| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulcomsr | Structured version Visualization version GIF version | ||
| Description: Multiplication of signed reals is commutative. (Contributed by NM, 31-Aug-1995.) (Revised by Mario Carneiro, 28-Apr-2015.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| mulcomsr | ⊢ (𝐴 ·R 𝐵) = (𝐵 ·R 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nr 10969 | . . 3 ⊢ R = ((P × P) / ~R ) | |
| 2 | mulsrpr 10989 | . . 3 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) → ([〈𝑥, 𝑦〉] ~R ·R [〈𝑧, 𝑤〉] ~R ) = [〈((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)), ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))〉] ~R ) | |
| 3 | mulsrpr 10989 | . . 3 ⊢ (((𝑧 ∈ P ∧ 𝑤 ∈ P) ∧ (𝑥 ∈ P ∧ 𝑦 ∈ P)) → ([〈𝑧, 𝑤〉] ~R ·R [〈𝑥, 𝑦〉] ~R ) = [〈((𝑧 ·P 𝑥) +P (𝑤 ·P 𝑦)), ((𝑧 ·P 𝑦) +P (𝑤 ·P 𝑥))〉] ~R ) | |
| 4 | mulcompr 10936 | . . . 4 ⊢ (𝑥 ·P 𝑧) = (𝑧 ·P 𝑥) | |
| 5 | mulcompr 10936 | . . . 4 ⊢ (𝑦 ·P 𝑤) = (𝑤 ·P 𝑦) | |
| 6 | 4, 5 | oveq12i 7365 | . . 3 ⊢ ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) = ((𝑧 ·P 𝑥) +P (𝑤 ·P 𝑦)) |
| 7 | mulcompr 10936 | . . . . 5 ⊢ (𝑥 ·P 𝑤) = (𝑤 ·P 𝑥) | |
| 8 | mulcompr 10936 | . . . . 5 ⊢ (𝑦 ·P 𝑧) = (𝑧 ·P 𝑦) | |
| 9 | 7, 8 | oveq12i 7365 | . . . 4 ⊢ ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) = ((𝑤 ·P 𝑥) +P (𝑧 ·P 𝑦)) |
| 10 | addcompr 10934 | . . . 4 ⊢ ((𝑤 ·P 𝑥) +P (𝑧 ·P 𝑦)) = ((𝑧 ·P 𝑦) +P (𝑤 ·P 𝑥)) | |
| 11 | 9, 10 | eqtri 2752 | . . 3 ⊢ ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) = ((𝑧 ·P 𝑦) +P (𝑤 ·P 𝑥)) |
| 12 | 1, 2, 3, 6, 11 | ecovcom 8757 | . 2 ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (𝐴 ·R 𝐵) = (𝐵 ·R 𝐴)) |
| 13 | dmmulsr 10999 | . . 3 ⊢ dom ·R = (R × R) | |
| 14 | 13 | ndmovcom 7540 | . 2 ⊢ (¬ (𝐴 ∈ R ∧ 𝐵 ∈ R) → (𝐴 ·R 𝐵) = (𝐵 ·R 𝐴)) |
| 15 | 12, 14 | pm2.61i 182 | 1 ⊢ (𝐴 ·R 𝐵) = (𝐵 ·R 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 (class class class)co 7353 Pcnp 10772 +P cpp 10774 ·P cmp 10775 ~R cer 10777 Rcnr 10778 ·R cmr 10783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-inf2 9556 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-oadd 8399 df-omul 8400 df-er 8632 df-ec 8634 df-qs 8638 df-ni 10785 df-pli 10786 df-mi 10787 df-lti 10788 df-plpq 10821 df-mpq 10822 df-ltpq 10823 df-enq 10824 df-nq 10825 df-erq 10826 df-plq 10827 df-mq 10828 df-1nq 10829 df-rq 10830 df-ltnq 10831 df-np 10894 df-plp 10896 df-mp 10897 df-ltp 10898 df-enr 10968 df-nr 10969 df-mr 10971 |
| This theorem is referenced by: sqgt0sr 11019 mulresr 11052 axmulcom 11068 axmulass 11070 axcnre 11077 |
| Copyright terms: Public domain | W3C validator |