MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulcomsr Structured version   Visualization version   GIF version

Theorem mulcomsr 10499
Description: Multiplication of signed reals is commutative. (Contributed by NM, 31-Aug-1995.) (Revised by Mario Carneiro, 28-Apr-2015.) (New usage is discouraged.)
Assertion
Ref Expression
mulcomsr (𝐴 ·R 𝐵) = (𝐵 ·R 𝐴)

Proof of Theorem mulcomsr
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 10466 . . 3 R = ((P × P) / ~R )
2 mulsrpr 10486 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑧, 𝑤⟩] ~R ) = [⟨((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)), ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))⟩] ~R )
3 mulsrpr 10486 . . 3 (((𝑧P𝑤P) ∧ (𝑥P𝑦P)) → ([⟨𝑧, 𝑤⟩] ~R ·R [⟨𝑥, 𝑦⟩] ~R ) = [⟨((𝑧 ·P 𝑥) +P (𝑤 ·P 𝑦)), ((𝑧 ·P 𝑦) +P (𝑤 ·P 𝑥))⟩] ~R )
4 mulcompr 10433 . . . 4 (𝑥 ·P 𝑧) = (𝑧 ·P 𝑥)
5 mulcompr 10433 . . . 4 (𝑦 ·P 𝑤) = (𝑤 ·P 𝑦)
64, 5oveq12i 7157 . . 3 ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) = ((𝑧 ·P 𝑥) +P (𝑤 ·P 𝑦))
7 mulcompr 10433 . . . . 5 (𝑥 ·P 𝑤) = (𝑤 ·P 𝑥)
8 mulcompr 10433 . . . . 5 (𝑦 ·P 𝑧) = (𝑧 ·P 𝑦)
97, 8oveq12i 7157 . . . 4 ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) = ((𝑤 ·P 𝑥) +P (𝑧 ·P 𝑦))
10 addcompr 10431 . . . 4 ((𝑤 ·P 𝑥) +P (𝑧 ·P 𝑦)) = ((𝑧 ·P 𝑦) +P (𝑤 ·P 𝑥))
119, 10eqtri 2841 . . 3 ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) = ((𝑧 ·P 𝑦) +P (𝑤 ·P 𝑥))
121, 2, 3, 6, 11ecovcom 8392 . 2 ((𝐴R𝐵R) → (𝐴 ·R 𝐵) = (𝐵 ·R 𝐴))
13 dmmulsr 10496 . . 3 dom ·R = (R × R)
1413ndmovcom 7324 . 2 (¬ (𝐴R𝐵R) → (𝐴 ·R 𝐵) = (𝐵 ·R 𝐴))
1512, 14pm2.61i 183 1 (𝐴 ·R 𝐵) = (𝐵 ·R 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1528  wcel 2105  (class class class)co 7145  Pcnp 10269   +P cpp 10271   ·P cmp 10272   ~R cer 10274  Rcnr 10275   ·R cmr 10280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-inf2 9092
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-omul 8096  df-er 8278  df-ec 8280  df-qs 8284  df-ni 10282  df-pli 10283  df-mi 10284  df-lti 10285  df-plpq 10318  df-mpq 10319  df-ltpq 10320  df-enq 10321  df-nq 10322  df-erq 10323  df-plq 10324  df-mq 10325  df-1nq 10326  df-rq 10327  df-ltnq 10328  df-np 10391  df-plp 10393  df-mp 10394  df-ltp 10395  df-enr 10465  df-nr 10466  df-mr 10468
This theorem is referenced by:  sqgt0sr  10516  mulresr  10549  axmulcom  10565  axmulass  10567  axcnre  10574
  Copyright terms: Public domain W3C validator