Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ghmquskerlem1 Structured version   Visualization version   GIF version

Theorem ghmquskerlem1 32516
Description: Lemma for ghmqusker 32520 (Contributed by Thierry Arnoux, 14-Feb-2025.)
Hypotheses
Ref Expression
ghmqusker.1 0 = (0g𝐻)
ghmqusker.f (𝜑𝐹 ∈ (𝐺 GrpHom 𝐻))
ghmqusker.k 𝐾 = (𝐹 “ { 0 })
ghmqusker.q 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾))
ghmqusker.j 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ (𝐹𝑞))
ghmquskerlem1.x (𝜑𝑋 ∈ (Base‘𝐺))
Assertion
Ref Expression
ghmquskerlem1 (𝜑 → (𝐽‘[𝑋](𝐺 ~QG 𝐾)) = (𝐹𝑋))
Distinct variable groups:   𝐹,𝑞   𝐺,𝑞   𝐻,𝑞   𝐽,𝑞   𝐾,𝑞   𝑄,𝑞   𝑋,𝑞   𝜑,𝑞
Allowed substitution hint:   0 (𝑞)

Proof of Theorem ghmquskerlem1
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ghmqusker.j . . 3 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ (𝐹𝑞))
2 imaeq2 6053 . . . 4 (𝑞 = [𝑋](𝐺 ~QG 𝐾) → (𝐹𝑞) = (𝐹 “ [𝑋](𝐺 ~QG 𝐾)))
32unieqd 4921 . . 3 (𝑞 = [𝑋](𝐺 ~QG 𝐾) → (𝐹𝑞) = (𝐹 “ [𝑋](𝐺 ~QG 𝐾)))
4 ghmquskerlem1.x . . . . 5 (𝜑𝑋 ∈ (Base‘𝐺))
5 ovex 7438 . . . . . 6 (𝐺 ~QG 𝐾) ∈ V
65ecelqsi 8763 . . . . 5 (𝑋 ∈ (Base‘𝐺) → [𝑋](𝐺 ~QG 𝐾) ∈ ((Base‘𝐺) / (𝐺 ~QG 𝐾)))
74, 6syl 17 . . . 4 (𝜑 → [𝑋](𝐺 ~QG 𝐾) ∈ ((Base‘𝐺) / (𝐺 ~QG 𝐾)))
8 ghmqusker.q . . . . . 6 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾))
98a1i 11 . . . . 5 (𝜑𝑄 = (𝐺 /s (𝐺 ~QG 𝐾)))
10 eqidd 2733 . . . . 5 (𝜑 → (Base‘𝐺) = (Base‘𝐺))
11 ovexd 7440 . . . . 5 (𝜑 → (𝐺 ~QG 𝐾) ∈ V)
12 ghmqusker.f . . . . . 6 (𝜑𝐹 ∈ (𝐺 GrpHom 𝐻))
13 ghmgrp1 19088 . . . . . 6 (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐺 ∈ Grp)
1412, 13syl 17 . . . . 5 (𝜑𝐺 ∈ Grp)
159, 10, 11, 14qusbas 17487 . . . 4 (𝜑 → ((Base‘𝐺) / (𝐺 ~QG 𝐾)) = (Base‘𝑄))
167, 15eleqtrd 2835 . . 3 (𝜑 → [𝑋](𝐺 ~QG 𝐾) ∈ (Base‘𝑄))
1712imaexd 31891 . . . 4 (𝜑 → (𝐹 “ [𝑋](𝐺 ~QG 𝐾)) ∈ V)
1817uniexd 7728 . . 3 (𝜑 (𝐹 “ [𝑋](𝐺 ~QG 𝐾)) ∈ V)
191, 3, 16, 18fvmptd3 7018 . 2 (𝜑 → (𝐽‘[𝑋](𝐺 ~QG 𝐾)) = (𝐹 “ [𝑋](𝐺 ~QG 𝐾)))
20 eqid 2732 . . . . . . . . . 10 (Base‘𝐺) = (Base‘𝐺)
21 eqid 2732 . . . . . . . . . 10 (Base‘𝐻) = (Base‘𝐻)
2220, 21ghmf 19090 . . . . . . . . 9 (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐹:(Base‘𝐺)⟶(Base‘𝐻))
