![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > addcomsr | Structured version Visualization version GIF version |
Description: Addition of signed reals is commutative. (Contributed by NM, 31-Aug-1995.) (Revised by Mario Carneiro, 28-Apr-2015.) (New usage is discouraged.) |
Ref | Expression |
---|---|
addcomsr | ⊢ (𝐴 +R 𝐵) = (𝐵 +R 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nr 11125 | . . 3 ⊢ R = ((P × P) / ~R ) | |
2 | addsrpr 11144 | . . 3 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) → ([〈𝑥, 𝑦〉] ~R +R [〈𝑧, 𝑤〉] ~R ) = [〈(𝑥 +P 𝑧), (𝑦 +P 𝑤)〉] ~R ) | |
3 | addsrpr 11144 | . . 3 ⊢ (((𝑧 ∈ P ∧ 𝑤 ∈ P) ∧ (𝑥 ∈ P ∧ 𝑦 ∈ P)) → ([〈𝑧, 𝑤〉] ~R +R [〈𝑥, 𝑦〉] ~R ) = [〈(𝑧 +P 𝑥), (𝑤 +P 𝑦)〉] ~R ) | |
4 | addcompr 11090 | . . 3 ⊢ (𝑥 +P 𝑧) = (𝑧 +P 𝑥) | |
5 | addcompr 11090 | . . 3 ⊢ (𝑦 +P 𝑤) = (𝑤 +P 𝑦) | |
6 | 1, 2, 3, 4, 5 | ecovcom 8881 | . 2 ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (𝐴 +R 𝐵) = (𝐵 +R 𝐴)) |
7 | dmaddsr 11154 | . . 3 ⊢ dom +R = (R × R) | |
8 | 7 | ndmovcom 7637 | . 2 ⊢ (¬ (𝐴 ∈ R ∧ 𝐵 ∈ R) → (𝐴 +R 𝐵) = (𝐵 +R 𝐴)) |
9 | 6, 8 | pm2.61i 182 | 1 ⊢ (𝐴 +R 𝐵) = (𝐵 +R 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ∈ wcel 2108 (class class class)co 7448 Pcnp 10928 +P cpp 10930 ~R cer 10933 Rcnr 10934 +R cplr 10938 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-oadd 8526 df-omul 8527 df-er 8763 df-ec 8765 df-qs 8769 df-ni 10941 df-pli 10942 df-mi 10943 df-lti 10944 df-plpq 10977 df-mpq 10978 df-ltpq 10979 df-enq 10980 df-nq 10981 df-erq 10982 df-plq 10983 df-mq 10984 df-1nq 10985 df-rq 10986 df-ltnq 10987 df-np 11050 df-plp 11052 df-ltp 11054 df-enr 11124 df-nr 11125 df-plr 11126 |
This theorem is referenced by: pn0sr 11170 sqgt0sr 11175 map2psrpr 11179 axmulcom 11224 axmulass 11226 axdistr 11227 axi2m1 11228 axcnre 11233 |
Copyright terms: Public domain | W3C validator |