![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > addcomsr | Structured version Visualization version GIF version |
Description: Addition of signed reals is commutative. (Contributed by NM, 31-Aug-1995.) (Revised by Mario Carneiro, 28-Apr-2015.) (New usage is discouraged.) |
Ref | Expression |
---|---|
addcomsr | ⊢ (𝐴 +R 𝐵) = (𝐵 +R 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nr 11071 | . . 3 ⊢ R = ((P × P) / ~R ) | |
2 | addsrpr 11090 | . . 3 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) → ([〈𝑥, 𝑦〉] ~R +R [〈𝑧, 𝑤〉] ~R ) = [〈(𝑥 +P 𝑧), (𝑦 +P 𝑤)〉] ~R ) | |
3 | addsrpr 11090 | . . 3 ⊢ (((𝑧 ∈ P ∧ 𝑤 ∈ P) ∧ (𝑥 ∈ P ∧ 𝑦 ∈ P)) → ([〈𝑧, 𝑤〉] ~R +R [〈𝑥, 𝑦〉] ~R ) = [〈(𝑧 +P 𝑥), (𝑤 +P 𝑦)〉] ~R ) | |
4 | addcompr 11036 | . . 3 ⊢ (𝑥 +P 𝑧) = (𝑧 +P 𝑥) | |
5 | addcompr 11036 | . . 3 ⊢ (𝑦 +P 𝑤) = (𝑤 +P 𝑦) | |
6 | 1, 2, 3, 4, 5 | ecovcom 8833 | . 2 ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (𝐴 +R 𝐵) = (𝐵 +R 𝐴)) |
7 | dmaddsr 11100 | . . 3 ⊢ dom +R = (R × R) | |
8 | 7 | ndmovcom 7602 | . 2 ⊢ (¬ (𝐴 ∈ R ∧ 𝐵 ∈ R) → (𝐴 +R 𝐵) = (𝐵 +R 𝐴)) |
9 | 6, 8 | pm2.61i 182 | 1 ⊢ (𝐴 +R 𝐵) = (𝐵 +R 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1534 ∈ wcel 2099 (class class class)co 7414 Pcnp 10874 +P cpp 10876 ~R cer 10879 Rcnr 10880 +R cplr 10884 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-inf2 9656 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-oadd 8484 df-omul 8485 df-er 8718 df-ec 8720 df-qs 8724 df-ni 10887 df-pli 10888 df-mi 10889 df-lti 10890 df-plpq 10923 df-mpq 10924 df-ltpq 10925 df-enq 10926 df-nq 10927 df-erq 10928 df-plq 10929 df-mq 10930 df-1nq 10931 df-rq 10932 df-ltnq 10933 df-np 10996 df-plp 10998 df-ltp 11000 df-enr 11070 df-nr 11071 df-plr 11072 |
This theorem is referenced by: pn0sr 11116 sqgt0sr 11121 map2psrpr 11125 axmulcom 11170 axmulass 11172 axdistr 11173 axi2m1 11174 axcnre 11179 |
Copyright terms: Public domain | W3C validator |