Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > qusin | Structured version Visualization version GIF version |
Description: Restrict the equivalence relation in a quotient structure to the base set. (Contributed by Mario Carneiro, 23-Feb-2015.) |
Ref | Expression |
---|---|
qusin.u | ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) |
qusin.v | ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
qusin.e | ⊢ (𝜑 → ∼ ∈ 𝑊) |
qusin.r | ⊢ (𝜑 → 𝑅 ∈ 𝑍) |
qusin.s | ⊢ (𝜑 → ( ∼ “ 𝑉) ⊆ 𝑉) |
Ref | Expression |
---|---|
qusin | ⊢ (𝜑 → 𝑈 = (𝑅 /s ( ∼ ∩ (𝑉 × 𝑉)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qusin.s | . . . . 5 ⊢ (𝜑 → ( ∼ “ 𝑉) ⊆ 𝑉) | |
2 | ecinxp 8539 | . . . . 5 ⊢ ((( ∼ “ 𝑉) ⊆ 𝑉 ∧ 𝑥 ∈ 𝑉) → [𝑥] ∼ = [𝑥]( ∼ ∩ (𝑉 × 𝑉))) | |
3 | 1, 2 | sylan 579 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → [𝑥] ∼ = [𝑥]( ∼ ∩ (𝑉 × 𝑉))) |
4 | 3 | mpteq2dva 5170 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) = (𝑥 ∈ 𝑉 ↦ [𝑥]( ∼ ∩ (𝑉 × 𝑉)))) |
5 | 4 | oveq1d 7270 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) “s 𝑅) = ((𝑥 ∈ 𝑉 ↦ [𝑥]( ∼ ∩ (𝑉 × 𝑉))) “s 𝑅)) |
6 | qusin.u | . . 3 ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) | |
7 | qusin.v | . . 3 ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) | |
8 | eqid 2738 | . . 3 ⊢ (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) | |
9 | qusin.e | . . 3 ⊢ (𝜑 → ∼ ∈ 𝑊) | |
10 | qusin.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑍) | |
11 | 6, 7, 8, 9, 10 | qusval 17170 | . 2 ⊢ (𝜑 → 𝑈 = ((𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) “s 𝑅)) |
12 | eqidd 2739 | . . 3 ⊢ (𝜑 → (𝑅 /s ( ∼ ∩ (𝑉 × 𝑉))) = (𝑅 /s ( ∼ ∩ (𝑉 × 𝑉)))) | |
13 | eqid 2738 | . . 3 ⊢ (𝑥 ∈ 𝑉 ↦ [𝑥]( ∼ ∩ (𝑉 × 𝑉))) = (𝑥 ∈ 𝑉 ↦ [𝑥]( ∼ ∩ (𝑉 × 𝑉))) | |
14 | inex1g 5238 | . . . 4 ⊢ ( ∼ ∈ 𝑊 → ( ∼ ∩ (𝑉 × 𝑉)) ∈ V) | |
15 | 9, 14 | syl 17 | . . 3 ⊢ (𝜑 → ( ∼ ∩ (𝑉 × 𝑉)) ∈ V) |
16 | 12, 7, 13, 15, 10 | qusval 17170 | . 2 ⊢ (𝜑 → (𝑅 /s ( ∼ ∩ (𝑉 × 𝑉))) = ((𝑥 ∈ 𝑉 ↦ [𝑥]( ∼ ∩ (𝑉 × 𝑉))) “s 𝑅)) |
17 | 5, 11, 16 | 3eqtr4d 2788 | 1 ⊢ (𝜑 → 𝑈 = (𝑅 /s ( ∼ ∩ (𝑉 × 𝑉)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∩ cin 3882 ⊆ wss 3883 ↦ cmpt 5153 × cxp 5578 “ cima 5583 ‘cfv 6418 (class class class)co 7255 [cec 8454 Basecbs 16840 “s cimas 17132 /s cqus 17133 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-ec 8458 df-qus 17137 |
This theorem is referenced by: pi1addf 24116 pi1addval 24117 pi1grplem 24118 |
Copyright terms: Public domain | W3C validator |