2312, 22syl 17 . . . . . . . 8 (𝜑𝐹:(Base‘𝐺)⟶(Base‘𝐻))
2423ffnd 6715 . . . . . . 7 (𝜑𝐹 Fn (Base‘𝐺))
25 ghmqusker.k . . . . . . . . . 10 𝐾 = (𝐹 “ { 0 })
26 ghmqusker.1 . . . . . . . . . . . 12 0 = (0g𝐻)
2726ghmker 19112 . . . . . . . . . . 11 (𝐹 ∈ (𝐺 GrpHom 𝐻) → (𝐹 “ { 0 }) ∈ (NrmSGrp‘𝐺))
2812, 27syl 17 . . . . . . . . . 10 (𝜑 → (𝐹 “ { 0 }) ∈ (NrmSGrp‘𝐺))
2925, 28eqeltrid 2837 . . . . . . . . 9 (𝜑𝐾 ∈ (NrmSGrp‘𝐺))
30 nsgsubg 19032 . . . . . . . . 9 (𝐾 ∈ (NrmSGrp‘𝐺) → 𝐾 ∈ (SubGrp‘𝐺))
31 eqid 2732 . . . . . . . . . 10 (𝐺 ~QG 𝐾) = (𝐺 ~QG 𝐾)
3220, 31eqger 19052 . . . . . . . . 9 (𝐾 ∈ (SubGrp‘𝐺) → (𝐺 ~QG 𝐾) Er (Base‘𝐺))
3329, 30, 323syl 18 . . . . . . . 8 (𝜑 → (𝐺 ~QG 𝐾) Er (Base‘𝐺))
3433ecss 8745 . . . . . . 7 (𝜑 → [𝑋](𝐺 ~QG 𝐾) ⊆ (Base‘𝐺))
3524, 34fvelimabd 6962 . . . . . 6 (𝜑 → (𝑦 ∈ (𝐹 “ [𝑋](𝐺 ~QG 𝐾)) ↔ ∃𝑧 ∈ [ 𝑋](𝐺 ~QG 𝐾)(𝐹𝑧) = 𝑦))
36 simpr 485 . . . . . . . . . 10 (((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) ∧ (𝐹𝑧) = 𝑦) → (𝐹𝑧) = 𝑦)
3712adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
38 eqid 2732 . . . . . . . . . . . . . . . 16 (invg𝐺) = (invg𝐺)
3937, 13syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → 𝐺 ∈ Grp)
404adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → 𝑋 ∈ (Base‘𝐺))
4120, 38, 39, 40grpinvcld 18869 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → ((invg𝐺)‘𝑋) ∈ (Base‘𝐺))
4234sselda 3981 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → 𝑧 ∈ (Base‘𝐺))
43 eqid 2732 . . . . . . . . . . . . . . . 16 (+g𝐺) = (+g𝐺)
44 eqid 2732 . . . . . . . . . . . . . . . 16 (+g𝐻) = (+g𝐻)
4520, 43, 44ghmlin 19091 . . . . . . . . . . . . . . 15 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ ((invg𝐺)‘𝑋) ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺)) → (𝐹‘(((invg𝐺)‘𝑋)(+g𝐺)𝑧)) = ((𝐹‘((invg𝐺)‘𝑋))(+g𝐻)(𝐹𝑧)))
4637, 41, 42, 45syl3anc 1371 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → (𝐹‘(((invg𝐺)‘𝑋)(+g𝐺)𝑧)) = ((𝐹‘((invg𝐺)‘𝑋))(+g𝐻)(𝐹𝑧)))
4724adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → 𝐹 Fn (Base‘𝐺))
4820subgss 19001 . . . . . . . . . . . . . . . . . . . 20 (𝐾 ∈ (SubGrp‘𝐺) → 𝐾 ⊆ (Base‘𝐺))
4929, 30, 483syl 18 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐾 ⊆ (Base‘𝐺))
