| Step | Hyp | Ref
| Expression |
| 1 | | ghmqusker.j |
. . 3
⊢ 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ ∪
(𝐹 “ 𝑞)) |
| 2 | | imaeq2 6048 |
. . . 4
⊢ (𝑞 = [𝑋](𝐺 ~QG 𝐾) → (𝐹 “ 𝑞) = (𝐹 “ [𝑋](𝐺 ~QG 𝐾))) |
| 3 | 2 | unieqd 4901 |
. . 3
⊢ (𝑞 = [𝑋](𝐺 ~QG 𝐾) → ∪ (𝐹 “ 𝑞) = ∪ (𝐹 “ [𝑋](𝐺 ~QG 𝐾))) |
| 4 | | ghmquskerlem1.x |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ (Base‘𝐺)) |
| 5 | | ovex 7443 |
. . . . . 6
⊢ (𝐺 ~QG 𝐾) ∈ V |
| 6 | 5 | ecelqsi 8792 |
. . . . 5
⊢ (𝑋 ∈ (Base‘𝐺) → [𝑋](𝐺 ~QG 𝐾) ∈ ((Base‘𝐺) / (𝐺 ~QG 𝐾))) |
| 7 | 4, 6 | syl 17 |
. . . 4
⊢ (𝜑 → [𝑋](𝐺 ~QG 𝐾) ∈ ((Base‘𝐺) / (𝐺 ~QG 𝐾))) |
| 8 | | ghmqusker.q |
. . . . . 6
⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾)) |
| 9 | 8 | a1i 11 |
. . . . 5
⊢ (𝜑 → 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾))) |
| 10 | | eqidd 2737 |
. . . . 5
⊢ (𝜑 → (Base‘𝐺) = (Base‘𝐺)) |
| 11 | | ovexd 7445 |
. . . . 5
⊢ (𝜑 → (𝐺 ~QG 𝐾) ∈ V) |
| 12 | | ghmqusker.f |
. . . . . 6
⊢ (𝜑 → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
| 13 | | ghmgrp1 19206 |
. . . . . 6
⊢ (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐺 ∈ Grp) |
| 14 | 12, 13 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐺 ∈ Grp) |
| 15 | 9, 10, 11, 14 | qusbas 17564 |
. . . 4
⊢ (𝜑 → ((Base‘𝐺) / (𝐺 ~QG 𝐾)) = (Base‘𝑄)) |
| 16 | 7, 15 | eleqtrd 2837 |
. . 3
⊢ (𝜑 → [𝑋](𝐺 ~QG 𝐾) ∈ (Base‘𝑄)) |
| 17 | 12 | imaexd 7917 |
. . . 4
⊢ (𝜑 → (𝐹 “ [𝑋](𝐺 ~QG 𝐾)) ∈ V) |
| 18 | 17 | uniexd 7741 |
. . 3
⊢ (𝜑 → ∪ (𝐹
“ [𝑋](𝐺 ~QG 𝐾)) ∈ V) |
| 19 | 1, 3, 16, 18 | fvmptd3 7014 |
. 2
⊢ (𝜑 → (𝐽‘[𝑋](𝐺 ~QG 𝐾)) = ∪ (𝐹 “ [𝑋](𝐺 ~QG 𝐾))) |
| 20 | | eqid 2736 |
. . . . . . . . . 10
⊢
(Base‘𝐺) =
(Base‘𝐺) |
| 21 | | eqid 2736 |
. . . . . . . . . 10
⊢
(Base‘𝐻) =
(Base‘𝐻) |
| 22 | 20, 21 | ghmf 19208 |
. . . . . . . . 9
⊢ (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐹:(Base‘𝐺)⟶(Base‘𝐻)) |
| 23 | 12, 22 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐹:(Base‘𝐺)⟶(Base‘𝐻)) |
| 24 | 23 | ffnd 6712 |
. . . . . . 7
⊢ (𝜑 → 𝐹 Fn (Base‘𝐺)) |
| 25 | | ghmqusker.k |
. . . . . . . . . 10
⊢ 𝐾 = (◡𝐹 “ { 0 }) |
| 26 | | ghmqusker.1 |
. . . . . . . . . . . 12
⊢ 0 =
(0g‘𝐻) |
