MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pi1grplem Structured version   Visualization version   GIF version

Theorem pi1grplem 25000
Description: Lemma for pi1grp 25001. (Contributed by Jeff Madsen, 11-Jun-2010.) (Revised by Mario Carneiro, 10-Aug-2015.)
Hypotheses
Ref Expression
pi1fval.g 𝐺 = (𝐽 π1 𝑌)
pi1fval.b 𝐵 = (Base‘𝐺)
pi1fval.3 (𝜑𝐽 ∈ (TopOn‘𝑋))
pi1fval.4 (𝜑𝑌𝑋)
pi1grplem.z 0 = ((0[,]1) × {𝑌})
Assertion
Ref Expression
pi1grplem (𝜑 → (𝐺 ∈ Grp ∧ [ 0 ]( ≃ph𝐽) = (0g𝐺)))

Proof of Theorem pi1grplem
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑢 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pi1fval.g . . . . 5 𝐺 = (𝐽 π1 𝑌)
2 pi1fval.3 . . . . 5 (𝜑𝐽 ∈ (TopOn‘𝑋))
3 pi1fval.4 . . . . 5 (𝜑𝑌𝑋)
4 eqid 2735 . . . . 5 (𝐽 Ω1 𝑌) = (𝐽 Ω1 𝑌)
51, 2, 3, 4pi1val 24988 . . . 4 (𝜑𝐺 = ((𝐽 Ω1 𝑌) /s ( ≃ph𝐽)))
6 pi1fval.b . . . . . 6 𝐵 = (Base‘𝐺)
76a1i 11 . . . . 5 (𝜑𝐵 = (Base‘𝐺))
8 eqidd 2736 . . . . 5 (𝜑 → (Base‘(𝐽 Ω1 𝑌)) = (Base‘(𝐽 Ω1 𝑌)))
91, 2, 3, 4, 7, 8pi1buni 24991 . . . 4 (𝜑 𝐵 = (Base‘(𝐽 Ω1 𝑌)))
10 fvexd 6891 . . . 4 (𝜑 → ( ≃ph𝐽) ∈ V)
11 ovexd 7440 . . . 4 (𝜑 → (𝐽 Ω1 𝑌) ∈ V)
121, 2, 3, 4, 7, 9pi1blem 24990 . . . . 5 (𝜑 → ((( ≃ph𝐽) “ 𝐵) ⊆ 𝐵 𝐵 ⊆ (II Cn 𝐽)))
1312simpld 494 . . . 4 (𝜑 → (( ≃ph𝐽) “ 𝐵) ⊆ 𝐵)
145, 9, 10, 11, 13qusin 17558 . . 3 (𝜑𝐺 = ((𝐽 Ω1 𝑌) /s (( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))))
154, 2, 3om1plusg 24985 . . 3 (𝜑 → (*𝑝𝐽) = (+g‘(𝐽 Ω1 𝑌)))
16 phtpcer 24945 . . . . 5 ( ≃ph𝐽) Er (II Cn 𝐽)
1716a1i 11 . . . 4 (𝜑 → ( ≃ph𝐽) Er (II Cn 𝐽))
1812simprd 495 . . . 4 (𝜑 𝐵 ⊆ (II Cn 𝐽))
1917, 18erinxp 8805 . . 3 (𝜑 → (( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)) Er 𝐵)
20 eqid 2735 . . . . 5 (( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)) = (( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))
21 eqid 2735 . . . . 5 (+g‘(𝐽 Ω1 𝑌)) = (+g‘(𝐽 Ω1 𝑌))
221, 2, 3, 7, 20, 4, 21pi1cpbl 24995 . . . 4 (𝜑 → ((𝑎(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))𝑐𝑏(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))𝑑) → (𝑎(+g‘(𝐽 Ω1 𝑌))𝑏)(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))(𝑐(+g‘(𝐽 Ω1 𝑌))𝑑)))
2315oveqd 7422 . . . . 5 (𝜑 → (𝑎(*𝑝𝐽)𝑏) = (𝑎(+g‘(𝐽 Ω1 𝑌))𝑏))
2415oveqd 7422 . . . . 5 (𝜑 → (𝑐(*𝑝𝐽)𝑑) = (𝑐(+g‘(𝐽 Ω1 𝑌))𝑑))
2523, 24breq12d 5132 . . . 4 (𝜑 → ((𝑎(*𝑝𝐽)𝑏)(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))(𝑐(*𝑝𝐽)𝑑) ↔ (𝑎(+g‘(𝐽 Ω1 𝑌))𝑏)(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))(𝑐(+g‘(𝐽 Ω1 𝑌))𝑑)))
2622, 25sylibrd 259 . . 3 (𝜑 → ((𝑎(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))𝑐𝑏(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))𝑑) → (𝑎(*𝑝𝐽)𝑏)(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))(𝑐(*𝑝𝐽)𝑑)))
