MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pi1addval Structured version   Visualization version   GIF version

Theorem pi1addval 24222
Description: The concatenation of two path-homotopy classes in the fundamental group. (Contributed by Jeff Madsen, 11-Jun-2010.) (Revised by Mario Carneiro, 10-Jul-2015.)
Hypotheses
Ref Expression
elpi1.g 𝐺 = (𝐽 π1 𝑌)
elpi1.b 𝐵 = (Base‘𝐺)
elpi1.1 (𝜑𝐽 ∈ (TopOn‘𝑋))
elpi1.2 (𝜑𝑌𝑋)
pi1addf.p + = (+g𝐺)
pi1addval.3 (𝜑𝑀 𝐵)
pi1addval.4 (𝜑𝑁 𝐵)
Assertion
Ref Expression
pi1addval (𝜑 → ([𝑀]( ≃ph𝐽) + [𝑁]( ≃ph𝐽)) = [(𝑀(*𝑝𝐽)𝑁)]( ≃ph𝐽))

Proof of Theorem pi1addval
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pi1addval.3 . . 3 (𝜑𝑀 𝐵)
2 pi1addval.4 . . 3 (𝜑𝑁 𝐵)
3 eqidd 2741 . . . . . 6 (𝜑 → ((𝐽 Ω1 𝑌) /s ( ≃ph𝐽)) = ((𝐽 Ω1 𝑌) /s ( ≃ph𝐽)))
4 eqidd 2741 . . . . . 6 (𝜑 → (Base‘(𝐽 Ω1 𝑌)) = (Base‘(𝐽 Ω1 𝑌)))
5 fvexd 6786 . . . . . 6 (𝜑 → ( ≃ph𝐽) ∈ V)
6 ovexd 7307 . . . . . 6 (𝜑 → (𝐽 Ω1 𝑌) ∈ V)
7 elpi1.g . . . . . . . 8 𝐺 = (𝐽 π1 𝑌)
8 elpi1.1 . . . . . . . 8 (𝜑𝐽 ∈ (TopOn‘𝑋))
9 elpi1.2 . . . . . . . 8 (𝜑𝑌𝑋)
10 eqid 2740 . . . . . . . 8 (𝐽 Ω1 𝑌) = (𝐽 Ω1 𝑌)
11 elpi1.b . . . . . . . . 9 𝐵 = (Base‘𝐺)
1211a1i 11 . . . . . . . 8 (𝜑𝐵 = (Base‘𝐺))
137, 8, 9, 10, 12, 4pi1blem 24213 . . . . . . 7 (𝜑 → ((( ≃ph𝐽) “ (Base‘(𝐽 Ω1 𝑌))) ⊆ (Base‘(𝐽 Ω1 𝑌)) ∧ (Base‘(𝐽 Ω1 𝑌)) ⊆ (II Cn 𝐽)))
1413simpld 495 . . . . . 6 (𝜑 → (( ≃ph𝐽) “ (Base‘(𝐽 Ω1 𝑌))) ⊆ (Base‘(𝐽 Ω1 𝑌)))
153, 4, 5, 6, 14qusin 17266 . . . . 5 (𝜑 → ((𝐽 Ω1 𝑌) /s ( ≃ph𝐽)) = ((𝐽 Ω1 𝑌) /s (( ≃ph𝐽) ∩ ((Base‘(𝐽 Ω1 𝑌)) × (Base‘(𝐽 Ω1 𝑌))))))
167, 8, 9, 10pi1val 24211 . . . . 5 (𝜑𝐺 = ((𝐽 Ω1 𝑌) /s ( ≃ph𝐽)))
177, 8, 9, 10, 12, 4pi1buni 24214 . . . . . . . 8 (𝜑 𝐵 = (Base‘(𝐽 Ω1 𝑌)))
1817sqxpeqd 5622 . . . . . . 7 (𝜑 → ( 𝐵 × 𝐵) = ((Base‘(𝐽 Ω1 𝑌)) × (Base‘(𝐽 Ω1 𝑌))))
1918ineq2d 4152 . . . . . 6 (𝜑 → (( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)) = (( ≃ph𝐽) ∩ ((Base‘(𝐽 Ω1 𝑌)) × (Base‘(𝐽 Ω1 𝑌)))))
2019oveq2d 7288 . . . . 5 (𝜑 → ((𝐽 Ω1 𝑌) /s (( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))) = ((𝐽 Ω1 𝑌) /s (( ≃ph𝐽) ∩ ((Base‘(𝐽 Ω1 𝑌)) × (Base‘(𝐽 Ω1 𝑌))))))
2115, 16, 203eqtr4d 2790 . . . 4 (𝜑𝐺 = ((𝐽 Ω1 𝑌) /s (( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))))
22 phtpcer 24169 . . . . . 6 ( ≃ph𝐽) Er (II Cn 𝐽)
2322a1i 11 . . . . 5 (𝜑 → ( ≃ph𝐽) Er (II Cn 𝐽))
2413simprd 496 . . . . . 6 (𝜑 → (Base‘(𝐽 Ω1 𝑌)) ⊆ (II Cn 𝐽))
2517, 24eqsstrd 3964 . . . . 5 (𝜑 𝐵 ⊆ (II Cn 𝐽))
2623, 25erinxp 8572 . . . 4 (𝜑 → (( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)) Er 𝐵)
27 eqid 2740 . . . . 5 (( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)) = (( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))
28 eqid 2740 . . . . 5 (+g‘(𝐽 Ω1 𝑌)) = (+g‘(𝐽 Ω1 𝑌))
297, 8, 9, 12, 27, 10, 28pi1cpbl 24218 . . . 4 (𝜑 → ((𝑎(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))𝑐𝑏(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))𝑑) → (𝑎(+g‘(𝐽 Ω1 𝑌))𝑏)(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))(𝑐(+g‘(𝐽 Ω1 𝑌))𝑑)))
