| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulcomsr | Structured version Visualization version GIF version | ||
| Description: Multiplication of signed reals is commutative. (Contributed by NM, 31-Aug-1995.) (Revised by Mario Carneiro, 28-Apr-2015.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| mulcomsr | ⊢ (𝐴 ·R 𝐵) = (𝐵 ·R 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nr 10954 | . . 3 ⊢ R = ((P × P) / ~R ) | |
| 2 | mulsrpr 10974 | . . 3 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) → ([〈𝑥, 𝑦〉] ~R ·R [〈𝑧, 𝑤〉] ~R ) = [〈((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)), ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))〉] ~R ) | |
| 3 | mulsrpr 10974 | . . 3 ⊢ (((𝑧 ∈ P ∧ 𝑤 ∈ P) ∧ (𝑥 ∈ P ∧ 𝑦 ∈ P)) → ([〈𝑧, 𝑤〉] ~R ·R [〈𝑥, 𝑦〉] ~R ) = [〈((𝑧 ·P 𝑥) +P (𝑤 ·P 𝑦)), ((𝑧 ·P 𝑦) +P (𝑤 ·P 𝑥))〉] ~R ) | |
| 4 | mulcompr 10921 | . . . 4 ⊢ (𝑥 ·P 𝑧) = (𝑧 ·P 𝑥) | |
| 5 | mulcompr 10921 | . . . 4 ⊢ (𝑦 ·P 𝑤) = (𝑤 ·P 𝑦) | |
| 6 | 4, 5 | oveq12i 7364 | . . 3 ⊢ ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) = ((𝑧 ·P 𝑥) +P (𝑤 ·P 𝑦)) |
| 7 | mulcompr 10921 | . . . . 5 ⊢ (𝑥 ·P 𝑤) = (𝑤 ·P 𝑥) | |
| 8 | mulcompr 10921 | . . . . 5 ⊢ (𝑦 ·P 𝑧) = (𝑧 ·P 𝑦) | |
| 9 | 7, 8 | oveq12i 7364 | . . . 4 ⊢ ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) = ((𝑤 ·P 𝑥) +P (𝑧 ·P 𝑦)) |
| 10 | addcompr 10919 | . . . 4 ⊢ ((𝑤 ·P 𝑥) +P (𝑧 ·P 𝑦)) = ((𝑧 ·P 𝑦) +P (𝑤 ·P 𝑥)) | |
| 11 | 9, 10 | eqtri 2756 | . . 3 ⊢ ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) = ((𝑧 ·P 𝑦) +P (𝑤 ·P 𝑥)) |
| 12 | 1, 2, 3, 6, 11 | ecovcom 8753 | . 2 ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (𝐴 ·R 𝐵) = (𝐵 ·R 𝐴)) |
| 13 | dmmulsr 10984 | . . 3 ⊢ dom ·R = (R × R) | |
| 14 | 13 | ndmovcom 7539 | . 2 ⊢ (¬ (𝐴 ∈ R ∧ 𝐵 ∈ R) → (𝐴 ·R 𝐵) = (𝐵 ·R 𝐴)) |
| 15 | 12, 14 | pm2.61i 182 | 1 ⊢ (𝐴 ·R 𝐵) = (𝐵 ·R 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2113 (class class class)co 7352 Pcnp 10757 +P cpp 10759 ·P cmp 10760 ~R cer 10762 Rcnr 10763 ·R cmr 10768 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-inf2 9538 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-oadd 8395 df-omul 8396 df-er 8628 df-ec 8630 df-qs 8634 df-ni 10770 df-pli 10771 df-mi 10772 df-lti 10773 df-plpq 10806 df-mpq 10807 df-ltpq 10808 df-enq 10809 df-nq 10810 df-erq 10811 df-plq 10812 df-mq 10813 df-1nq 10814 df-rq 10815 df-ltnq 10816 df-np 10879 df-plp 10881 df-mp 10882 df-ltp 10883 df-enr 10953 df-nr 10954 df-mr 10956 |
| This theorem is referenced by: sqgt0sr 11004 mulresr 11037 axmulcom 11053 axmulass 11055 axcnre 11062 |
| Copyright terms: Public domain | W3C validator |