5049adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → 𝐾 ⊆ (Base‘𝐺))
51 vex 3478 . . . . . . . . . . . . . . . . . . . . 21 𝑧 ∈ V
52 elecg 8742 . . . . . . . . . . . . . . . . . . . . 21 ((𝑧 ∈ V ∧ 𝑋 ∈ (Base‘𝐺)) → (𝑧 ∈ [𝑋](𝐺 ~QG 𝐾) ↔ 𝑋(𝐺 ~QG 𝐾)𝑧))
5351, 52mpan 688 . . . . . . . . . . . . . . . . . . . 20 (𝑋 ∈ (Base‘𝐺) → (𝑧 ∈ [𝑋](𝐺 ~QG 𝐾) ↔ 𝑋(𝐺 ~QG 𝐾)𝑧))
5453biimpa 477 . . . . . . . . . . . . . . . . . . 19 ((𝑋 ∈ (Base‘𝐺) ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → 𝑋(𝐺 ~QG 𝐾)𝑧)
554, 54sylan 580 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → 𝑋(𝐺 ~QG 𝐾)𝑧)
5620, 38, 43, 31eqgval 19051 . . . . . . . . . . . . . . . . . . . 20 ((𝐺 ∈ Grp ∧ 𝐾 ⊆ (Base‘𝐺)) → (𝑋(𝐺 ~QG 𝐾)𝑧 ↔ (𝑋 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺) ∧ (((invg𝐺)‘𝑋)(+g𝐺)𝑧) ∈ 𝐾)))
5756biimpa 477 . . . . . . . . . . . . . . . . . . 19 (((𝐺 ∈ Grp ∧ 𝐾 ⊆ (Base‘𝐺)) ∧ 𝑋(𝐺 ~QG 𝐾)𝑧) → (𝑋 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺) ∧ (((invg𝐺)‘𝑋)(+g𝐺)𝑧) ∈ 𝐾))
5857simp3d 1144 . . . . . . . . . . . . . . . . . 18 (((𝐺 ∈ Grp ∧ 𝐾 ⊆ (Base‘𝐺)) ∧ 𝑋(𝐺 ~QG 𝐾)𝑧) → (((invg𝐺)‘𝑋)(+g𝐺)𝑧) ∈ 𝐾)
5939, 50, 55, 58syl21anc 836 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → (((invg𝐺)‘𝑋)(+g𝐺)𝑧) ∈ 𝐾)
6059, 25eleqtrdi 2843 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → (((invg𝐺)‘𝑋)(+g𝐺)𝑧) ∈ (𝐹 “ { 0 }))
61 fniniseg 7058 . . . . . . . . . . . . . . . . 17 (𝐹 Fn (Base‘𝐺) → ((((invg𝐺)‘𝑋)(+g𝐺)𝑧) ∈ (𝐹 “ { 0 }) ↔ ((((invg𝐺)‘𝑋)(+g𝐺)𝑧) ∈ (Base‘𝐺) ∧ (𝐹‘(((invg𝐺)‘𝑋)(+g𝐺)𝑧)) = 0 )))
6261biimpa 477 . . . . . . . . . . . . . . . 16 ((𝐹 Fn (Base‘𝐺) ∧ (((invg𝐺)‘𝑋)(+g𝐺)𝑧) ∈ (𝐹 “ { 0 })) → ((((invg𝐺)‘𝑋)(+g𝐺)𝑧) ∈ (Base‘𝐺) ∧ (𝐹‘(((invg𝐺)‘𝑋)(+g𝐺)𝑧)) = 0 ))
6347, 60, 62syl2anc 584 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → ((((invg𝐺)‘𝑋)(+g𝐺)𝑧) ∈ (Base‘𝐺) ∧ (𝐹‘(((invg𝐺)‘𝑋)(+g𝐺)𝑧)) = 0 ))
6463simprd 496 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → (𝐹‘(((invg𝐺)‘𝑋)(+g𝐺)𝑧)) = 0 )
6546, 64eqtr3d 2774 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → ((𝐹‘((invg𝐺)‘𝑋))(+g𝐻)(𝐹𝑧)) = 0 )
6665oveq2d 7421 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → ((𝐹𝑋)(+g𝐻)((𝐹‘((invg𝐺)‘𝑋))(+g𝐻)(𝐹𝑧))) = ((𝐹𝑋)(+g𝐻) 0 ))
67 eqid 2732 . . . . . . . . . . . . . . . . 17 (invg𝐻) = (invg𝐻)