3010, 8, 9om1plusg 24208 . . . . . 6 (𝜑 → (*𝑝𝐽) = (+g‘(𝐽 Ω1 𝑌)))
3130oveqdr 7300 . . . . 5 ((𝜑 ∧ (𝑐 𝐵𝑑 𝐵)) → (𝑐(*𝑝𝐽)𝑑) = (𝑐(+g‘(𝐽 Ω1 𝑌))𝑑))
328adantr 481 . . . . . 6 ((𝜑 ∧ (𝑐 𝐵𝑑 𝐵)) → 𝐽 ∈ (TopOn‘𝑋))
339adantr 481 . . . . . 6 ((𝜑 ∧ (𝑐 𝐵𝑑 𝐵)) → 𝑌𝑋)
3417adantr 481 . . . . . 6 ((𝜑 ∧ (𝑐 𝐵𝑑 𝐵)) → 𝐵 = (Base‘(𝐽 Ω1 𝑌)))
35 simprl 768 . . . . . 6 ((𝜑 ∧ (𝑐 𝐵𝑑 𝐵)) → 𝑐 𝐵)
36 simprr 770 . . . . . 6 ((𝜑 ∧ (𝑐 𝐵𝑑 𝐵)) → 𝑑 𝐵)
3710, 32, 33, 34, 35, 36om1addcl 24207 . . . . 5 ((𝜑 ∧ (𝑐 𝐵𝑑 𝐵)) → (𝑐(*𝑝𝐽)𝑑) ∈ 𝐵)
3831, 37eqeltrrd 2842 . . . 4 ((𝜑 ∧ (𝑐 𝐵𝑑 𝐵)) → (𝑐(+g‘(𝐽 Ω1 𝑌))𝑑) ∈ 𝐵)
39 pi1addf.p . . . 4 + = (+g𝐺)
4021, 17, 26, 6, 29, 38, 28, 39qusaddval 17275 . . 3 ((𝜑𝑀 𝐵𝑁 𝐵) → ([𝑀](( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)) + [𝑁](( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))) = [(𝑀(+g‘(𝐽 Ω1 𝑌))𝑁)](( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)))
411, 2, 40mpd3an23 1462 . 2 (𝜑 → ([𝑀](( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)) + [𝑁](( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))) = [(𝑀(+g‘(𝐽 Ω1 𝑌))𝑁)](( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)))
4217imaeq2d 5968 . . . . 5 (𝜑 → (( ≃ph𝐽) “ 𝐵) = (( ≃ph𝐽) “ (Base‘(𝐽 Ω1 𝑌))))
4314, 42, 173sstr4d 3973 . . . 4 (𝜑 → (( ≃ph𝐽) “ 𝐵) ⊆ 𝐵)
44 ecinxp 8573 . . . 4 (((( ≃ph𝐽) “ 𝐵) ⊆ 𝐵𝑀 𝐵) → [𝑀]( ≃ph𝐽) = [𝑀](( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)))
4543, 1, 44syl2anc 584 . . 3 (𝜑 → [𝑀]( ≃ph𝐽) = [𝑀](( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)))
46 ecinxp 8573 . . . 4 (((( ≃ph𝐽) “ 𝐵) ⊆ 𝐵𝑁 𝐵) → [𝑁]( ≃ph𝐽) = [𝑁](( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)))
4743, 2, 46syl2anc 584 . . 3 (𝜑 → [𝑁]( ≃ph𝐽) = [𝑁](( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)))
4845, 47oveq12d 7290 . 2 (𝜑 → ([𝑀]( ≃ph𝐽) + [𝑁]( ≃ph𝐽)) = ([𝑀](( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)) + [𝑁](( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))))
4910, 8, 9, 17, 1, 2om1addcl 24207 . . . 4 (𝜑 → (𝑀(*𝑝𝐽)𝑁) ∈ 𝐵)
50 ecinxp 8573 . . . 4 (((( ≃ph𝐽) “ 𝐵) ⊆ 𝐵 ∧ (𝑀(*𝑝𝐽)𝑁) ∈ 𝐵) → [(𝑀(*𝑝𝐽)𝑁)]( ≃ph𝐽) = [(𝑀(*𝑝𝐽)𝑁)](( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)))
5143, 49, 50syl2anc 584 . . 3 (𝜑 → [(𝑀(*𝑝𝐽)𝑁)]( ≃ph𝐽) = [(𝑀(*𝑝𝐽)𝑁)](( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)))
5230oveqd 7289 . . . 4 (𝜑 → (𝑀(*𝑝𝐽)𝑁) = (𝑀(+g‘(𝐽 Ω1 𝑌))𝑁))
5352eceq1d 8529 . . 3 (𝜑 → [(𝑀(*𝑝𝐽)𝑁)](( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)) = [(𝑀(+g‘(𝐽 Ω1 𝑌))𝑁)](( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)))
5451, 53eqtrd 2780 . 2 (𝜑 → [(𝑀(*𝑝𝐽)𝑁)]( ≃ph𝐽) = [(𝑀(+g‘(𝐽 Ω1 𝑌))𝑁)](( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)))
