MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulcomsr Structured version   Visualization version   GIF version

Theorem mulcomsr 11158
Description: Multiplication of signed reals is commutative. (Contributed by NM, 31-Aug-1995.) (Revised by Mario Carneiro, 28-Apr-2015.) (New usage is discouraged.)
Assertion
Ref Expression
mulcomsr (𝐴 ·R 𝐵) = (𝐵 ·R 𝐴)

Proof of Theorem mulcomsr
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 11125 . . 3 R = ((P × P) / ~R )
2 mulsrpr 11145 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑧, 𝑤⟩] ~R ) = [⟨((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)), ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))⟩] ~R )
3 mulsrpr 11145 . . 3 (((𝑧P𝑤P) ∧ (𝑥P𝑦P)) → ([⟨𝑧, 𝑤⟩] ~R ·R [⟨𝑥, 𝑦⟩] ~R ) = [⟨((𝑧 ·P 𝑥) +P (𝑤 ·P 𝑦)), ((𝑧 ·P 𝑦) +P (𝑤 ·P 𝑥))⟩] ~R )
4 mulcompr 11092 . . . 4 (𝑥 ·P 𝑧) = (𝑧 ·P 𝑥)
5 mulcompr 11092 . . . 4 (𝑦 ·P 𝑤) = (𝑤 ·P 𝑦)
64, 5oveq12i 7460 . . 3 ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) = ((𝑧 ·P 𝑥) +P (𝑤 ·P 𝑦))
7 mulcompr 11092 . . . . 5 (𝑥 ·P 𝑤) = (𝑤 ·P 𝑥)
8 mulcompr 11092 . . . . 5 (𝑦 ·P 𝑧) = (𝑧 ·P 𝑦)
97, 8oveq12i 7460 . . . 4 ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) = ((𝑤 ·P 𝑥) +P (𝑧 ·P 𝑦))
10 addcompr 11090 . . . 4 ((𝑤 ·P 𝑥) +P (𝑧 ·P 𝑦)) = ((𝑧 ·P 𝑦) +P (𝑤 ·P 𝑥))
119, 10eqtri 2768 . . 3 ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) = ((𝑧 ·P 𝑦) +P (𝑤 ·P 𝑥))
121, 2, 3, 6, 11ecovcom 8881 . 2 ((𝐴R𝐵R) → (𝐴 ·R 𝐵) = (𝐵 ·R 𝐴))
13 dmmulsr 11155 . . 3 dom ·R = (R × R)
1413ndmovcom 7637 . 2 (¬ (𝐴R𝐵R) → (𝐴 ·R 𝐵) = (𝐵 ·R 𝐴))
1512, 14pm2.61i 182 1 (𝐴 ·R 𝐵) = (𝐵 ·R 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1537  wcel 2108  (class class class)co 7448  Pcnp 10928   +P cpp 10930   ·P cmp 10931   ~R cer 10933  Rcnr 10934   ·R cmr 10939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-omul 8527  df-er 8763  df-ec 8765  df-qs 8769  df-ni 10941  df-pli 10942  df-mi 10943  df-lti 10944  df-plpq 10977  df-mpq 10978  df-ltpq 10979  df-enq 10980  df-nq 10981  df-erq 10982  df-plq 10983  df-mq 10984  df-1nq 10985  df-rq 10986  df-ltnq 10987  df-np 11050  df-plp 11052  df-mp 11053  df-ltp 11054  df-enr 11124  df-nr 11125  df-mr 11127
This theorem is referenced by:  sqgt0sr  11175  mulresr  11208  axmulcom  11224  axmulass  11226  axcnre  11233
  Copyright terms: Public domain W3C validator