Step | Hyp | Ref
| Expression |
1 | | ghmqusker.j |
. . 3
⊢ 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ ∪
(𝐹 “ 𝑞)) |
2 | | imaeq2 6053 |
. . . 4
⊢ (𝑞 = [𝑋](𝐺 ~QG 𝐾) → (𝐹 “ 𝑞) = (𝐹 “ [𝑋](𝐺 ~QG 𝐾))) |
3 | 2 | unieqd 4921 |
. . 3
⊢ (𝑞 = [𝑋](𝐺 ~QG 𝐾) → ∪ (𝐹 “ 𝑞) = ∪ (𝐹 “ [𝑋](𝐺 ~QG 𝐾))) |
4 | | ghmquskerlem1.x |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ (Base‘𝐺)) |
5 | | ovex 7438 |
. . . . . 6
⊢ (𝐺 ~QG 𝐾) ∈ V |
6 | 5 | ecelqsi 8763 |
. . . . 5
⊢ (𝑋 ∈ (Base‘𝐺) → [𝑋](𝐺 ~QG 𝐾) ∈ ((Base‘𝐺) / (𝐺 ~QG 𝐾))) |
7 | 4, 6 | syl 17 |
. . . 4
⊢ (𝜑 → [𝑋](𝐺 ~QG 𝐾) ∈ ((Base‘𝐺) / (𝐺 ~QG 𝐾))) |
8 | | ghmqusker.q |
. . . . . 6
⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾)) |
9 | 8 | a1i 11 |
. . . . 5
⊢ (𝜑 → 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾))) |
10 | | eqidd 2733 |
. . . . 5
⊢ (𝜑 → (Base‘𝐺) = (Base‘𝐺)) |
11 | | ovexd 7440 |
. . . . 5
⊢ (𝜑 → (𝐺 ~QG 𝐾) ∈ V) |
12 | | ghmqusker.f |
. . . . . 6
⊢ (𝜑 → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
13 | | ghmgrp1 19088 |
. . . . . 6
⊢ (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐺 ∈ Grp) |
14 | 12, 13 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐺 ∈ Grp) |
15 | 9, 10, 11, 14 | qusbas 17487 |
. . . 4
⊢ (𝜑 → ((Base‘𝐺) / (𝐺 ~QG 𝐾)) = (Base‘𝑄)) |
16 | 7, 15 | eleqtrd 2835 |
. . 3
⊢ (𝜑 → [𝑋](𝐺 ~QG 𝐾) ∈ (Base‘𝑄)) |
17 | 12 | imaexd 31891 |
. . . 4
⊢ (𝜑 → (𝐹 “ [𝑋](𝐺 ~QG 𝐾)) ∈ V) |
18 | 17 | uniexd 7728 |
. . 3
⊢ (𝜑 → ∪ (𝐹
“ [𝑋](𝐺 ~QG 𝐾)) ∈ V) |
19 | 1, 3, 16, 18 | fvmptd3 7018 |
. 2
⊢ (𝜑 → (𝐽‘[𝑋](𝐺 ~QG 𝐾)) = ∪ (𝐹 “ [𝑋](𝐺 ~QG 𝐾))) |
20 | | eqid 2732 |
. . . . . . . . . 10
⊢
(Base‘𝐺) =
(Base‘𝐺) |
21 | | eqid 2732 |
. . . . . . . . . 10
⊢
(Base‘𝐻) =
(Base‘𝐻) |
22 | 20, 21 | ghmf 19090 |
. . . . . . . . 9
⊢ (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐹:(Base‘𝐺)⟶(Base‘𝐻)) |
23 | 12, 22 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐹:(Base‘𝐺)⟶(Base‘𝐻)) |
24 | 23 | ffnd 6715 |
. . . . . . 7
⊢ (𝜑 → 𝐹 Fn (Base‘𝐺)) |
25 | | ghmqusker.k |
. . . . . . . . . 10
⊢ 𝐾 = (◡𝐹 “ { 0 }) |
26 | | ghmqusker.1 |
. . . . . . . . . . . 12
⊢ 0 =
(0g‘𝐻) |
