Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > addcomsr | Structured version Visualization version GIF version |
Description: Addition of signed reals is commutative. (Contributed by NM, 31-Aug-1995.) (Revised by Mario Carneiro, 28-Apr-2015.) (New usage is discouraged.) |
Ref | Expression |
---|---|
addcomsr | ⊢ (𝐴 +R 𝐵) = (𝐵 +R 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nr 10517 | . . 3 ⊢ R = ((P × P) / ~R ) | |
2 | addsrpr 10536 | . . 3 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) → ([〈𝑥, 𝑦〉] ~R +R [〈𝑧, 𝑤〉] ~R ) = [〈(𝑥 +P 𝑧), (𝑦 +P 𝑤)〉] ~R ) | |
3 | addsrpr 10536 | . . 3 ⊢ (((𝑧 ∈ P ∧ 𝑤 ∈ P) ∧ (𝑥 ∈ P ∧ 𝑦 ∈ P)) → ([〈𝑧, 𝑤〉] ~R +R [〈𝑥, 𝑦〉] ~R ) = [〈(𝑧 +P 𝑥), (𝑤 +P 𝑦)〉] ~R ) | |
4 | addcompr 10482 | . . 3 ⊢ (𝑥 +P 𝑧) = (𝑧 +P 𝑥) | |
5 | addcompr 10482 | . . 3 ⊢ (𝑦 +P 𝑤) = (𝑤 +P 𝑦) | |
6 | 1, 2, 3, 4, 5 | ecovcom 8414 | . 2 ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (𝐴 +R 𝐵) = (𝐵 +R 𝐴)) |
7 | dmaddsr 10546 | . . 3 ⊢ dom +R = (R × R) | |
8 | 7 | ndmovcom 7332 | . 2 ⊢ (¬ (𝐴 ∈ R ∧ 𝐵 ∈ R) → (𝐴 +R 𝐵) = (𝐵 +R 𝐴)) |
9 | 6, 8 | pm2.61i 185 | 1 ⊢ (𝐴 +R 𝐵) = (𝐵 +R 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 400 = wceq 1539 ∈ wcel 2112 (class class class)co 7151 Pcnp 10320 +P cpp 10322 ~R cer 10325 Rcnr 10326 +R cplr 10330 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-inf2 9138 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-tp 4528 df-op 4530 df-uni 4800 df-int 4840 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-tr 5140 df-id 5431 df-eprel 5436 df-po 5444 df-so 5445 df-fr 5484 df-we 5486 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6127 df-ord 6173 df-on 6174 df-lim 6175 df-suc 6176 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-ov 7154 df-oprab 7155 df-mpo 7156 df-om 7581 df-1st 7694 df-2nd 7695 df-wrecs 7958 df-recs 8019 df-rdg 8057 df-1o 8113 df-oadd 8117 df-omul 8118 df-er 8300 df-ec 8302 df-qs 8306 df-ni 10333 df-pli 10334 df-mi 10335 df-lti 10336 df-plpq 10369 df-mpq 10370 df-ltpq 10371 df-enq 10372 df-nq 10373 df-erq 10374 df-plq 10375 df-mq 10376 df-1nq 10377 df-rq 10378 df-ltnq 10379 df-np 10442 df-plp 10444 df-ltp 10446 df-enr 10516 df-nr 10517 df-plr 10518 |
This theorem is referenced by: pn0sr 10562 sqgt0sr 10567 map2psrpr 10571 axmulcom 10616 axmulass 10618 axdistr 10619 axi2m1 10620 axcnre 10625 |
Copyright terms: Public domain | W3C validator |