MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qusin Structured version   Visualization version   GIF version

Theorem qusin 17483
Description: Restrict the equivalence relation in a quotient structure to the base set. (Contributed by Mario Carneiro, 23-Feb-2015.)
Hypotheses
Ref Expression
qusin.u (𝜑𝑈 = (𝑅 /s ))
qusin.v (𝜑𝑉 = (Base‘𝑅))
qusin.e (𝜑𝑊)
qusin.r (𝜑𝑅𝑍)
qusin.s (𝜑 → ( 𝑉) ⊆ 𝑉)
Assertion
Ref Expression
qusin (𝜑𝑈 = (𝑅 /s ( ∩ (𝑉 × 𝑉))))

Proof of Theorem qusin
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 qusin.s . . . . 5 (𝜑 → ( 𝑉) ⊆ 𝑉)
2 ecinxp 8742 . . . . 5 ((( 𝑉) ⊆ 𝑉𝑥𝑉) → [𝑥] = [𝑥]( ∩ (𝑉 × 𝑉)))
31, 2sylan 580 . . . 4 ((𝜑𝑥𝑉) → [𝑥] = [𝑥]( ∩ (𝑉 × 𝑉)))
43mpteq2dva 5195 . . 3 (𝜑 → (𝑥𝑉 ↦ [𝑥] ) = (𝑥𝑉 ↦ [𝑥]( ∩ (𝑉 × 𝑉))))
54oveq1d 7384 . 2 (𝜑 → ((𝑥𝑉 ↦ [𝑥] ) “s 𝑅) = ((𝑥𝑉 ↦ [𝑥]( ∩ (𝑉 × 𝑉))) “s 𝑅))
6 qusin.u . . 3 (𝜑𝑈 = (𝑅 /s ))
7 qusin.v . . 3 (𝜑𝑉 = (Base‘𝑅))
8 eqid 2729 . . 3 (𝑥𝑉 ↦ [𝑥] ) = (𝑥𝑉 ↦ [𝑥] )
9 qusin.e . . 3 (𝜑𝑊)
10 qusin.r . . 3 (𝜑𝑅𝑍)
116, 7, 8, 9, 10qusval 17481 . 2 (𝜑𝑈 = ((𝑥𝑉 ↦ [𝑥] ) “s 𝑅))
12 eqidd 2730 . . 3 (𝜑 → (𝑅 /s ( ∩ (𝑉 × 𝑉))) = (𝑅 /s ( ∩ (𝑉 × 𝑉))))
13 eqid 2729 . . 3 (𝑥𝑉 ↦ [𝑥]( ∩ (𝑉 × 𝑉))) = (𝑥𝑉 ↦ [𝑥]( ∩ (𝑉 × 𝑉)))
14 inex1g 5269 . . . 4 ( 𝑊 → ( ∩ (𝑉 × 𝑉)) ∈ V)
159, 14syl 17 . . 3 (𝜑 → ( ∩ (𝑉 × 𝑉)) ∈ V)
1612, 7, 13, 15, 10qusval 17481 . 2 (𝜑 → (𝑅 /s ( ∩ (𝑉 × 𝑉))) = ((𝑥𝑉 ↦ [𝑥]( ∩ (𝑉 × 𝑉))) “s 𝑅))
175, 11, 163eqtr4d 2774 1 (𝜑𝑈 = (𝑅 /s ( ∩ (𝑉 × 𝑉))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3444  cin 3910  wss 3911  cmpt 5183   × cxp 5629  cima 5634  cfv 6499  (class class class)co 7369  [cec 8646  Basecbs 17155  s cimas 17443   /s cqus 17444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-ec 8650  df-qus 17448
This theorem is referenced by:  pi1addf  24923  pi1addval  24924  pi1grplem  24925
  Copyright terms: Public domain W3C validator