27 | 26 | ghmker 19112 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ (𝐺 GrpHom 𝐻) → (◡𝐹 “ { 0 }) ∈
(NrmSGrp‘𝐺)) |
28 | 12, 27 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (◡𝐹 “ { 0 }) ∈
(NrmSGrp‘𝐺)) |
29 | 25, 28 | eqeltrid 2837 |
. . . . . . . . 9
⊢ (𝜑 → 𝐾 ∈ (NrmSGrp‘𝐺)) |
30 | | nsgsubg 19032 |
. . . . . . . . 9
⊢ (𝐾 ∈ (NrmSGrp‘𝐺) → 𝐾 ∈ (SubGrp‘𝐺)) |
31 | | eqid 2732 |
. . . . . . . . . 10
⊢ (𝐺 ~QG 𝐾) = (𝐺 ~QG 𝐾) |
32 | 20, 31 | eqger 19052 |
. . . . . . . . 9
⊢ (𝐾 ∈ (SubGrp‘𝐺) → (𝐺 ~QG 𝐾) Er (Base‘𝐺)) |
33 | 29, 30, 32 | 3syl 18 |
. . . . . . . 8
⊢ (𝜑 → (𝐺 ~QG 𝐾) Er (Base‘𝐺)) |
34 | 33 | ecss 8745 |
. . . . . . 7
⊢ (𝜑 → [𝑋](𝐺 ~QG 𝐾) ⊆ (Base‘𝐺)) |
35 | 24, 34 | fvelimabd 6962 |
. . . . . 6
⊢ (𝜑 → (𝑦 ∈ (𝐹 “ [𝑋](𝐺 ~QG 𝐾)) ↔ ∃𝑧 ∈ [ 𝑋](𝐺 ~QG 𝐾)(𝐹‘𝑧) = 𝑦)) |
36 | | simpr 485 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) ∧ (𝐹‘𝑧) = 𝑦) → (𝐹‘𝑧) = 𝑦) |
37 | 12 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
38 | | eqid 2732 |
. . . . . . . . . . . . . . . 16
⊢
(invg‘𝐺) = (invg‘𝐺) |
39 | 37, 13 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → 𝐺 ∈ Grp) |
40 | 4 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → 𝑋 ∈ (Base‘𝐺)) |
41 | 20, 38, 39, 40 | grpinvcld 18869 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → ((invg‘𝐺)‘𝑋) ∈ (Base‘𝐺)) |
42 | 34 | sselda 3981 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → 𝑧 ∈ (Base‘𝐺)) |
43 | | eqid 2732 |
. . . . . . . . . . . . . . . 16
⊢
(+g‘𝐺) = (+g‘𝐺) |
44 | | eqid 2732 |
. . . . . . . . . . . . . . . 16
⊢
(+g‘𝐻) = (+g‘𝐻) |
45 | 20, 43, 44 | ghmlin 19091 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ ((invg‘𝐺)‘𝑋) ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺)) → (𝐹‘(((invg‘𝐺)‘𝑋)(+g‘𝐺)𝑧)) = ((𝐹‘((invg‘𝐺)‘𝑋))(+g‘𝐻)(𝐹‘𝑧))) |
46 | 37, 41, 42, 45 | syl3anc 1371 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → (𝐹‘(((invg‘𝐺)‘𝑋)(+g‘𝐺)𝑧)) = ((𝐹‘((invg‘𝐺)‘𝑋))(+g‘𝐻)(𝐹‘𝑧))) |
47 | 24 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → 𝐹 Fn (Base‘𝐺)) |
48 | 20 | subgss 19001 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐾 ∈ (SubGrp‘𝐺) → 𝐾 ⊆ (Base‘𝐺)) |