6820, 38, 67ghminv 19093 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑋 ∈ (Base‘𝐺)) → (𝐹‘((invg𝐺)‘𝑋)) = ((invg𝐻)‘(𝐹𝑋)))
6937, 40, 68syl2anc 584 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → (𝐹‘((invg𝐺)‘𝑋)) = ((invg𝐻)‘(𝐹𝑋)))
7069oveq1d 7420 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → ((𝐹‘((invg𝐺)‘𝑋))(+g𝐻)(𝐹𝑧)) = (((invg𝐻)‘(𝐹𝑋))(+g𝐻)(𝐹𝑧)))
7170oveq2d 7421 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → ((𝐹𝑋)(+g𝐻)((𝐹‘((invg𝐺)‘𝑋))(+g𝐻)(𝐹𝑧))) = ((𝐹𝑋)(+g𝐻)(((invg𝐻)‘(𝐹𝑋))(+g𝐻)(𝐹𝑧))))
72 ghmgrp2 19089 . . . . . . . . . . . . . . 15 (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐻 ∈ Grp)
7337, 72syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → 𝐻 ∈ Grp)
7437, 22syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → 𝐹:(Base‘𝐺)⟶(Base‘𝐻))
7574, 40ffvelcdmd 7084 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → (𝐹𝑋) ∈ (Base‘𝐻))
7674, 42ffvelcdmd 7084 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → (𝐹𝑧) ∈ (Base‘𝐻))
7721, 44, 67grpasscan1 18882 . . . . . . . . . . . . . 14 ((𝐻 ∈ Grp ∧ (𝐹𝑋) ∈ (Base‘𝐻) ∧ (𝐹𝑧) ∈ (Base‘𝐻)) → ((𝐹𝑋)(+g𝐻)(((invg𝐻)‘(𝐹𝑋))(+g𝐻)(𝐹𝑧))) = (𝐹𝑧))
7873, 75, 76, 77syl3anc 1371 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → ((𝐹𝑋)(+g𝐻)(((invg𝐻)‘(𝐹𝑋))(+g𝐻)(𝐹𝑧))) = (𝐹𝑧))
7971, 78eqtrd 2772 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → ((𝐹𝑋)(+g𝐻)((𝐹‘((invg𝐺)‘𝑋))(+g𝐻)(𝐹𝑧))) = (𝐹𝑧))
8021, 44, 26grprid 18849 . . . . . . . . . . . . 13 ((𝐻 ∈ Grp ∧ (𝐹𝑋) ∈ (Base‘𝐻)) → ((𝐹𝑋)(+g𝐻) 0 ) = (𝐹𝑋))
8173, 75, 80syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → ((𝐹𝑋)(+g𝐻) 0 ) = (𝐹𝑋))
8266, 79, 813eqtr3d 2780 . . . . . . . . . . 11 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → (𝐹𝑧) = (𝐹𝑋))
8382adantr 481 . . . . . . . . . 10 (((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) ∧ (𝐹𝑧) = 𝑦) → (𝐹𝑧) = (𝐹𝑋))
8436, 83eqtr3d 2774 . . . . . . . . 9 (((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) ∧ (𝐹𝑧) = 𝑦) → 𝑦 = (𝐹𝑋))
8584r19.29an 3158 . . . . . . . 8 ((𝜑 ∧ ∃𝑧 ∈ [ 𝑋](𝐺 ~QG 𝐾)(𝐹𝑧) = 𝑦) → 𝑦 = (𝐹𝑋))
86 ecref 31920 . . . . . . . . . . 11 (((𝐺 ~QG 𝐾) Er (Base‘𝐺) ∧ 𝑋 ∈ (Base‘𝐺)) → 𝑋 ∈ [𝑋](𝐺 ~QG 𝐾))
8733, 4, 86syl2anc 584 . . . . . . . . . 10 (𝜑𝑋 ∈ [𝑋](𝐺 ~QG 𝐾))