| 27 | 26 | ghmker 19230 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ (𝐺 GrpHom 𝐻) → (◡𝐹 “ { 0 }) ∈
(NrmSGrp‘𝐺)) |
| 28 | 12, 27 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (◡𝐹 “ { 0 }) ∈
(NrmSGrp‘𝐺)) |
| 29 | 25, 28 | eqeltrid 2839 |
. . . . . . . . 9
⊢ (𝜑 → 𝐾 ∈ (NrmSGrp‘𝐺)) |
| 30 | | nsgsubg 19146 |
. . . . . . . . 9
⊢ (𝐾 ∈ (NrmSGrp‘𝐺) → 𝐾 ∈ (SubGrp‘𝐺)) |
| 31 | | eqid 2736 |
. . . . . . . . . 10
⊢ (𝐺 ~QG 𝐾) = (𝐺 ~QG 𝐾) |
| 32 | 20, 31 | eqger 19166 |
. . . . . . . . 9
⊢ (𝐾 ∈ (SubGrp‘𝐺) → (𝐺 ~QG 𝐾) Er (Base‘𝐺)) |
| 33 | 29, 30, 32 | 3syl 18 |
. . . . . . . 8
⊢ (𝜑 → (𝐺 ~QG 𝐾) Er (Base‘𝐺)) |
| 34 | 33 | ecss 8772 |
. . . . . . 7
⊢ (𝜑 → [𝑋](𝐺 ~QG 𝐾) ⊆ (Base‘𝐺)) |
| 35 | 24, 34 | fvelimabd 6957 |
. . . . . 6
⊢ (𝜑 → (𝑦 ∈ (𝐹 “ [𝑋](𝐺 ~QG 𝐾)) ↔ ∃𝑧 ∈ [ 𝑋](𝐺 ~QG 𝐾)(𝐹‘𝑧) = 𝑦)) |
| 36 | | simpr 484 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) ∧ (𝐹‘𝑧) = 𝑦) → (𝐹‘𝑧) = 𝑦) |
| 37 | 12 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
| 38 | | eqid 2736 |
. . . . . . . . . . . . . . . 16
⊢
(invg‘𝐺) = (invg‘𝐺) |
| 39 | 37, 13 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → 𝐺 ∈ Grp) |
| 40 | 4 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → 𝑋 ∈ (Base‘𝐺)) |
| 41 | 20, 38, 39, 40 | grpinvcld 18976 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → ((invg‘𝐺)‘𝑋) ∈ (Base‘𝐺)) |
| 42 | 34 | sselda 3963 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → 𝑧 ∈ (Base‘𝐺)) |
| 43 | | eqid 2736 |
. . . . . . . . . . . . . . . 16
⊢
(+g‘𝐺) = (+g‘𝐺) |
| 44 | | eqid 2736 |
. . . . . . . . . . . . . . . 16
⊢
(+g‘𝐻) = (+g‘𝐻) |
| 45 | 20, 43, 44 | ghmlin 19209 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ ((invg‘𝐺)‘𝑋) ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺)) → (𝐹‘(((invg‘𝐺)‘𝑋)(+g‘𝐺)𝑧)) = ((𝐹‘((invg‘𝐺)‘𝑋))(+g‘𝐻)(𝐹‘𝑧))) |
| 46 | 37, 41, 42, 45 | syl3anc 1373 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → (𝐹‘(((invg‘𝐺)‘𝑋)(+g‘𝐺)𝑧)) = ((𝐹‘((invg‘𝐺)‘𝑋))(+g‘𝐻)(𝐹‘𝑧))) |
| 47 | 24 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → 𝐹 Fn (Base‘𝐺)) |
| 48 | 20 | subgss 19115 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐾 ∈ (SubGrp‘𝐺) → 𝐾 ⊆ (Base‘𝐺)) |