49 | 29, 30, 48 | 3syl 18 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐾 ⊆ (Base‘𝐺)) |
50 | 49 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → 𝐾 ⊆ (Base‘𝐺)) |
51 | | vex 3478 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝑧 ∈ V |
52 | | elecg 8742 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑧 ∈ V ∧ 𝑋 ∈ (Base‘𝐺)) → (𝑧 ∈ [𝑋](𝐺 ~QG 𝐾) ↔ 𝑋(𝐺 ~QG 𝐾)𝑧)) |
53 | 51, 52 | mpan 688 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑋 ∈ (Base‘𝐺) → (𝑧 ∈ [𝑋](𝐺 ~QG 𝐾) ↔ 𝑋(𝐺 ~QG 𝐾)𝑧)) |
54 | 53 | biimpa 477 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑋 ∈ (Base‘𝐺) ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → 𝑋(𝐺 ~QG 𝐾)𝑧) |
55 | 4, 54 | sylan 580 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → 𝑋(𝐺 ~QG 𝐾)𝑧) |
56 | 20, 38, 43, 31 | eqgval 19051 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐺 ∈ Grp ∧ 𝐾 ⊆ (Base‘𝐺)) → (𝑋(𝐺 ~QG 𝐾)𝑧 ↔ (𝑋 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺) ∧ (((invg‘𝐺)‘𝑋)(+g‘𝐺)𝑧) ∈ 𝐾))) |
57 | 56 | biimpa 477 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐺 ∈ Grp ∧ 𝐾 ⊆ (Base‘𝐺)) ∧ 𝑋(𝐺 ~QG 𝐾)𝑧) → (𝑋 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺) ∧ (((invg‘𝐺)‘𝑋)(+g‘𝐺)𝑧) ∈ 𝐾)) |
58 | 57 | simp3d 1144 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐺 ∈ Grp ∧ 𝐾 ⊆ (Base‘𝐺)) ∧ 𝑋(𝐺 ~QG 𝐾)𝑧) → (((invg‘𝐺)‘𝑋)(+g‘𝐺)𝑧) ∈ 𝐾) |
59 | 39, 50, 55, 58 | syl21anc 836 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → (((invg‘𝐺)‘𝑋)(+g‘𝐺)𝑧) ∈ 𝐾) |
60 | 59, 25 | eleqtrdi 2843 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → (((invg‘𝐺)‘𝑋)(+g‘𝐺)𝑧) ∈ (◡𝐹 “ { 0 })) |
61 | | fniniseg 7058 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹 Fn (Base‘𝐺) →
((((invg‘𝐺)‘𝑋)(+g‘𝐺)𝑧) ∈ (◡𝐹 “ { 0 }) ↔
((((invg‘𝐺)‘𝑋)(+g‘𝐺)𝑧) ∈ (Base‘𝐺) ∧ (𝐹‘(((invg‘𝐺)‘𝑋)(+g‘𝐺)𝑧)) = 0 ))) |
62 | 61 | biimpa 477 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹 Fn (Base‘𝐺) ∧
(((invg‘𝐺)‘𝑋)(+g‘𝐺)𝑧) ∈ (◡𝐹 “ { 0 })) →
((((invg‘𝐺)‘𝑋)(+g‘𝐺)𝑧) ∈ (Base‘𝐺) ∧ (𝐹‘(((invg‘𝐺)‘𝑋)(+g‘𝐺)𝑧)) = 0 )) |
63 | 47, 60, 62 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → ((((invg‘𝐺)‘𝑋)(+g‘𝐺)𝑧) ∈ (Base‘𝐺) ∧ (𝐹‘(((invg‘𝐺)‘𝑋)(+g‘𝐺)𝑧)) = 0 )) |
