|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > ecref | Structured version Visualization version GIF version | ||
| Description: All elements are in their own equivalence class. (Contributed by Thierry Arnoux, 14-Feb-2025.) | 
| Ref | Expression | 
|---|---|
| ecref | ⊢ ((𝑅 Er 𝑋 ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ [𝐴]𝑅) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simpl 482 | . . 3 ⊢ ((𝑅 Er 𝑋 ∧ 𝐴 ∈ 𝑋) → 𝑅 Er 𝑋) | |
| 2 | simpr 484 | . . 3 ⊢ ((𝑅 Er 𝑋 ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ 𝑋) | |
| 3 | 1, 2 | erref 8766 | . 2 ⊢ ((𝑅 Er 𝑋 ∧ 𝐴 ∈ 𝑋) → 𝐴𝑅𝐴) | 
| 4 | elecg 8790 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐴 ∈ [𝐴]𝑅 ↔ 𝐴𝑅𝐴)) | |
| 5 | 2, 4 | sylancom 588 | . 2 ⊢ ((𝑅 Er 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐴 ∈ [𝐴]𝑅 ↔ 𝐴𝑅𝐴)) | 
| 6 | 3, 5 | mpbird 257 | 1 ⊢ ((𝑅 Er 𝑋 ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ [𝐴]𝑅) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2107 class class class wbr 5142 Er wer 8743 [cec 8744 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-br 5143 df-opab 5205 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-er 8746 df-ec 8748 | 
| This theorem is referenced by: ghmqusnsglem1 19299 ghmqusnsglem2 19300 ghmquskerlem1 19302 ghmquskerlem2 19304 qsdrnglem2 33525 | 
| Copyright terms: Public domain | W3C validator |