![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ecref | Structured version Visualization version GIF version |
Description: All elements are in their own equivalence class. (Contributed by Thierry Arnoux, 14-Feb-2025.) |
Ref | Expression |
---|---|
ecref | ⊢ ((𝑅 Er 𝑋 ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ [𝐴]𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . 3 ⊢ ((𝑅 Er 𝑋 ∧ 𝐴 ∈ 𝑋) → 𝑅 Er 𝑋) | |
2 | simpr 484 | . . 3 ⊢ ((𝑅 Er 𝑋 ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ 𝑋) | |
3 | 1, 2 | erref 8744 | . 2 ⊢ ((𝑅 Er 𝑋 ∧ 𝐴 ∈ 𝑋) → 𝐴𝑅𝐴) |
4 | elecg 8767 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐴 ∈ [𝐴]𝑅 ↔ 𝐴𝑅𝐴)) | |
5 | 2, 4 | sylancom 587 | . 2 ⊢ ((𝑅 Er 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐴 ∈ [𝐴]𝑅 ↔ 𝐴𝑅𝐴)) |
6 | 3, 5 | mpbird 257 | 1 ⊢ ((𝑅 Er 𝑋 ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ [𝐴]𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2099 class class class wbr 5148 Er wer 8721 [cec 8722 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5149 df-opab 5211 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-er 8724 df-ec 8726 |
This theorem is referenced by: ghmquskerlem1 19233 ghmquskerlem2 19235 ghmqusnsglem1 33129 ghmqusnsglem2 33130 qsdrnglem2 33207 |
Copyright terms: Public domain | W3C validator |