2723ad2ant1 1133 . . . 4 ((𝜑𝑥 𝐵𝑦 𝐵) → 𝐽 ∈ (TopOn‘𝑋))
2833ad2ant1 1133 . . . 4 ((𝜑𝑥 𝐵𝑦 𝐵) → 𝑌𝑋)
2993ad2ant1 1133 . . . 4 ((𝜑𝑥 𝐵𝑦 𝐵) → 𝐵 = (Base‘(𝐽 Ω1 𝑌)))
30 simp2 1137 . . . 4 ((𝜑𝑥 𝐵𝑦 𝐵) → 𝑥 𝐵)
31 simp3 1138 . . . 4 ((𝜑𝑥 𝐵𝑦 𝐵) → 𝑦 𝐵)
324, 27, 28, 29, 30, 31om1addcl 24984 . . 3 ((𝜑𝑥 𝐵𝑦 𝐵) → (𝑥(*𝑝𝐽)𝑦) ∈ 𝐵)
332adantr 480 . . . . 5 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → 𝐽 ∈ (TopOn‘𝑋))
343adantr 480 . . . . 5 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → 𝑌𝑋)
359adantr 480 . . . . 5 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → 𝐵 = (Base‘(𝐽 Ω1 𝑌)))
36323adant3r3 1185 . . . . 5 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → (𝑥(*𝑝𝐽)𝑦) ∈ 𝐵)
37 simpr3 1197 . . . . 5 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → 𝑧 𝐵)
384, 33, 34, 35, 36, 37om1addcl 24984 . . . 4 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → ((𝑥(*𝑝𝐽)𝑦)(*𝑝𝐽)𝑧) ∈ 𝐵)
39 simpr1 1195 . . . . 5 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → 𝑥 𝐵)
40 simpr2 1196 . . . . . 6 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → 𝑦 𝐵)
414, 33, 34, 35, 40, 37om1addcl 24984 . . . . 5 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → (𝑦(*𝑝𝐽)𝑧) ∈ 𝐵)
424, 33, 34, 35, 39, 41om1addcl 24984 . . . 4 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → (𝑥(*𝑝𝐽)(𝑦(*𝑝𝐽)𝑧)) ∈ 𝐵)
431, 2, 3, 7pi1eluni 24993 . . . . . . . 8 (𝜑 → (𝑥 𝐵 ↔ (𝑥 ∈ (II Cn 𝐽) ∧ (𝑥‘0) = 𝑌 ∧ (𝑥‘1) = 𝑌)))
4443biimpa 476 . . . . . . 7 ((𝜑𝑥 𝐵) → (𝑥 ∈ (II Cn 𝐽) ∧ (𝑥‘0) = 𝑌 ∧ (𝑥‘1) = 𝑌))
45443ad2antr1 1189 . . . . . 6 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → (𝑥 ∈ (II Cn 𝐽) ∧ (𝑥‘0) = 𝑌 ∧ (𝑥‘1) = 𝑌))
4645simp1d 1142 . . . . 5 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → 𝑥 ∈ (II Cn 𝐽))
476a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → 𝐵 = (Base‘𝐺))
481, 33, 34, 47pi1eluni 24993 . . . . . . 7 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → (𝑦 𝐵 ↔ (𝑦 ∈ (II Cn 𝐽) ∧ (𝑦‘0) = 𝑌 ∧ (𝑦‘1) = 𝑌)))
4940, 48mpbid 232 . . . . . 6 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → (𝑦 ∈ (II Cn 𝐽) ∧ (𝑦‘0) = 𝑌 ∧ (𝑦‘1) = 𝑌))
5049simp1d 1142 . . . . 5 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → 𝑦 ∈ (II Cn 𝐽))
511, 33, 34, 47pi1eluni 24993 . . . . . . 7 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → (𝑧 𝐵 ↔ (𝑧 ∈ (II Cn 𝐽) ∧ (𝑧‘0) = 𝑌 ∧ (𝑧‘1) = 𝑌)))
5237, 51mpbid 232 . . . . . 6 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → (𝑧 ∈ (II Cn 𝐽) ∧ (𝑧‘0) = 𝑌 ∧ (𝑧‘1) = 𝑌))
5352simp1d 1142 . . . . 5 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → 𝑧 ∈ (II Cn 𝐽))
5445simp3d 1144 . . . . . 6 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → (𝑥‘1) = 𝑌)
5549simp2d 1143 . . . . . 6 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → (𝑦‘0) = 𝑌)
