![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ecref | Structured version Visualization version GIF version |
Description: All elements are in their own equivalence class. (Contributed by Thierry Arnoux, 14-Feb-2025.) |
Ref | Expression |
---|---|
ecref | ⊢ ((𝑅 Er 𝑋 ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ [𝐴]𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 483 | . . 3 ⊢ ((𝑅 Er 𝑋 ∧ 𝐴 ∈ 𝑋) → 𝑅 Er 𝑋) | |
2 | simpr 485 | . . 3 ⊢ ((𝑅 Er 𝑋 ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ 𝑋) | |
3 | 1, 2 | erref 8719 | . 2 ⊢ ((𝑅 Er 𝑋 ∧ 𝐴 ∈ 𝑋) → 𝐴𝑅𝐴) |
4 | elecg 8742 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐴 ∈ [𝐴]𝑅 ↔ 𝐴𝑅𝐴)) | |
5 | 2, 4 | sylancom 588 | . 2 ⊢ ((𝑅 Er 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐴 ∈ [𝐴]𝑅 ↔ 𝐴𝑅𝐴)) |
6 | 3, 5 | mpbird 256 | 1 ⊢ ((𝑅 Er 𝑋 ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ [𝐴]𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2106 class class class wbr 5147 Er wer 8696 [cec 8697 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-er 8699 df-ec 8701 |
This theorem is referenced by: ghmquskerlem1 32516 ghmquskerlem2 32518 qsdrnglem2 32598 |
Copyright terms: Public domain | W3C validator |