Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ecref Structured version   Visualization version   GIF version

Theorem ecref 31911
Description: All elements are in their own equivalence class. (Contributed by Thierry Arnoux, 14-Feb-2025.)
Assertion
Ref Expression
ecref ((𝑅 Er 𝑋𝐴𝑋) → 𝐴 ∈ [𝐴]𝑅)

Proof of Theorem ecref
StepHypRef Expression
1 simpl 484 . . 3 ((𝑅 Er 𝑋𝐴𝑋) → 𝑅 Er 𝑋)
2 simpr 486 . . 3 ((𝑅 Er 𝑋𝐴𝑋) → 𝐴𝑋)
31, 2erref 8719 . 2 ((𝑅 Er 𝑋𝐴𝑋) → 𝐴𝑅𝐴)
4 elecg 8742 . . 3 ((𝐴𝑋𝐴𝑋) → (𝐴 ∈ [𝐴]𝑅𝐴𝑅𝐴))
52, 4sylancom 589 . 2 ((𝑅 Er 𝑋𝐴𝑋) → (𝐴 ∈ [𝐴]𝑅𝐴𝑅𝐴))
63, 5mpbird 257 1 ((𝑅 Er 𝑋𝐴𝑋) → 𝐴 ∈ [𝐴]𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wcel 2107   class class class wbr 5147   Er wer 8696  [cec 8697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-br 5148  df-opab 5210  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-er 8699  df-ec 8701
This theorem is referenced by:  ghmquskerlem1  32491  ghmquskerlem2  32493  qsdrnglem2  32563
  Copyright terms: Public domain W3C validator