5654, 55eqtr4d 2773 . . . . 5 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → (𝑥‘1) = (𝑦‘0))
5749simp3d 1144 . . . . . 6 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → (𝑦‘1) = 𝑌)
5852simp2d 1143 . . . . . 6 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → (𝑧‘0) = 𝑌)
5957, 58eqtr4d 2773 . . . . 5 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → (𝑦‘1) = (𝑧‘0))
60 eqid 2735 . . . . 5 (𝑢 ∈ (0[,]1) ↦ if(𝑢 ≤ (1 / 2), if(𝑢 ≤ (1 / 4), (2 · 𝑢), (𝑢 + (1 / 4))), ((𝑢 / 2) + (1 / 2)))) = (𝑢 ∈ (0[,]1) ↦ if(𝑢 ≤ (1 / 2), if(𝑢 ≤ (1 / 4), (2 · 𝑢), (𝑢 + (1 / 4))), ((𝑢 / 2) + (1 / 2))))
6146, 50, 53, 56, 59, 60pcoass 24975 . . . 4 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → ((𝑥(*𝑝𝐽)𝑦)(*𝑝𝐽)𝑧)( ≃ph𝐽)(𝑥(*𝑝𝐽)(𝑦(*𝑝𝐽)𝑧)))
62 brinxp2 5732 . . . 4 (((𝑥(*𝑝𝐽)𝑦)(*𝑝𝐽)𝑧)(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))(𝑥(*𝑝𝐽)(𝑦(*𝑝𝐽)𝑧)) ↔ ((((𝑥(*𝑝𝐽)𝑦)(*𝑝𝐽)𝑧) ∈ 𝐵 ∧ (𝑥(*𝑝𝐽)(𝑦(*𝑝𝐽)𝑧)) ∈ 𝐵) ∧ ((𝑥(*𝑝𝐽)𝑦)(*𝑝𝐽)𝑧)( ≃ph𝐽)(𝑥(*𝑝𝐽)(𝑦(*𝑝𝐽)𝑧))))
6338, 42, 61, 62syl21anbrc 1345 . . 3 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → ((𝑥(*𝑝𝐽)𝑦)(*𝑝𝐽)𝑧)(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))(𝑥(*𝑝𝐽)(𝑦(*𝑝𝐽)𝑧)))
64 pi1grplem.z . . . . . 6 0 = ((0[,]1) × {𝑌})
6564pcoptcl 24972 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌𝑋) → ( 0 ∈ (II Cn 𝐽) ∧ ( 0 ‘0) = 𝑌 ∧ ( 0 ‘1) = 𝑌))
662, 3, 65syl2anc 584 . . . 4 (𝜑 → ( 0 ∈ (II Cn 𝐽) ∧ ( 0 ‘0) = 𝑌 ∧ ( 0 ‘1) = 𝑌))
671, 2, 3, 7pi1eluni 24993 . . . 4 (𝜑 → ( 0 𝐵 ↔ ( 0 ∈ (II Cn 𝐽) ∧ ( 0 ‘0) = 𝑌 ∧ ( 0 ‘1) = 𝑌)))
6866, 67mpbird 257 . . 3 (𝜑0 𝐵)
692adantr 480 . . . . 5 ((𝜑𝑥 𝐵) → 𝐽 ∈ (TopOn‘𝑋))
703adantr 480 . . . . 5 ((𝜑𝑥 𝐵) → 𝑌𝑋)
719adantr 480 . . . . 5 ((𝜑𝑥 𝐵) → 𝐵 = (Base‘(𝐽 Ω1 𝑌)))
7268adantr 480 . . . . 5 ((𝜑𝑥 𝐵) → 0 𝐵)
73 simpr 484 . . . . 5 ((𝜑𝑥 𝐵) → 𝑥 𝐵)
744, 69, 70, 71, 72, 73om1addcl 24984 . . . 4 ((𝜑𝑥 𝐵) → ( 0 (*𝑝𝐽)𝑥) ∈ 𝐵)
7518sselda 3958 . . . . 5 ((𝜑𝑥 𝐵) → 𝑥 ∈ (II Cn 𝐽))
7644simp2d 1143 . . . . 5 ((𝜑𝑥 𝐵) → (𝑥‘0) = 𝑌)
7764pcopt 24973 . . . . 5 ((𝑥 ∈ (II Cn 𝐽) ∧ (𝑥‘0) = 𝑌) → ( 0 (*𝑝𝐽)𝑥)( ≃ph𝐽)𝑥)
7875, 76, 77syl2anc 584 . . . 4 ((𝜑𝑥 𝐵) → ( 0 (*𝑝𝐽)𝑥)( ≃ph𝐽)𝑥)
79 brinxp2 5732 . . . 4 (( 0 (*𝑝𝐽)𝑥)(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))𝑥 ↔ ((( 0 (*𝑝𝐽)𝑥) ∈ 𝐵𝑥 𝐵) ∧ ( 0 (*𝑝𝐽)𝑥)( ≃ph𝐽)𝑥))
8074, 73, 78, 79syl21anbrc 1345 . . 3 ((𝜑𝑥 𝐵) → ( 0 (*𝑝𝐽)𝑥)(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))𝑥)
81 eqid 2735 . . . . . . 7 (𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎))) = (𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))
8281pcorevcl 24976 . . . . . 6 (𝑥 ∈ (II Cn 𝐽) → ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎))) ∈ (II Cn 𝐽) ∧ ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))‘0) = (𝑥‘1) ∧ ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))‘1) = (𝑥‘0)))