| 49 | 29, 30, 48 | 3syl 18 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐾 ⊆ (Base‘𝐺)) |
| 50 | 49 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → 𝐾 ⊆ (Base‘𝐺)) |
| 51 | | vex 3468 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝑧 ∈ V |
| 52 | | elecg 8768 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑧 ∈ V ∧ 𝑋 ∈ (Base‘𝐺)) → (𝑧 ∈ [𝑋](𝐺 ~QG 𝐾) ↔ 𝑋(𝐺 ~QG 𝐾)𝑧)) |
| 53 | 51, 52 | mpan 690 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑋 ∈ (Base‘𝐺) → (𝑧 ∈ [𝑋](𝐺 ~QG 𝐾) ↔ 𝑋(𝐺 ~QG 𝐾)𝑧)) |
| 54 | 53 | biimpa 476 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑋 ∈ (Base‘𝐺) ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → 𝑋(𝐺 ~QG 𝐾)𝑧) |
| 55 | 4, 54 | sylan 580 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → 𝑋(𝐺 ~QG 𝐾)𝑧) |
| 56 | 20, 38, 43, 31 | eqgval 19165 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐺 ∈ Grp ∧ 𝐾 ⊆ (Base‘𝐺)) → (𝑋(𝐺 ~QG 𝐾)𝑧 ↔ (𝑋 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺) ∧ (((invg‘𝐺)‘𝑋)(+g‘𝐺)𝑧) ∈ 𝐾))) |
| 57 | 56 | biimpa 476 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐺 ∈ Grp ∧ 𝐾 ⊆ (Base‘𝐺)) ∧ 𝑋(𝐺 ~QG 𝐾)𝑧) → (𝑋 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺) ∧ (((invg‘𝐺)‘𝑋)(+g‘𝐺)𝑧) ∈ 𝐾)) |
| 58 | 57 | simp3d 1144 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐺 ∈ Grp ∧ 𝐾 ⊆ (Base‘𝐺)) ∧ 𝑋(𝐺 ~QG 𝐾)𝑧) → (((invg‘𝐺)‘𝑋)(+g‘𝐺)𝑧) ∈ 𝐾) |
| 59 | 39, 50, 55, 58 | syl21anc 837 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → (((invg‘𝐺)‘𝑋)(+g‘𝐺)𝑧) ∈ 𝐾) |
| 60 | 59, 25 | eleqtrdi 2845 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → (((invg‘𝐺)‘𝑋)(+g‘𝐺)𝑧) ∈ (◡𝐹 “ { 0 })) |
| 61 | | fniniseg 7055 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹 Fn (Base‘𝐺) →
((((invg‘𝐺)‘𝑋)(+g‘𝐺)𝑧) ∈ (◡𝐹 “ { 0 }) ↔
((((invg‘𝐺)‘𝑋)(+g‘𝐺)𝑧) ∈ (Base‘𝐺) ∧ (𝐹‘(((invg‘𝐺)‘𝑋)(+g‘𝐺)𝑧)) = 0 ))) |
| 62 | 61 | biimpa 476 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹 Fn (Base‘𝐺) ∧
(((invg‘𝐺)‘𝑋)(+g‘𝐺)𝑧) ∈ (◡𝐹 “ { 0 })) →
((((invg‘𝐺)‘𝑋)(+g‘𝐺)𝑧) ∈ (Base‘𝐺) ∧ (𝐹‘(((invg‘𝐺)‘𝑋)(+g‘𝐺)𝑧)) = 0 )) |
| 63 | 47, 60, 62 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → ((((invg‘𝐺)‘𝑋)(+g‘𝐺)𝑧) ∈ (Base‘𝐺) ∧ (𝐹‘(((invg‘𝐺)‘𝑋)(+g‘𝐺)𝑧)) = 0 )) |
