MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pi1addval Structured version   Visualization version   GIF version

Theorem pi1addval 24946
Description: The concatenation of two path-homotopy classes in the fundamental group. (Contributed by Jeff Madsen, 11-Jun-2010.) (Revised by Mario Carneiro, 10-Jul-2015.)
Hypotheses
Ref Expression
elpi1.g 𝐺 = (𝐽 π1 𝑌)
elpi1.b 𝐵 = (Base‘𝐺)
elpi1.1 (𝜑𝐽 ∈ (TopOn‘𝑋))
elpi1.2 (𝜑𝑌𝑋)
pi1addf.p + = (+g𝐺)
pi1addval.3 (𝜑𝑀 𝐵)
pi1addval.4 (𝜑𝑁 𝐵)
Assertion
Ref Expression
pi1addval (𝜑 → ([𝑀]( ≃ph𝐽) + [𝑁]( ≃ph𝐽)) = [(𝑀(*𝑝𝐽)𝑁)]( ≃ph𝐽))

Proof of Theorem pi1addval
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pi1addval.3 . . 3 (𝜑𝑀 𝐵)
2 pi1addval.4 . . 3 (𝜑𝑁 𝐵)
3 eqidd 2730 . . . . . 6 (𝜑 → ((𝐽 Ω1 𝑌) /s ( ≃ph𝐽)) = ((𝐽 Ω1 𝑌) /s ( ≃ph𝐽)))
4 eqidd 2730 . . . . . 6 (𝜑 → (Base‘(𝐽 Ω1 𝑌)) = (Base‘(𝐽 Ω1 𝑌)))
5 fvexd 6837 . . . . . 6 (𝜑 → ( ≃ph𝐽) ∈ V)
6 ovexd 7384 . . . . . 6 (𝜑 → (𝐽 Ω1 𝑌) ∈ V)
7 elpi1.g . . . . . . . 8 𝐺 = (𝐽 π1 𝑌)
8 elpi1.1 . . . . . . . 8 (𝜑𝐽 ∈ (TopOn‘𝑋))
9 elpi1.2 . . . . . . . 8 (𝜑𝑌𝑋)
10 eqid 2729 . . . . . . . 8 (𝐽 Ω1 𝑌) = (𝐽 Ω1 𝑌)
11 elpi1.b . . . . . . . . 9 𝐵 = (Base‘𝐺)
1211a1i 11 . . . . . . . 8 (𝜑𝐵 = (Base‘𝐺))
137, 8, 9, 10, 12, 4pi1blem 24937 . . . . . . 7 (𝜑 → ((( ≃ph𝐽) “ (Base‘(𝐽 Ω1 𝑌))) ⊆ (Base‘(𝐽 Ω1 𝑌)) ∧ (Base‘(𝐽 Ω1 𝑌)) ⊆ (II Cn 𝐽)))
1413simpld 494 . . . . . 6 (𝜑 → (( ≃ph𝐽) “ (Base‘(𝐽 Ω1 𝑌))) ⊆ (Base‘(𝐽 Ω1 𝑌)))
153, 4, 5, 6, 14qusin 17448 . . . . 5 (𝜑 → ((𝐽 Ω1 𝑌) /s ( ≃ph𝐽)) = ((𝐽 Ω1 𝑌) /s (( ≃ph𝐽) ∩ ((Base‘(𝐽 Ω1 𝑌)) × (Base‘(𝐽 Ω1 𝑌))))))
167, 8, 9, 10pi1val 24935 . . . . 5 (𝜑𝐺 = ((𝐽 Ω1 𝑌) /s ( ≃ph𝐽)))
177, 8, 9, 10, 12, 4pi1buni 24938 . . . . . . . 8 (𝜑 𝐵 = (Base‘(𝐽 Ω1 𝑌)))
1817sqxpeqd 5651 . . . . . . 7 (𝜑 → ( 𝐵 × 𝐵) = ((Base‘(𝐽 Ω1 𝑌)) × (Base‘(𝐽 Ω1 𝑌))))
1918ineq2d 4171 . . . . . 6 (𝜑 → (( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)) = (( ≃ph𝐽) ∩ ((Base‘(𝐽 Ω1 𝑌)) × (Base‘(𝐽 Ω1 𝑌)))))
2019oveq2d 7365 . . . . 5 (𝜑 → ((𝐽 Ω1 𝑌) /s (( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))) = ((𝐽 Ω1 𝑌) /s (( ≃ph𝐽) ∩ ((Base‘(𝐽 Ω1 𝑌)) × (Base‘(𝐽 Ω1 𝑌))))))
2115, 16, 203eqtr4d 2774 . . . 4 (𝜑𝐺 = ((𝐽 Ω1 𝑌) /s (( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))))
22 phtpcer 24892 . . . . . 6 ( ≃ph𝐽) Er (II Cn 𝐽)
2322a1i 11 . . . . 5 (𝜑 → ( ≃ph𝐽) Er (II Cn 𝐽))