64 | 63 | simprd 496 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → (𝐹‘(((invg‘𝐺)‘𝑋)(+g‘𝐺)𝑧)) = 0 ) |
65 | 46, 64 | eqtr3d 2774 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → ((𝐹‘((invg‘𝐺)‘𝑋))(+g‘𝐻)(𝐹‘𝑧)) = 0 ) |
66 | 65 | oveq2d 7421 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → ((𝐹‘𝑋)(+g‘𝐻)((𝐹‘((invg‘𝐺)‘𝑋))(+g‘𝐻)(𝐹‘𝑧))) = ((𝐹‘𝑋)(+g‘𝐻) 0 )) |
67 | | eqid 2732 |
. . . . . . . . . . . . . . . . 17
⊢
(invg‘𝐻) = (invg‘𝐻) |
68 | 20, 38, 67 | ghminv 19093 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑋 ∈ (Base‘𝐺)) → (𝐹‘((invg‘𝐺)‘𝑋)) = ((invg‘𝐻)‘(𝐹‘𝑋))) |
69 | 37, 40, 68 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → (𝐹‘((invg‘𝐺)‘𝑋)) = ((invg‘𝐻)‘(𝐹‘𝑋))) |
70 | 69 | oveq1d 7420 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → ((𝐹‘((invg‘𝐺)‘𝑋))(+g‘𝐻)(𝐹‘𝑧)) = (((invg‘𝐻)‘(𝐹‘𝑋))(+g‘𝐻)(𝐹‘𝑧))) |
71 | 70 | oveq2d 7421 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → ((𝐹‘𝑋)(+g‘𝐻)((𝐹‘((invg‘𝐺)‘𝑋))(+g‘𝐻)(𝐹‘𝑧))) = ((𝐹‘𝑋)(+g‘𝐻)(((invg‘𝐻)‘(𝐹‘𝑋))(+g‘𝐻)(𝐹‘𝑧)))) |
72 | | ghmgrp2 19089 |
. . . . . . . . . . . . . . 15
⊢ (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐻 ∈ Grp) |
73 | 37, 72 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → 𝐻 ∈ Grp) |
74 | 37, 22 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → 𝐹:(Base‘𝐺)⟶(Base‘𝐻)) |
75 | 74, 40 | ffvelcdmd 7084 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → (𝐹‘𝑋) ∈ (Base‘𝐻)) |
76 | 74, 42 | ffvelcdmd 7084 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → (𝐹‘𝑧) ∈ (Base‘𝐻)) |
77 | 21, 44, 67 | grpasscan1 18882 |
. . . . . . . . . . . . . 14
⊢ ((𝐻 ∈ Grp ∧ (𝐹‘𝑋) ∈ (Base‘𝐻) ∧ (𝐹‘𝑧) ∈ (Base‘𝐻)) → ((𝐹‘𝑋)(+g‘𝐻)(((invg‘𝐻)‘(𝐹‘𝑋))(+g‘𝐻)(𝐹‘𝑧))) = (𝐹‘𝑧)) |
78 | 73, 75, 76, 77 | syl3anc 1371 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → ((𝐹‘𝑋)(+g‘𝐻)(((invg‘𝐻)‘(𝐹‘𝑋))(+g‘𝐻)(𝐹‘𝑧))) = (𝐹‘𝑧)) |
79 | 71, 78 | eqtrd 2772 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → ((𝐹‘𝑋)(+g‘𝐻)((𝐹‘((invg‘𝐺)‘𝑋))(+g‘𝐻)(𝐹‘𝑧))) = (𝐹‘𝑧)) |
80 | 21, 44, 26 | grprid 18849 |
. . . . . . . . . . . . 13
⊢ ((𝐻 ∈ Grp ∧ (𝐹‘𝑋) ∈ (Base‘𝐻)) → ((𝐹‘𝑋)(+g‘𝐻) 0 ) = (𝐹‘𝑋)) |