| 64 | 63 | simprd 495 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → (𝐹‘(((invg‘𝐺)‘𝑋)(+g‘𝐺)𝑧)) = 0 ) |
| 65 | 46, 64 | eqtr3d 2773 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → ((𝐹‘((invg‘𝐺)‘𝑋))(+g‘𝐻)(𝐹‘𝑧)) = 0 ) |
| 66 | 65 | oveq2d 7426 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → ((𝐹‘𝑋)(+g‘𝐻)((𝐹‘((invg‘𝐺)‘𝑋))(+g‘𝐻)(𝐹‘𝑧))) = ((𝐹‘𝑋)(+g‘𝐻) 0 )) |
| 67 | | eqid 2736 |
. . . . . . . . . . . . . . . . 17
⊢
(invg‘𝐻) = (invg‘𝐻) |
| 68 | 20, 38, 67 | ghminv 19211 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑋 ∈ (Base‘𝐺)) → (𝐹‘((invg‘𝐺)‘𝑋)) = ((invg‘𝐻)‘(𝐹‘𝑋))) |
| 69 | 37, 40, 68 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → (𝐹‘((invg‘𝐺)‘𝑋)) = ((invg‘𝐻)‘(𝐹‘𝑋))) |
| 70 | 69 | oveq1d 7425 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → ((𝐹‘((invg‘𝐺)‘𝑋))(+g‘𝐻)(𝐹‘𝑧)) = (((invg‘𝐻)‘(𝐹‘𝑋))(+g‘𝐻)(𝐹‘𝑧))) |
| 71 | 70 | oveq2d 7426 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → ((𝐹‘𝑋)(+g‘𝐻)((𝐹‘((invg‘𝐺)‘𝑋))(+g‘𝐻)(𝐹‘𝑧))) = ((𝐹‘𝑋)(+g‘𝐻)(((invg‘𝐻)‘(𝐹‘𝑋))(+g‘𝐻)(𝐹‘𝑧)))) |
| 72 | | ghmgrp2 19207 |
. . . . . . . . . . . . . . 15
⊢ (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐻 ∈ Grp) |
| 73 | 37, 72 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → 𝐻 ∈ Grp) |
| 74 | 37, 22 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → 𝐹:(Base‘𝐺)⟶(Base‘𝐻)) |
| 75 | 74, 40 | ffvelcdmd 7080 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → (𝐹‘𝑋) ∈ (Base‘𝐻)) |
| 76 | 74, 42 | ffvelcdmd 7080 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → (𝐹‘𝑧) ∈ (Base‘𝐻)) |
| 77 | 21, 44, 67 | grpasscan1 18989 |
. . . . . . . . . . . . . 14
⊢ ((𝐻 ∈ Grp ∧ (𝐹‘𝑋) ∈ (Base‘𝐻) ∧ (𝐹‘𝑧) ∈ (Base‘𝐻)) → ((𝐹‘𝑋)(+g‘𝐻)(((invg‘𝐻)‘(𝐹‘𝑋))(+g‘𝐻)(𝐹‘𝑧))) = (𝐹‘𝑧)) |
| 78 | 73, 75, 76, 77 | syl3anc 1373 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → ((𝐹‘𝑋)(+g‘𝐻)(((invg‘𝐻)‘(𝐹‘𝑋))(+g‘𝐻)(𝐹‘𝑧))) = (𝐹‘𝑧)) |
| 79 | 71, 78 | eqtrd 2771 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → ((𝐹‘𝑋)(+g‘𝐻)((𝐹‘((invg‘𝐺)‘𝑋))(+g‘𝐻)(𝐹‘𝑧))) = (𝐹‘𝑧)) |
| 80 | 21, 44, 26 | grprid 18956 |
. . . . . . . . . . . . 13