8375, 82syl 17 . . . . 5 ((𝜑𝑥 𝐵) → ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎))) ∈ (II Cn 𝐽) ∧ ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))‘0) = (𝑥‘1) ∧ ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))‘1) = (𝑥‘0)))
8483simp1d 1142 . . . 4 ((𝜑𝑥 𝐵) → (𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎))) ∈ (II Cn 𝐽))
8583simp2d 1143 . . . . 5 ((𝜑𝑥 𝐵) → ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))‘0) = (𝑥‘1))
8644simp3d 1144 . . . . 5 ((𝜑𝑥 𝐵) → (𝑥‘1) = 𝑌)
8785, 86eqtrd 2770 . . . 4 ((𝜑𝑥 𝐵) → ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))‘0) = 𝑌)
8883simp3d 1144 . . . . 5 ((𝜑𝑥 𝐵) → ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))‘1) = (𝑥‘0))
8988, 76eqtrd 2770 . . . 4 ((𝜑𝑥 𝐵) → ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))‘1) = 𝑌)
901, 2, 3, 7pi1eluni 24993 . . . . 5 (𝜑 → ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎))) ∈ 𝐵 ↔ ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎))) ∈ (II Cn 𝐽) ∧ ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))‘0) = 𝑌 ∧ ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))‘1) = 𝑌)))
9190adantr 480 . . . 4 ((𝜑𝑥 𝐵) → ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎))) ∈ 𝐵 ↔ ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎))) ∈ (II Cn 𝐽) ∧ ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))‘0) = 𝑌 ∧ ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))‘1) = 𝑌)))
9284, 87, 89, 91mpbir3and 1343 . . 3 ((𝜑𝑥 𝐵) → (𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎))) ∈ 𝐵)
934, 69, 70, 71, 92, 73om1addcl 24984 . . . 4 ((𝜑𝑥 𝐵) → ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))(*𝑝𝐽)𝑥) ∈ 𝐵)
94 eqid 2735 . . . . . . 7 ((0[,]1) × {(𝑥‘1)}) = ((0[,]1) × {(𝑥‘1)})
9581, 94pcorev 24978 . . . . . 6 (𝑥 ∈ (II Cn 𝐽) → ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))(*𝑝𝐽)𝑥)( ≃ph𝐽)((0[,]1) × {(𝑥‘1)}))
9675, 95syl 17 . . . . 5 ((𝜑𝑥 𝐵) → ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))(*𝑝𝐽)𝑥)( ≃ph𝐽)((0[,]1) × {(𝑥‘1)}))
9786sneqd 4613 . . . . . . 7 ((𝜑𝑥 𝐵) → {(𝑥‘1)} = {𝑌})
9897xpeq2d 5684 . . . . . 6 ((𝜑𝑥 𝐵) → ((0[,]1) × {(𝑥‘1)}) = ((0[,]1) × {𝑌}))
9964, 98eqtr4id 2789 . . . . 5 ((𝜑𝑥 𝐵) → 0 = ((0[,]1) × {(𝑥‘1)}))
10096, 99breqtrrd 5147 . . . 4 ((𝜑𝑥 𝐵) → ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))(*𝑝𝐽)𝑥)( ≃ph𝐽) 0 )
101 brinxp2 5732 . . . 4 (((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))(*𝑝𝐽)𝑥)(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)) 0 ↔ ((((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))(*𝑝𝐽)𝑥) ∈ 𝐵0 𝐵) ∧ ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))(*𝑝𝐽)𝑥)( ≃ph𝐽) 0 ))