8887adantr 481 . . . . . . . . 9 ((𝜑𝑦 = (𝐹𝑋)) → 𝑋 ∈ [𝑋](𝐺 ~QG 𝐾))
89 fveqeq2 6897 . . . . . . . . . 10 (𝑧 = 𝑋 → ((𝐹𝑧) = 𝑦 ↔ (𝐹𝑋) = 𝑦))
9089adantl 482 . . . . . . . . 9 (((𝜑𝑦 = (𝐹𝑋)) ∧ 𝑧 = 𝑋) → ((𝐹𝑧) = 𝑦 ↔ (𝐹𝑋) = 𝑦))
91 simpr 485 . . . . . . . . . 10 ((𝜑𝑦 = (𝐹𝑋)) → 𝑦 = (𝐹𝑋))
9291eqcomd 2738 . . . . . . . . 9 ((𝜑𝑦 = (𝐹𝑋)) → (𝐹𝑋) = 𝑦)
9388, 90, 92rspcedvd 3614 . . . . . . . 8 ((𝜑𝑦 = (𝐹𝑋)) → ∃𝑧 ∈ [ 𝑋](𝐺 ~QG 𝐾)(𝐹𝑧) = 𝑦)
9485, 93impbida 799 . . . . . . 7 (𝜑 → (∃𝑧 ∈ [ 𝑋](𝐺 ~QG 𝐾)(𝐹𝑧) = 𝑦𝑦 = (𝐹𝑋)))
95 velsn 4643 . . . . . . 7 (𝑦 ∈ {(𝐹𝑋)} ↔ 𝑦 = (𝐹𝑋))
9694, 95bitr4di 288 . . . . . 6 (𝜑 → (∃𝑧 ∈ [ 𝑋](𝐺 ~QG 𝐾)(𝐹𝑧) = 𝑦𝑦 ∈ {(𝐹𝑋)}))
9735, 96bitrd 278 . . . . 5 (𝜑 → (𝑦 ∈ (𝐹 “ [𝑋](𝐺 ~QG 𝐾)) ↔ 𝑦 ∈ {(𝐹𝑋)}))
9897eqrdv 2730 . . . 4 (𝜑 → (𝐹 “ [𝑋](𝐺 ~QG 𝐾)) = {(𝐹𝑋)})
9998unieqd 4921 . . 3 (𝜑 (𝐹 “ [𝑋](𝐺 ~QG 𝐾)) = {(𝐹𝑋)})
100 fvex 6901 . . . 4 (𝐹𝑋) ∈ V
101100unisn 4929 . . 3 {(𝐹𝑋)} = (𝐹𝑋)
10299, 101eqtrdi 2788 . 2 (𝜑 (𝐹 “ [𝑋](𝐺 ~QG 𝐾)) = (𝐹𝑋))
10319, 102eqtrd 2772 1 (𝜑 → (𝐽‘[𝑋](𝐺 ~QG 𝐾)) = (𝐹𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wrex 3070  Vcvv 3474  wss 3947  {csn 4627   cuni 4907   class class class wbr 5147  cmpt 5230  ccnv 5674  cima 5678   Fn wfn 6535  wf 6536  cfv 6540  (class class class)co 7405   Er wer 8696  [cec 8697   / cqs 8698  Basecbs 17140  +gcplusg 17193  0gc0g 17381   /s cqus 17447  Grpcgrp 18815  invgcminusg 18816  SubGrpcsubg 18994  NrmSGrpcnsg 18995   ~QG cqg 18996   GrpHom cghm 19083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-ec 8701  df-qs 8705  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-inf 9434  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-fz 13481  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-sca 17209  df-vsca 17210  df-ip 17211  df-tset 17212  df-ple 17213  df-ds 17215  df-0g 17383  df-imas 17450  df-qus 17451  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-submnd 18668  df-grp 18818  df-minusg 18819  df-sbg 18820  df-subg 18997  df-nsg 18998  df-eqg 18999  df-ghm 19084
This theorem is referenced by:  ghmquskerco  32517  ghmquskerlem2  32518  ghmquskerlem3  32519  ghmqusker  32520  lmhmqusker  32522  rhmquskerlem  32531
  Copyright terms: Public domain W3C validator