![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > addcomsr | Structured version Visualization version GIF version |
Description: Addition of signed reals is commutative. (Contributed by NM, 31-Aug-1995.) (Revised by Mario Carneiro, 28-Apr-2015.) (New usage is discouraged.) |
Ref | Expression |
---|---|
addcomsr | ⊢ (𝐴 +R 𝐵) = (𝐵 +R 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nr 11053 | . . 3 ⊢ R = ((P × P) / ~R ) | |
2 | addsrpr 11072 | . . 3 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) → ([⟨𝑥, 𝑦⟩] ~R +R [⟨𝑧, 𝑤⟩] ~R ) = [⟨(𝑥 +P 𝑧), (𝑦 +P 𝑤)⟩] ~R ) | |
3 | addsrpr 11072 | . . 3 ⊢ (((𝑧 ∈ P ∧ 𝑤 ∈ P) ∧ (𝑥 ∈ P ∧ 𝑦 ∈ P)) → ([⟨𝑧, 𝑤⟩] ~R +R [⟨𝑥, 𝑦⟩] ~R ) = [⟨(𝑧 +P 𝑥), (𝑤 +P 𝑦)⟩] ~R ) | |
4 | addcompr 11018 | . . 3 ⊢ (𝑥 +P 𝑧) = (𝑧 +P 𝑥) | |
5 | addcompr 11018 | . . 3 ⊢ (𝑦 +P 𝑤) = (𝑤 +P 𝑦) | |
6 | 1, 2, 3, 4, 5 | ecovcom 8819 | . 2 ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (𝐴 +R 𝐵) = (𝐵 +R 𝐴)) |
7 | dmaddsr 11082 | . . 3 ⊢ dom +R = (R × R) | |
8 | 7 | ndmovcom 7596 | . 2 ⊢ (¬ (𝐴 ∈ R ∧ 𝐵 ∈ R) → (𝐴 +R 𝐵) = (𝐵 +R 𝐴)) |
9 | 6, 8 | pm2.61i 182 | 1 ⊢ (𝐴 +R 𝐵) = (𝐵 +R 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 394 = wceq 1539 ∈ wcel 2104 (class class class)co 7411 Pcnp 10856 +P cpp 10858 ~R cer 10861 Rcnr 10862 +R cplr 10866 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-inf2 9638 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-oadd 8472 df-omul 8473 df-er 8705 df-ec 8707 df-qs 8711 df-ni 10869 df-pli 10870 df-mi 10871 df-lti 10872 df-plpq 10905 df-mpq 10906 df-ltpq 10907 df-enq 10908 df-nq 10909 df-erq 10910 df-plq 10911 df-mq 10912 df-1nq 10913 df-rq 10914 df-ltnq 10915 df-np 10978 df-plp 10980 df-ltp 10982 df-enr 11052 df-nr 11053 df-plr 11054 |
This theorem is referenced by: pn0sr 11098 sqgt0sr 11103 map2psrpr 11107 axmulcom 11152 axmulass 11154 axdistr 11155 axi2m1 11156 axcnre 11161 |
Copyright terms: Public domain | W3C validator |