Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mulcomsr | Structured version Visualization version GIF version |
Description: Multiplication of signed reals is commutative. (Contributed by NM, 31-Aug-1995.) (Revised by Mario Carneiro, 28-Apr-2015.) (New usage is discouraged.) |
Ref | Expression |
---|---|
mulcomsr | ⊢ (𝐴 ·R 𝐵) = (𝐵 ·R 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nr 10892 | . . 3 ⊢ R = ((P × P) / ~R ) | |
2 | mulsrpr 10912 | . . 3 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) → ([〈𝑥, 𝑦〉] ~R ·R [〈𝑧, 𝑤〉] ~R ) = [〈((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)), ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))〉] ~R ) | |
3 | mulsrpr 10912 | . . 3 ⊢ (((𝑧 ∈ P ∧ 𝑤 ∈ P) ∧ (𝑥 ∈ P ∧ 𝑦 ∈ P)) → ([〈𝑧, 𝑤〉] ~R ·R [〈𝑥, 𝑦〉] ~R ) = [〈((𝑧 ·P 𝑥) +P (𝑤 ·P 𝑦)), ((𝑧 ·P 𝑦) +P (𝑤 ·P 𝑥))〉] ~R ) | |
4 | mulcompr 10859 | . . . 4 ⊢ (𝑥 ·P 𝑧) = (𝑧 ·P 𝑥) | |
5 | mulcompr 10859 | . . . 4 ⊢ (𝑦 ·P 𝑤) = (𝑤 ·P 𝑦) | |
6 | 4, 5 | oveq12i 7329 | . . 3 ⊢ ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) = ((𝑧 ·P 𝑥) +P (𝑤 ·P 𝑦)) |
7 | mulcompr 10859 | . . . . 5 ⊢ (𝑥 ·P 𝑤) = (𝑤 ·P 𝑥) | |
8 | mulcompr 10859 | . . . . 5 ⊢ (𝑦 ·P 𝑧) = (𝑧 ·P 𝑦) | |
9 | 7, 8 | oveq12i 7329 | . . . 4 ⊢ ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) = ((𝑤 ·P 𝑥) +P (𝑧 ·P 𝑦)) |
10 | addcompr 10857 | . . . 4 ⊢ ((𝑤 ·P 𝑥) +P (𝑧 ·P 𝑦)) = ((𝑧 ·P 𝑦) +P (𝑤 ·P 𝑥)) | |
11 | 9, 10 | eqtri 2765 | . . 3 ⊢ ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) = ((𝑧 ·P 𝑦) +P (𝑤 ·P 𝑥)) |
12 | 1, 2, 3, 6, 11 | ecovcom 8662 | . 2 ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (𝐴 ·R 𝐵) = (𝐵 ·R 𝐴)) |
13 | dmmulsr 10922 | . . 3 ⊢ dom ·R = (R × R) | |
14 | 13 | ndmovcom 7501 | . 2 ⊢ (¬ (𝐴 ∈ R ∧ 𝐵 ∈ R) → (𝐴 ·R 𝐵) = (𝐵 ·R 𝐴)) |
15 | 12, 14 | pm2.61i 182 | 1 ⊢ (𝐴 ·R 𝐵) = (𝐵 ·R 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1540 ∈ wcel 2105 (class class class)co 7317 Pcnp 10695 +P cpp 10697 ·P cmp 10698 ~R cer 10700 Rcnr 10701 ·R cmr 10706 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7630 ax-inf2 9477 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-int 4893 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5563 df-we 5565 df-xp 5614 df-rel 5615 df-cnv 5616 df-co 5617 df-dm 5618 df-rn 5619 df-res 5620 df-ima 5621 df-pred 6225 df-ord 6292 df-on 6293 df-lim 6294 df-suc 6295 df-iota 6418 df-fun 6468 df-fn 6469 df-f 6470 df-f1 6471 df-fo 6472 df-f1o 6473 df-fv 6474 df-ov 7320 df-oprab 7321 df-mpo 7322 df-om 7760 df-1st 7878 df-2nd 7879 df-frecs 8146 df-wrecs 8177 df-recs 8251 df-rdg 8290 df-1o 8346 df-oadd 8350 df-omul 8351 df-er 8548 df-ec 8550 df-qs 8554 df-ni 10708 df-pli 10709 df-mi 10710 df-lti 10711 df-plpq 10744 df-mpq 10745 df-ltpq 10746 df-enq 10747 df-nq 10748 df-erq 10749 df-plq 10750 df-mq 10751 df-1nq 10752 df-rq 10753 df-ltnq 10754 df-np 10817 df-plp 10819 df-mp 10820 df-ltp 10821 df-enr 10891 df-nr 10892 df-mr 10894 |
This theorem is referenced by: sqgt0sr 10942 mulresr 10975 axmulcom 10991 axmulass 10993 axcnre 11000 |
Copyright terms: Public domain | W3C validator |