2413simprd 495 . . . . . 6 (𝜑 → (Base‘(𝐽 Ω1 𝑌)) ⊆ (II Cn 𝐽))
2517, 24eqsstrd 3970 . . . . 5 (𝜑 𝐵 ⊆ (II Cn 𝐽))
2623, 25erinxp 8718 . . . 4 (𝜑 → (( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)) Er 𝐵)
27 eqid 2729 . . . . 5 (( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)) = (( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))
28 eqid 2729 . . . . 5 (+g‘(𝐽 Ω1 𝑌)) = (+g‘(𝐽 Ω1 𝑌))
297, 8, 9, 12, 27, 10, 28pi1cpbl 24942 . . . 4 (𝜑 → ((𝑎(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))𝑐𝑏(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))𝑑) → (𝑎(+g‘(𝐽 Ω1 𝑌))𝑏)(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))(𝑐(+g‘(𝐽 Ω1 𝑌))𝑑)))
3010, 8, 9om1plusg 24932 . . . . . 6 (𝜑 → (*𝑝𝐽) = (+g‘(𝐽 Ω1 𝑌)))
3130oveqdr 7377 . . . . 5 ((𝜑 ∧ (𝑐 𝐵𝑑 𝐵)) → (𝑐(*𝑝𝐽)𝑑) = (𝑐(+g‘(𝐽 Ω1 𝑌))𝑑))
328adantr 480 . . . . . 6 ((𝜑 ∧ (𝑐 𝐵𝑑 𝐵)) → 𝐽 ∈ (TopOn‘𝑋))
339adantr 480 . . . . . 6 ((𝜑 ∧ (𝑐 𝐵𝑑 𝐵)) → 𝑌𝑋)
3417adantr 480 . . . . . 6 ((𝜑 ∧ (𝑐 𝐵𝑑 𝐵)) → 𝐵 = (Base‘(𝐽 Ω1 𝑌)))
35 simprl 770 . . . . . 6 ((𝜑 ∧ (𝑐 𝐵𝑑 𝐵)) → 𝑐 𝐵)
36 simprr 772 . . . . . 6 ((𝜑 ∧ (𝑐 𝐵𝑑 𝐵)) → 𝑑 𝐵)
3710, 32, 33, 34, 35, 36om1addcl 24931 . . . . 5 ((𝜑 ∧ (𝑐 𝐵𝑑 𝐵)) → (𝑐(*𝑝𝐽)𝑑) ∈ 𝐵)
3831, 37eqeltrrd 2829 . . . 4 ((𝜑 ∧ (𝑐 𝐵𝑑 𝐵)) → (𝑐(+g‘(𝐽 Ω1 𝑌))𝑑) ∈ 𝐵)
39 pi1addf.p . . . 4 + = (+g𝐺)
4021, 17, 26, 6, 29, 38, 28, 39qusaddval 17457 . . 3 ((𝜑𝑀 𝐵𝑁 𝐵) → ([𝑀](( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)) + [𝑁](( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))) = [(𝑀(+g‘(𝐽 Ω1 𝑌))𝑁)](( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)))
411, 2, 40mpd3an23 1465 . 2 (𝜑 → ([𝑀](( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)) + [𝑁](( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))) = [(𝑀(+g‘(𝐽 Ω1 𝑌))𝑁)](( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)))
4217imaeq2d 6011 . . . . 5 (𝜑 → (( ≃ph𝐽) “ 𝐵) = (( ≃ph𝐽) “ (Base‘(𝐽 Ω1 𝑌))))
4314, 42, 173sstr4d 3991 . . . 4 (𝜑 → (( ≃ph𝐽) “ 𝐵) ⊆ 𝐵)
44 ecinxp 8719 . . . 4 (((( ≃ph𝐽) “ 𝐵) ⊆ 𝐵𝑀 𝐵) → [𝑀]( ≃ph𝐽) = [𝑀](( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)))
4543, 1, 44syl2anc 584 . . 3 (𝜑 → [𝑀]( ≃ph𝐽) = [𝑀](( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)))
46 ecinxp 8719 . . . 4 (((( ≃ph𝐽) “ 𝐵) ⊆ 𝐵𝑁 𝐵) → [𝑁]( ≃ph𝐽) = [𝑁](( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)))
