| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > qusin | Structured version Visualization version GIF version | ||
| Description: Restrict the equivalence relation in a quotient structure to the base set. (Contributed by Mario Carneiro, 23-Feb-2015.) |
| Ref | Expression |
|---|---|
| qusin.u | ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) |
| qusin.v | ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
| qusin.e | ⊢ (𝜑 → ∼ ∈ 𝑊) |
| qusin.r | ⊢ (𝜑 → 𝑅 ∈ 𝑍) |
| qusin.s | ⊢ (𝜑 → ( ∼ “ 𝑉) ⊆ 𝑉) |
| Ref | Expression |
|---|---|
| qusin | ⊢ (𝜑 → 𝑈 = (𝑅 /s ( ∼ ∩ (𝑉 × 𝑉)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qusin.s | . . . . 5 ⊢ (𝜑 → ( ∼ “ 𝑉) ⊆ 𝑉) | |
| 2 | ecinxp 8767 | . . . . 5 ⊢ ((( ∼ “ 𝑉) ⊆ 𝑉 ∧ 𝑥 ∈ 𝑉) → [𝑥] ∼ = [𝑥]( ∼ ∩ (𝑉 × 𝑉))) | |
| 3 | 1, 2 | sylan 580 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → [𝑥] ∼ = [𝑥]( ∼ ∩ (𝑉 × 𝑉))) |
| 4 | 3 | mpteq2dva 5202 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) = (𝑥 ∈ 𝑉 ↦ [𝑥]( ∼ ∩ (𝑉 × 𝑉)))) |
| 5 | 4 | oveq1d 7404 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) “s 𝑅) = ((𝑥 ∈ 𝑉 ↦ [𝑥]( ∼ ∩ (𝑉 × 𝑉))) “s 𝑅)) |
| 6 | qusin.u | . . 3 ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) | |
| 7 | qusin.v | . . 3 ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) | |
| 8 | eqid 2730 | . . 3 ⊢ (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) | |
| 9 | qusin.e | . . 3 ⊢ (𝜑 → ∼ ∈ 𝑊) | |
| 10 | qusin.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑍) | |
| 11 | 6, 7, 8, 9, 10 | qusval 17511 | . 2 ⊢ (𝜑 → 𝑈 = ((𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) “s 𝑅)) |
| 12 | eqidd 2731 | . . 3 ⊢ (𝜑 → (𝑅 /s ( ∼ ∩ (𝑉 × 𝑉))) = (𝑅 /s ( ∼ ∩ (𝑉 × 𝑉)))) | |
| 13 | eqid 2730 | . . 3 ⊢ (𝑥 ∈ 𝑉 ↦ [𝑥]( ∼ ∩ (𝑉 × 𝑉))) = (𝑥 ∈ 𝑉 ↦ [𝑥]( ∼ ∩ (𝑉 × 𝑉))) | |
| 14 | inex1g 5276 | . . . 4 ⊢ ( ∼ ∈ 𝑊 → ( ∼ ∩ (𝑉 × 𝑉)) ∈ V) | |
| 15 | 9, 14 | syl 17 | . . 3 ⊢ (𝜑 → ( ∼ ∩ (𝑉 × 𝑉)) ∈ V) |
| 16 | 12, 7, 13, 15, 10 | qusval 17511 | . 2 ⊢ (𝜑 → (𝑅 /s ( ∼ ∩ (𝑉 × 𝑉))) = ((𝑥 ∈ 𝑉 ↦ [𝑥]( ∼ ∩ (𝑉 × 𝑉))) “s 𝑅)) |
| 17 | 5, 11, 16 | 3eqtr4d 2775 | 1 ⊢ (𝜑 → 𝑈 = (𝑅 /s ( ∼ ∩ (𝑉 × 𝑉)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∩ cin 3915 ⊆ wss 3916 ↦ cmpt 5190 × cxp 5638 “ cima 5643 ‘cfv 6513 (class class class)co 7389 [cec 8671 Basecbs 17185 “s cimas 17473 /s cqus 17474 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3756 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fv 6521 df-ov 7392 df-oprab 7393 df-mpo 7394 df-ec 8675 df-qus 17478 |
| This theorem is referenced by: pi1addf 24953 pi1addval 24954 pi1grplem 24955 |
| Copyright terms: Public domain | W3C validator |