MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qusin Structured version   Visualization version   GIF version

Theorem qusin 16819
Description: Restrict the equivalence relation in a quotient structure to the base set. (Contributed by Mario Carneiro, 23-Feb-2015.)
Hypotheses
Ref Expression
qusin.u (𝜑𝑈 = (𝑅 /s ))
qusin.v (𝜑𝑉 = (Base‘𝑅))
qusin.e (𝜑𝑊)
qusin.r (𝜑𝑅𝑍)
qusin.s (𝜑 → ( 𝑉) ⊆ 𝑉)
Assertion
Ref Expression
qusin (𝜑𝑈 = (𝑅 /s ( ∩ (𝑉 × 𝑉))))

Proof of Theorem qusin
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 qusin.s . . . . 5 (𝜑 → ( 𝑉) ⊆ 𝑉)
2 ecinxp 8374 . . . . 5 ((( 𝑉) ⊆ 𝑉𝑥𝑉) → [𝑥] = [𝑥]( ∩ (𝑉 × 𝑉)))
31, 2sylan 582 . . . 4 ((𝜑𝑥𝑉) → [𝑥] = [𝑥]( ∩ (𝑉 × 𝑉)))
43mpteq2dva 5163 . . 3 (𝜑 → (𝑥𝑉 ↦ [𝑥] ) = (𝑥𝑉 ↦ [𝑥]( ∩ (𝑉 × 𝑉))))
54oveq1d 7173 . 2 (𝜑 → ((𝑥𝑉 ↦ [𝑥] ) “s 𝑅) = ((𝑥𝑉 ↦ [𝑥]( ∩ (𝑉 × 𝑉))) “s 𝑅))
6 qusin.u . . 3 (𝜑𝑈 = (𝑅 /s ))
7 qusin.v . . 3 (𝜑𝑉 = (Base‘𝑅))
8 eqid 2823 . . 3 (𝑥𝑉 ↦ [𝑥] ) = (𝑥𝑉 ↦ [𝑥] )
9 qusin.e . . 3 (𝜑𝑊)
10 qusin.r . . 3 (𝜑𝑅𝑍)
116, 7, 8, 9, 10qusval 16817 . 2 (𝜑𝑈 = ((𝑥𝑉 ↦ [𝑥] ) “s 𝑅))
12 eqidd 2824 . . 3 (𝜑 → (𝑅 /s ( ∩ (𝑉 × 𝑉))) = (𝑅 /s ( ∩ (𝑉 × 𝑉))))
13 eqid 2823 . . 3 (𝑥𝑉 ↦ [𝑥]( ∩ (𝑉 × 𝑉))) = (𝑥𝑉 ↦ [𝑥]( ∩ (𝑉 × 𝑉)))
14 inex1g 5225 . . . 4 ( 𝑊 → ( ∩ (𝑉 × 𝑉)) ∈ V)
159, 14syl 17 . . 3 (𝜑 → ( ∩ (𝑉 × 𝑉)) ∈ V)
1612, 7, 13, 15, 10qusval 16817 . 2 (𝜑 → (𝑅 /s ( ∩ (𝑉 × 𝑉))) = ((𝑥𝑉 ↦ [𝑥]( ∩ (𝑉 × 𝑉))) “s 𝑅))
175, 11, 163eqtr4d 2868 1 (𝜑𝑈 = (𝑅 /s ( ∩ (𝑉 × 𝑉))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2114  Vcvv 3496  cin 3937  wss 3938  cmpt 5148   × cxp 5555  cima 5560  cfv 6357  (class class class)co 7158  [cec 8289  Basecbs 16485  s cimas 16779   /s cqus 16780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pr 5332
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-ec 8293  df-qus 16784
This theorem is referenced by:  pi1addf  23653  pi1addval  23654  pi1grplem  23655
  Copyright terms: Public domain W3C validator