4743, 2, 46syl2anc 584 . . 3 (𝜑 → [𝑁]( ≃ph𝐽) = [𝑁](( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)))
4845, 47oveq12d 7367 . 2 (𝜑 → ([𝑀]( ≃ph𝐽) + [𝑁]( ≃ph𝐽)) = ([𝑀](( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)) + [𝑁](( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))))
4910, 8, 9, 17, 1, 2om1addcl 24931 . . . 4 (𝜑 → (𝑀(*𝑝𝐽)𝑁) ∈ 𝐵)
50 ecinxp 8719 . . . 4 (((( ≃ph𝐽) “ 𝐵) ⊆ 𝐵 ∧ (𝑀(*𝑝𝐽)𝑁) ∈ 𝐵) → [(𝑀(*𝑝𝐽)𝑁)]( ≃ph𝐽) = [(𝑀(*𝑝𝐽)𝑁)](( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)))
5143, 49, 50syl2anc 584 . . 3 (𝜑 → [(𝑀(*𝑝𝐽)𝑁)]( ≃ph𝐽) = [(𝑀(*𝑝𝐽)𝑁)](( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)))
5230oveqd 7366 . . . 4 (𝜑 → (𝑀(*𝑝𝐽)𝑁) = (𝑀(+g‘(𝐽 Ω1 𝑌))𝑁))
5352eceq1d 8665 . . 3 (𝜑 → [(𝑀(*𝑝𝐽)𝑁)](( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)) = [(𝑀(+g‘(𝐽 Ω1 𝑌))𝑁)](( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)))
5451, 53eqtrd 2764 . 2 (𝜑 → [(𝑀(*𝑝𝐽)𝑁)]( ≃ph𝐽) = [(𝑀(+g‘(𝐽 Ω1 𝑌))𝑁)](( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)))
5541, 48, 543eqtr4d 2774 1 (𝜑 → ([𝑀]( ≃ph𝐽) + [𝑁]( ≃ph𝐽)) = [(𝑀(*𝑝𝐽)𝑁)]( ≃ph𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3436  cin 3902  wss 3903   cuni 4858   × cxp 5617  cima 5622  cfv 6482  (class class class)co 7349   Er wer 8622  [cec 8623  Basecbs 17120  +gcplusg 17161   /s cqus 17409  TopOnctopon 22795   Cn ccn 23109  IIcii 24766  phcphtpc 24866  *𝑝cpco 24898   Ω1 comi 24899   π1 cpi1 24901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-ec 8627  df-qs 8631  df-map 8755  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-icc 13255  df-fz 13411  df-fzo 13558  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-qus 17413  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-mulg 18947  df-cntz 19196  df-cmn 19661  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-cnfld 21262  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cld 22904  df-cn 23112  df-cnp 23113  df-tx 23447  df-hmeo 23640  df-xms 24206  df-ms 24207  df-tms 24208  df-ii 24768  df-htpy 24867  df-phtpy 24868  df-phtpc 24889  df-pco 24903  df-om1 24904  df-pi1 24906
This theorem is referenced by:  pi1inv  24950  pi1xfr  24953  pi1coghm  24959
  Copyright terms: Public domain W3C validator