β§ π₯ β βͺ π΅) β ((π β (0[,]1) β¦ (π₯β(1 β π)))β1) = π) |
90 | 1, 2, 3, 7 | pi1eluni 24549 |
. . . . 5
β’ (π β ((π β (0[,]1) β¦ (π₯β(1 β π))) β βͺ π΅ β ((π β (0[,]1) β¦ (π₯β(1 β π))) β (II Cn π½) β§ ((π β (0[,]1) β¦ (π₯β(1 β π)))β0) = π β§ ((π β (0[,]1) β¦ (π₯β(1 β π)))β1) = π))) |
91 | 90 | adantr 481 |
. . . 4
β’ ((π β§ π₯ β βͺ π΅) β ((π β (0[,]1) β¦ (π₯β(1 β π))) β βͺ π΅ β ((π β (0[,]1) β¦ (π₯β(1 β π))) β (II Cn π½) β§ ((π β (0[,]1) β¦ (π₯β(1 β π)))β0) = π β§ ((π β (0[,]1) β¦ (π₯β(1 β π)))β1) = π))) |
92 | 84, 87, 89, 91 | mpbir3and 1342 |
. . 3
β’ ((π β§ π₯ β βͺ π΅) β (π β (0[,]1) β¦ (π₯β(1 β π))) β βͺ π΅) |
93 | 4, 69, 70, 71, 92, 73 | om1addcl 24540 |
. . . 4
β’ ((π β§ π₯ β βͺ π΅) β ((π β (0[,]1) β¦ (π₯β(1 β π)))(*πβπ½)π₯) β βͺ π΅) |
94 | | eqid 2732 |
. . . . . . 7
β’ ((0[,]1)
Γ {(π₯β1)}) =
((0[,]1) Γ {(π₯β1)}) |
95 | 81, 94 | pcorev 24534 |
. . . . . 6
β’ (π₯ β (II Cn π½) β ((π β (0[,]1) β¦ (π₯β(1 β π)))(*πβπ½)π₯)( βphβπ½)((0[,]1) Γ {(π₯β1)})) |
96 | 75, 95 | syl 17 |
. . . . 5
β’ ((π β§ π₯ β βͺ π΅) β ((π β (0[,]1) β¦ (π₯β(1 β π)))(*πβπ½)π₯)( βphβπ½)((0[,]1) Γ {(π₯β1)})) |
97 | 86 | sneqd 4639 |
. . . . . . 7
β’ ((π β§ π₯ β βͺ π΅) β {(π₯β1)} = {π}) |
98 | 97 | xpeq2d 5705 |
. . . . . 6
β’ ((π β§ π₯ β βͺ π΅) β ((0[,]1) Γ
{(π₯β1)}) = ((0[,]1)
Γ {π})) |
99 | 64, 98 | eqtr4id 2791 |
. . . . 5
β’ ((π β§ π₯ β βͺ π΅) β 0 = ((0[,]1) Γ {(π₯β1)})) |
100 | 96, 99 | breqtrrd 5175 |
. . . 4
β’ ((π β§ π₯ β βͺ π΅) β ((π β (0[,]1) β¦ (π₯β(1 β π)))(*πβπ½)π₯)( βphβπ½) 0 ) |
101 | | brinxp2 5751 |
. . . 4
β’ (((π β (0[,]1) β¦ (π₯β(1 β π)))(*πβπ½)π₯)(( βphβπ½) β© (βͺ π΅
Γ βͺ π΅)) 0 β ((((π β (0[,]1) β¦ (π₯β(1 β π)))(*πβπ½)π₯) β βͺ π΅ β§ 0 β βͺ π΅)
β§ ((π β (0[,]1)
β¦ (π₯β(1 β
π)))(*πβπ½)π₯)( βphβπ½) 0 )) |
102 | 93, 72, 100, 101 | syl21anbrc 1344 |
. . 3
β’ ((π β§ π₯ β βͺ π΅) β ((π β (0[,]1) β¦ (π₯β(1 β π)))(*πβπ½)π₯)(( βphβπ½) β© (βͺ π΅
Γ βͺ π΅)) 0 ) |
103 | 14, 9, 15, 19, 11, 26, 32, 63, 68, 80, 92, 102 | qusgrp2 18937 |
. 2
β’ (π β (πΊ β Grp β§ [ 0 ]((
βphβπ½) β© (βͺ π΅ Γ βͺ π΅))
= (0gβπΊ))) |
104 | | ecinxp 8782 |
. . . . 5
β’ ((((
βphβπ½) β βͺ π΅) β βͺ π΅
β§ 0
β βͺ π΅) β [ 0 ](
βphβπ½) = [ 0 ]((
βphβπ½) β© (βͺ π΅ Γ βͺ π΅))) |
105 | 13, 68, 104 | syl2anc 584 |
. . . 4
β’ (π β [ 0 ](
βphβπ½) = [ 0 ]((
βphβπ½) β© (βͺ π΅ Γ βͺ π΅))) |
106 | 105 | eqeq1d 2734 |
. . 3
β’ (π β ([ 0 ](
βphβπ½) = (0gβπΊ) β [ 0 ]((
βphβπ½) β© (βͺ π΅ Γ βͺ π΅))
= (0gβπΊ))) |
107 | 106 | anbi2d 629 |
. 2
β’ (π β ((πΊ β Grp β§ [ 0 ](
βphβπ½) = (0gβπΊ)) β (πΊ β Grp β§ [ 0 ]((
βphβπ½) β© (βͺ π΅ Γ βͺ π΅))
= (0gβπΊ)))) |
108 | 103, 107 | mpbird 256 |
1
β’ (π β (πΊ β Grp β§ [ 0 ](
βphβπ½) = (0gβπΊ))) |