MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ecref Structured version   Visualization version   GIF version

Theorem ecref 8716
Description: All elements are in their own equivalence class. (Contributed by Thierry Arnoux, 14-Feb-2025.)
Assertion
Ref Expression
ecref ((𝑅 Er 𝑋𝐴𝑋) → 𝐴 ∈ [𝐴]𝑅)

Proof of Theorem ecref
StepHypRef Expression
1 simpl 482 . . 3 ((𝑅 Er 𝑋𝐴𝑋) → 𝑅 Er 𝑋)
2 simpr 484 . . 3 ((𝑅 Er 𝑋𝐴𝑋) → 𝐴𝑋)
31, 2erref 8691 . 2 ((𝑅 Er 𝑋𝐴𝑋) → 𝐴𝑅𝐴)
4 elecg 8715 . . 3 ((𝐴𝑋𝐴𝑋) → (𝐴 ∈ [𝐴]𝑅𝐴𝑅𝐴))
52, 4sylancom 588 . 2 ((𝑅 Er 𝑋𝐴𝑋) → (𝐴 ∈ [𝐴]𝑅𝐴𝑅𝐴))
63, 5mpbird 257 1 ((𝑅 Er 𝑋𝐴𝑋) → 𝐴 ∈ [𝐴]𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109   class class class wbr 5107   Er wer 8668  [cec 8669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-er 8671  df-ec 8673
This theorem is referenced by:  ghmqusnsglem1  19212  ghmqusnsglem2  19213  ghmquskerlem1  19215  ghmquskerlem2  19217  qsdrnglem2  33467
  Copyright terms: Public domain W3C validator