10293, 72, 100, 101syl21anbrc 1345 . . 3 ((𝜑𝑥 𝐵) → ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))(*𝑝𝐽)𝑥)(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)) 0 )
10314, 9, 15, 19, 11, 26, 32, 63, 68, 80, 92, 102qusgrp2 19041 . 2 (𝜑 → (𝐺 ∈ Grp ∧ [ 0 ](( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)) = (0g𝐺)))
104 ecinxp 8806 . . . . 5 (((( ≃ph𝐽) “ 𝐵) ⊆ 𝐵0 𝐵) → [ 0 ]( ≃ph𝐽) = [ 0 ](( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)))
10513, 68, 104syl2anc 584 . . . 4 (𝜑 → [ 0 ]( ≃ph𝐽) = [ 0 ](( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)))
106105eqeq1d 2737 . . 3 (𝜑 → ([ 0 ]( ≃ph𝐽) = (0g𝐺) ↔ [ 0 ](( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)) = (0g𝐺)))
107106anbi2d 630 . 2 (𝜑 → ((𝐺 ∈ Grp ∧ [ 0 ]( ≃ph𝐽) = (0g𝐺)) ↔ (𝐺 ∈ Grp ∧ [ 0 ](( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)) = (0g𝐺))))
108103, 107mpbird 257 1 (𝜑 → (𝐺 ∈ Grp ∧ [ 0 ]( ≃ph𝐽) = (0g𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  Vcvv 3459  cin 3925  wss 3926  ifcif 4500  {csn 4601   cuni 4883   class class class wbr 5119  cmpt 5201   × cxp 5652  cima 5657  cfv 6531  (class class class)co 7405   Er wer 8716  [cec 8717  0cc0 11129  1c1 11130   + caddc 11132   · cmul 11134  cle 11270  cmin 11466   / cdiv 11894  2c2 12295  4c4 12297  [,]cicc 13365  Basecbs 17228  +gcplusg 17271  0gc0g 17453  Grpcgrp 18916  TopOnctopon 22848   Cn ccn 23162  IIcii 24819  phcphtpc 24919  *𝑝cpco 24951   Ω1 comi 24952   π1 cpi1 24954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-ec 8721  df-qs 8725  df-map 8842  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-fi 9423  df-sup 9454  df-inf 9455  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-q 12965  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-ioo 13366  df-icc 13369  df-fz 13525  df-fzo 13672  df-seq 14020  df-exp 14080  df-hash 14349  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-hom 17295  df-cco 17296  df-rest 17436  df-topn 17437  df-0g 17455  df-gsum 17456  df-topgen 17457  df-pt 17458  df-prds 17461  df-xrs 17516  df-qtop 17521  df-imas 17522  df-qus 17523  df-xps 17524  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-submnd 18762  df-grp 18919  df-mulg 19051  df-cntz 19300  df-cmn 19763  df-psmet 21307  df-xmet 21308  df-met 21309  df-bl 21310  df-mopn 21311  df-cnfld 21316  df-top 22832  df-topon 22849  df-topsp 22871  df-bases 22884  df-cld 22957  df-cn 23165  df-cnp 23166  df-tx 23500  df-hmeo 23693  df-xms 24259  df-ms 24260  df-tms 24261  df-ii 24821  df-htpy 24920  df-phtpy 24921  df-phtpc 24942  df-pco 24956  df-om1 24957  df-pi1 24959
This theorem is referenced by:  pi1grp  25001  pi1id  25002  pi1inv  25003
  Copyright terms: Public domain W3C validator