5541, 48, 543eqtr4d 2790 1 (𝜑 → ([𝑀]( ≃ph𝐽) + [𝑁]( ≃ph𝐽)) = [(𝑀(*𝑝𝐽)𝑁)]( ≃ph𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1542  wcel 2110  Vcvv 3431  cin 3891  wss 3892   cuni 4845   × cxp 5588  cima 5593  cfv 6432  (class class class)co 7272   Er wer 8487  [cec 8488  Basecbs 16923  +gcplusg 16973   /s cqus 17227  TopOnctopon 22070   Cn ccn 22386  IIcii 24049  phcphtpc 24143  *𝑝cpco 24174   Ω1 comi 24175   π1 cpi1 24177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7583  ax-cnex 10938  ax-resscn 10939  ax-1cn 10940  ax-icn 10941  ax-addcl 10942  ax-addrcl 10943  ax-mulcl 10944  ax-mulrcl 10945  ax-mulcom 10946  ax-addass 10947  ax-mulass 10948  ax-distr 10949  ax-i2m1 10950  ax-1ne0 10951  ax-1rid 10952  ax-rnegex 10953  ax-rrecex 10954  ax-cnre 10955  ax-pre-lttri 10956  ax-pre-lttrn 10957  ax-pre-ltadd 10958  ax-pre-mulgt0 10959  ax-pre-sup 10960  ax-mulf 10962
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-iin 4933  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-isom 6441  df-riota 7229  df-ov 7275  df-oprab 7276  df-mpo 7277  df-of 7528  df-om 7708  df-1st 7825  df-2nd 7826  df-supp 7970  df-frecs 8089  df-wrecs 8120  df-recs 8194  df-rdg 8233  df-1o 8289  df-2o 8290  df-er 8490  df-ec 8492  df-qs 8496  df-map 8609  df-ixp 8678  df-en 8726  df-dom 8727  df-sdom 8728  df-fin 8729  df-fsupp 9117  df-fi 9158  df-sup 9189  df-inf 9190  df-oi 9257  df-card 9708  df-pnf 11022  df-mnf 11023  df-xr 11024  df-ltxr 11025  df-le 11026  df-sub 11218  df-neg 11219  df-div 11644  df-nn 11985  df-2 12047  df-3 12048  df-4 12049  df-5 12050  df-6 12051  df-7 12052  df-8 12053  df-9 12054  df-n0 12245  df-z 12331  df-dec 12449  df-uz 12594  df-q 12700  df-rp 12742  df-xneg 12859  df-xadd 12860  df-xmul 12861  df-ioo 13094  df-icc 13097  df-fz 13251  df-fzo 13394  df-seq 13733  df-exp 13794  df-hash 14056  df-cj 14821  df-re 14822  df-im 14823  df-sqrt 14957  df-abs 14958  df-struct 16859  df-sets 16876  df-slot 16894  df-ndx 16906  df-base 16924  df-ress 16953  df-plusg 16986  df-mulr 16987  df-starv 16988  df-sca 16989  df-vsca 16990  df-ip 16991  df-tset 16992  df-ple 16993  df-ds 16995  df-unif 16996  df-hom 16997  df-cco 16998  df-rest 17144  df-topn 17145  df-0g 17163  df-gsum 17164  df-topgen 17165  df-pt 17166  df-prds 17169  df-xrs 17224  df-qtop 17229  df-imas 17230  df-qus 17231  df-xps 17232  df-mre 17306  df-mrc 17307  df-acs 17309  df-mgm 18337  df-sgrp 18386  df-mnd 18397  df-submnd 18442  df-mulg 18712  df-cntz 18934  df-cmn 19399  df-psmet 20600  df-xmet 20601  df-met 20602  df-bl 20603  df-mopn 20604  df-cnfld 20609  df-top 22054  df-topon 22071  df-topsp 22093  df-bases 22107  df-cld 22181  df-cn 22389  df-cnp 22390  df-tx 22724  df-hmeo 22917  df-xms 23484  df-ms 23485  df-tms 23486  df-ii 24051  df-htpy 24144  df-phtpy 24145  df-phtpc 24166  df-pco 24179  df-om1 24180  df-pi1 24182
This theorem is referenced by:  pi1inv  24226  pi1xfr  24229  pi1coghm  24235
  Copyright terms: Public domain W3C validator