![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > qusin | Structured version Visualization version GIF version |
Description: Restrict the equivalence relation in a quotient structure to the base set. (Contributed by Mario Carneiro, 23-Feb-2015.) |
Ref | Expression |
---|---|
qusin.u | ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) |
qusin.v | ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
qusin.e | ⊢ (𝜑 → ∼ ∈ 𝑊) |
qusin.r | ⊢ (𝜑 → 𝑅 ∈ 𝑍) |
qusin.s | ⊢ (𝜑 → ( ∼ “ 𝑉) ⊆ 𝑉) |
Ref | Expression |
---|---|
qusin | ⊢ (𝜑 → 𝑈 = (𝑅 /s ( ∼ ∩ (𝑉 × 𝑉)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qusin.s | . . . . 5 ⊢ (𝜑 → ( ∼ “ 𝑉) ⊆ 𝑉) | |
2 | ecinxp 8852 | . . . . 5 ⊢ ((( ∼ “ 𝑉) ⊆ 𝑉 ∧ 𝑥 ∈ 𝑉) → [𝑥] ∼ = [𝑥]( ∼ ∩ (𝑉 × 𝑉))) | |
3 | 1, 2 | sylan 579 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → [𝑥] ∼ = [𝑥]( ∼ ∩ (𝑉 × 𝑉))) |
4 | 3 | mpteq2dva 5266 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) = (𝑥 ∈ 𝑉 ↦ [𝑥]( ∼ ∩ (𝑉 × 𝑉)))) |
5 | 4 | oveq1d 7465 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) “s 𝑅) = ((𝑥 ∈ 𝑉 ↦ [𝑥]( ∼ ∩ (𝑉 × 𝑉))) “s 𝑅)) |
6 | qusin.u | . . 3 ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) | |
7 | qusin.v | . . 3 ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) | |
8 | eqid 2740 | . . 3 ⊢ (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) | |
9 | qusin.e | . . 3 ⊢ (𝜑 → ∼ ∈ 𝑊) | |
10 | qusin.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑍) | |
11 | 6, 7, 8, 9, 10 | qusval 17604 | . 2 ⊢ (𝜑 → 𝑈 = ((𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) “s 𝑅)) |
12 | eqidd 2741 | . . 3 ⊢ (𝜑 → (𝑅 /s ( ∼ ∩ (𝑉 × 𝑉))) = (𝑅 /s ( ∼ ∩ (𝑉 × 𝑉)))) | |
13 | eqid 2740 | . . 3 ⊢ (𝑥 ∈ 𝑉 ↦ [𝑥]( ∼ ∩ (𝑉 × 𝑉))) = (𝑥 ∈ 𝑉 ↦ [𝑥]( ∼ ∩ (𝑉 × 𝑉))) | |
14 | inex1g 5337 | . . . 4 ⊢ ( ∼ ∈ 𝑊 → ( ∼ ∩ (𝑉 × 𝑉)) ∈ V) | |
15 | 9, 14 | syl 17 | . . 3 ⊢ (𝜑 → ( ∼ ∩ (𝑉 × 𝑉)) ∈ V) |
16 | 12, 7, 13, 15, 10 | qusval 17604 | . 2 ⊢ (𝜑 → (𝑅 /s ( ∼ ∩ (𝑉 × 𝑉))) = ((𝑥 ∈ 𝑉 ↦ [𝑥]( ∼ ∩ (𝑉 × 𝑉))) “s 𝑅)) |
17 | 5, 11, 16 | 3eqtr4d 2790 | 1 ⊢ (𝜑 → 𝑈 = (𝑅 /s ( ∼ ∩ (𝑉 × 𝑉)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∩ cin 3975 ⊆ wss 3976 ↦ cmpt 5249 × cxp 5698 “ cima 5703 ‘cfv 6575 (class class class)co 7450 [cec 8763 Basecbs 17260 “s cimas 17566 /s cqus 17567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6527 df-fun 6577 df-fv 6583 df-ov 7453 df-oprab 7454 df-mpo 7455 df-ec 8767 df-qus 17571 |
This theorem is referenced by: pi1addf 25101 pi1addval 25102 pi1grplem 25103 |
Copyright terms: Public domain | W3C validator |