MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ecref Structured version   Visualization version   GIF version

Theorem ecref 8667
Description: All elements are in their own equivalence class. (Contributed by Thierry Arnoux, 14-Feb-2025.)
Assertion
Ref Expression
ecref ((𝑅 Er 𝑋𝐴𝑋) → 𝐴 ∈ [𝐴]𝑅)

Proof of Theorem ecref
StepHypRef Expression
1 simpl 482 . . 3 ((𝑅 Er 𝑋𝐴𝑋) → 𝑅 Er 𝑋)
2 simpr 484 . . 3 ((𝑅 Er 𝑋𝐴𝑋) → 𝐴𝑋)
31, 2erref 8642 . 2 ((𝑅 Er 𝑋𝐴𝑋) → 𝐴𝑅𝐴)
4 elecg 8666 . . 3 ((𝐴𝑋𝐴𝑋) → (𝐴 ∈ [𝐴]𝑅𝐴𝑅𝐴))
52, 4sylancom 588 . 2 ((𝑅 Er 𝑋𝐴𝑋) → (𝐴 ∈ [𝐴]𝑅𝐴𝑅𝐴))
63, 5mpbird 257 1 ((𝑅 Er 𝑋𝐴𝑋) → 𝐴 ∈ [𝐴]𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2111   class class class wbr 5091   Er wer 8619  [cec 8620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-opab 5154  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-er 8622  df-ec 8624
This theorem is referenced by:  ghmqusnsglem1  19190  ghmqusnsglem2  19191  ghmquskerlem1  19193  ghmquskerlem2  19195  qsdrnglem2  33456
  Copyright terms: Public domain W3C validator