MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addcomsr Structured version   Visualization version   GIF version

Theorem addcomsr 10978
Description: Addition of signed reals is commutative. (Contributed by NM, 31-Aug-1995.) (Revised by Mario Carneiro, 28-Apr-2015.) (New usage is discouraged.)
Assertion
Ref Expression
addcomsr (𝐴 +R 𝐵) = (𝐵 +R 𝐴)

Proof of Theorem addcomsr
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 10947 . . 3 R = ((P × P) / ~R )
2 addsrpr 10966 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑥, 𝑦⟩] ~R +R [⟨𝑧, 𝑤⟩] ~R ) = [⟨(𝑥 +P 𝑧), (𝑦 +P 𝑤)⟩] ~R )
3 addsrpr 10966 . . 3 (((𝑧P𝑤P) ∧ (𝑥P𝑦P)) → ([⟨𝑧, 𝑤⟩] ~R +R [⟨𝑥, 𝑦⟩] ~R ) = [⟨(𝑧 +P 𝑥), (𝑤 +P 𝑦)⟩] ~R )
4 addcompr 10912 . . 3 (𝑥 +P 𝑧) = (𝑧 +P 𝑥)
5 addcompr 10912 . . 3 (𝑦 +P 𝑤) = (𝑤 +P 𝑦)
61, 2, 3, 4, 5ecovcom 8747 . 2 ((𝐴R𝐵R) → (𝐴 +R 𝐵) = (𝐵 +R 𝐴))
7 dmaddsr 10976 . . 3 dom +R = (R × R)
87ndmovcom 7533 . 2 (¬ (𝐴R𝐵R) → (𝐴 +R 𝐵) = (𝐵 +R 𝐴))
96, 8pm2.61i 182 1 (𝐴 +R 𝐵) = (𝐵 +R 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wcel 2111  (class class class)co 7346  Pcnp 10750   +P cpp 10752   ~R cer 10755  Rcnr 10756   +R cplr 10760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-oadd 8389  df-omul 8390  df-er 8622  df-ec 8624  df-qs 8628  df-ni 10763  df-pli 10764  df-mi 10765  df-lti 10766  df-plpq 10799  df-mpq 10800  df-ltpq 10801  df-enq 10802  df-nq 10803  df-erq 10804  df-plq 10805  df-mq 10806  df-1nq 10807  df-rq 10808  df-ltnq 10809  df-np 10872  df-plp 10874  df-ltp 10876  df-enr 10946  df-nr 10947  df-plr 10948
This theorem is referenced by:  pn0sr  10992  sqgt0sr  10997  map2psrpr  11001  axmulcom  11046  axmulass  11048  axdistr  11049  axi2m1  11050  axcnre  11055
  Copyright terms: Public domain W3C validator