| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ecref | Structured version Visualization version GIF version | ||
| Description: All elements are in their own equivalence class. (Contributed by Thierry Arnoux, 14-Feb-2025.) |
| Ref | Expression |
|---|---|
| ecref | ⊢ ((𝑅 Er 𝑋 ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ [𝐴]𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . 3 ⊢ ((𝑅 Er 𝑋 ∧ 𝐴 ∈ 𝑋) → 𝑅 Er 𝑋) | |
| 2 | simpr 484 | . . 3 ⊢ ((𝑅 Er 𝑋 ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ 𝑋) | |
| 3 | 1, 2 | erref 8744 | . 2 ⊢ ((𝑅 Er 𝑋 ∧ 𝐴 ∈ 𝑋) → 𝐴𝑅𝐴) |
| 4 | elecg 8768 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐴 ∈ [𝐴]𝑅 ↔ 𝐴𝑅𝐴)) | |
| 5 | 2, 4 | sylancom 588 | . 2 ⊢ ((𝑅 Er 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐴 ∈ [𝐴]𝑅 ↔ 𝐴𝑅𝐴)) |
| 6 | 3, 5 | mpbird 257 | 1 ⊢ ((𝑅 Er 𝑋 ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ [𝐴]𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 class class class wbr 5124 Er wer 8721 [cec 8722 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-er 8724 df-ec 8726 |
| This theorem is referenced by: ghmqusnsglem1 19268 ghmqusnsglem2 19269 ghmquskerlem1 19271 ghmquskerlem2 19273 qsdrnglem2 33516 |
| Copyright terms: Public domain | W3C validator |