MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ecref Structured version   Visualization version   GIF version

Theorem ecref 8769
Description: All elements are in their own equivalence class. (Contributed by Thierry Arnoux, 14-Feb-2025.)
Assertion
Ref Expression
ecref ((𝑅 Er 𝑋𝐴𝑋) → 𝐴 ∈ [𝐴]𝑅)

Proof of Theorem ecref
StepHypRef Expression
1 simpl 482 . . 3 ((𝑅 Er 𝑋𝐴𝑋) → 𝑅 Er 𝑋)
2 simpr 484 . . 3 ((𝑅 Er 𝑋𝐴𝑋) → 𝐴𝑋)
31, 2erref 8744 . 2 ((𝑅 Er 𝑋𝐴𝑋) → 𝐴𝑅𝐴)
4 elecg 8768 . . 3 ((𝐴𝑋𝐴𝑋) → (𝐴 ∈ [𝐴]𝑅𝐴𝑅𝐴))
52, 4sylancom 588 . 2 ((𝑅 Er 𝑋𝐴𝑋) → (𝐴 ∈ [𝐴]𝑅𝐴𝑅𝐴))
63, 5mpbird 257 1 ((𝑅 Er 𝑋𝐴𝑋) → 𝐴 ∈ [𝐴]𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109   class class class wbr 5124   Er wer 8721  [cec 8722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5125  df-opab 5187  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-er 8724  df-ec 8726
This theorem is referenced by:  ghmqusnsglem1  19268  ghmqusnsglem2  19269  ghmquskerlem1  19271  ghmquskerlem2  19273  qsdrnglem2  33516
  Copyright terms: Public domain W3C validator