⊢ ((𝐻 ∈ Grp ∧ (𝐹‘𝑋) ∈ (Base‘𝐻)) → ((𝐹‘𝑋)(+g‘𝐻) 0 ) = (𝐹‘𝑋)) |
| 81 | 73, 75, 80 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → ((𝐹‘𝑋)(+g‘𝐻) 0 ) = (𝐹‘𝑋)) |
| 82 | 66, 79, 81 | 3eqtr3d 2779 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → (𝐹‘𝑧) = (𝐹‘𝑋)) |
| 83 | 82 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) ∧ (𝐹‘𝑧) = 𝑦) → (𝐹‘𝑧) = (𝐹‘𝑋)) |
| 84 | 36, 83 | eqtr3d 2773 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) ∧ (𝐹‘𝑧) = 𝑦) → 𝑦 = (𝐹‘𝑋)) |
| 85 | 84 | r19.29an 3145 |
. . . . . . . 8
⊢ ((𝜑 ∧ ∃𝑧 ∈ [ 𝑋](𝐺 ~QG 𝐾)(𝐹‘𝑧) = 𝑦) → 𝑦 = (𝐹‘𝑋)) |
| 86 | | ecref 8769 |
. . . . . . . . . . 11
⊢ (((𝐺 ~QG 𝐾) Er (Base‘𝐺) ∧ 𝑋 ∈ (Base‘𝐺)) → 𝑋 ∈ [𝑋](𝐺 ~QG 𝐾)) |
| 87 | 33, 4, 86 | syl2anc 584 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋 ∈ [𝑋](𝐺 ~QG 𝐾)) |
| 88 | 87 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 = (𝐹‘𝑋)) → 𝑋 ∈ [𝑋](𝐺 ~QG 𝐾)) |
| 89 | | fveqeq2 6890 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑋 → ((𝐹‘𝑧) = 𝑦 ↔ (𝐹‘𝑋) = 𝑦)) |
| 90 | 89 | adantl 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 = (𝐹‘𝑋)) ∧ 𝑧 = 𝑋) → ((𝐹‘𝑧) = 𝑦 ↔ (𝐹‘𝑋) = 𝑦)) |
| 91 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 = (𝐹‘𝑋)) → 𝑦 = (𝐹‘𝑋)) |
| 92 | 91 | eqcomd 2742 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 = (𝐹‘𝑋)) → (𝐹‘𝑋) = 𝑦) |
| 93 | 88, 90, 92 | rspcedvd 3608 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 = (𝐹‘𝑋)) → ∃𝑧 ∈ [ 𝑋](𝐺 ~QG 𝐾)(𝐹‘𝑧) = 𝑦) |
| 94 | 85, 93 | impbida 800 |
. . . . . . 7
⊢ (𝜑 → (∃𝑧 ∈ [ 𝑋](𝐺 ~QG 𝐾)(𝐹‘𝑧) = 𝑦 ↔ 𝑦 = (𝐹‘𝑋))) |
| 95 | | velsn 4622 |
. . . . . . 7
⊢ (𝑦 ∈ {(𝐹‘𝑋)} ↔ 𝑦 = (𝐹‘𝑋)) |
| 96 | 94, 95 | bitr4di 289 |
. . . . . 6
⊢ (𝜑 → (∃𝑧 ∈ [ 𝑋](𝐺 ~QG 𝐾)(𝐹‘𝑧) = 𝑦 ↔ 𝑦 ∈ {(𝐹‘𝑋)})) |
| 97 | 35, 96 | bitrd 279 |
. . . . 5
⊢ (𝜑 → (𝑦 ∈ (𝐹 “ [𝑋](𝐺 ~QG 𝐾)) ↔ 𝑦 ∈ {(𝐹‘𝑋)})) |
| 98 | 97 | eqrdv 2734 |
. . . 4
⊢ (𝜑 → (𝐹 “ [𝑋](𝐺 ~QG 𝐾)) = {(𝐹‘𝑋)}) |
| 99 | 98 | unieqd 4901 |
. . 3
⊢ (𝜑 → ∪ (𝐹
“ [𝑋](𝐺 ~QG 𝐾)) = ∪ {(𝐹‘𝑋)}) |
| 100 | | fvex 6894 |
. . . 4
⊢ (𝐹‘𝑋) ∈ V |
| 101 | 100 | unisn 4907 |
. . 3
⊢ ∪ {(𝐹‘𝑋)} = (𝐹‘𝑋) |
| 102 | 99, 101 | eqtrdi 2787 |
. 2
⊢ (𝜑 → ∪ (𝐹
“ [𝑋](𝐺 ~QG 𝐾)) = (𝐹‘𝑋)) |
| 103 | 19, 102 | eqtrd 2771 |
1
⊢ (𝜑 → (𝐽‘[𝑋](𝐺 ~QG 𝐾)) = (𝐹‘𝑋)) |