81 | 73, 75, 80 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → ((𝐹‘𝑋)(+g‘𝐻) 0 ) = (𝐹‘𝑋)) |
82 | 66, 79, 81 | 3eqtr3d 2780 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → (𝐹‘𝑧) = (𝐹‘𝑋)) |
83 | 82 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) ∧ (𝐹‘𝑧) = 𝑦) → (𝐹‘𝑧) = (𝐹‘𝑋)) |
84 | 36, 83 | eqtr3d 2774 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) ∧ (𝐹‘𝑧) = 𝑦) → 𝑦 = (𝐹‘𝑋)) |
85 | 84 | r19.29an 3158 |
. . . . . . . 8
⊢ ((𝜑 ∧ ∃𝑧 ∈ [ 𝑋](𝐺 ~QG 𝐾)(𝐹‘𝑧) = 𝑦) → 𝑦 = (𝐹‘𝑋)) |
86 | | ecref 31920 |
. . . . . . . . . . 11
⊢ (((𝐺 ~QG 𝐾) Er (Base‘𝐺) ∧ 𝑋 ∈ (Base‘𝐺)) → 𝑋 ∈ [𝑋](𝐺 ~QG 𝐾)) |
87 | 33, 4, 86 | syl2anc 584 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋 ∈ [𝑋](𝐺 ~QG 𝐾)) |
88 | 87 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 = (𝐹‘𝑋)) → 𝑋 ∈ [𝑋](𝐺 ~QG 𝐾)) |
89 | | fveqeq2 6897 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑋 → ((𝐹‘𝑧) = 𝑦 ↔ (𝐹‘𝑋) = 𝑦)) |
90 | 89 | adantl 482 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 = (𝐹‘𝑋)) ∧ 𝑧 = 𝑋) → ((𝐹‘𝑧) = 𝑦 ↔ (𝐹‘𝑋) = 𝑦)) |
91 | | simpr 485 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 = (𝐹‘𝑋)) → 𝑦 = (𝐹‘𝑋)) |
92 | 91 | eqcomd 2738 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 = (𝐹‘𝑋)) → (𝐹‘𝑋) = 𝑦) |
93 | 88, 90, 92 | rspcedvd 3614 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 = (𝐹‘𝑋)) → ∃𝑧 ∈ [ 𝑋](𝐺 ~QG 𝐾)(𝐹‘𝑧) = 𝑦) |
94 | 85, 93 | impbida 799 |
. . . . . . 7
⊢ (𝜑 → (∃𝑧 ∈ [ 𝑋](𝐺 ~QG 𝐾)(𝐹‘𝑧) = 𝑦 ↔ 𝑦 = (𝐹‘𝑋))) |
95 | | velsn 4643 |
. . . . . . 7
⊢ (𝑦 ∈ {(𝐹‘𝑋)} ↔ 𝑦 = (𝐹‘𝑋)) |
96 | 94, 95 | bitr4di 288 |
. . . . . 6
⊢ (𝜑 → (∃𝑧 ∈ [ 𝑋](𝐺 ~QG 𝐾)(𝐹‘𝑧) = 𝑦 ↔ 𝑦 ∈ {(𝐹‘𝑋)})) |
97 | 35, 96 | bitrd 278 |
. . . . 5
⊢ (𝜑 → (𝑦 ∈ (𝐹 “ [𝑋](𝐺 ~QG 𝐾)) ↔ 𝑦 ∈ {(𝐹‘𝑋)})) |
98 | 97 | eqrdv 2730 |
. . . 4
⊢ (𝜑 → (𝐹 “ [𝑋](𝐺 ~QG 𝐾)) = {(𝐹‘𝑋)}) |
99 | 98 | unieqd 4921 |
. . 3
⊢ (𝜑 → ∪ (𝐹
“ [𝑋](𝐺 ~QG 𝐾)) = ∪ {(𝐹‘𝑋)}) |
100 | | fvex 6901 |
. . . 4
⊢ (𝐹‘𝑋) ∈ V |
101 | 100 | unisn 4929 |
. . 3
⊢ ∪ {(𝐹‘𝑋)} = (𝐹‘𝑋) |
102 | 99, 101 | eqtrdi 2788 |
. 2
⊢ (𝜑 → ∪ (𝐹
“ [𝑋](𝐺 ~QG 𝐾)) = (𝐹‘𝑋)) |
103 | 19, 102 | eqtrd 2772 |
1
⊢ (𝜑 → (𝐽‘[𝑋](𝐺 ~QG 𝐾)) = (𝐹‘𝑋)) |