MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmquskerlem1 Structured version   Visualization version   GIF version

Theorem ghmquskerlem1 19225
Description: Lemma for ghmqusker 19229. (Contributed by Thierry Arnoux, 14-Feb-2025.)
Hypotheses
Ref Expression
ghmqusker.1 0 = (0g𝐻)
ghmqusker.f (𝜑𝐹 ∈ (𝐺 GrpHom 𝐻))
ghmqusker.k 𝐾 = (𝐹 “ { 0 })
ghmqusker.q 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾))
ghmqusker.j 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ (𝐹𝑞))
ghmquskerlem1.x (𝜑𝑋 ∈ (Base‘𝐺))
Assertion
Ref Expression
ghmquskerlem1 (𝜑 → (𝐽‘[𝑋](𝐺 ~QG 𝐾)) = (𝐹𝑋))
Distinct variable groups:   𝐹,𝑞   𝐺,𝑞   𝐻,𝑞   𝐽,𝑞   𝐾,𝑞   𝑄,𝑞   𝑋,𝑞   𝜑,𝑞
Allowed substitution hint:   0 (𝑞)

Proof of Theorem ghmquskerlem1
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ghmqusker.j . . 3 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ (𝐹𝑞))
2 imaeq2 6053 . . . 4 (𝑞 = [𝑋](𝐺 ~QG 𝐾) → (𝐹𝑞) = (𝐹 “ [𝑋](𝐺 ~QG 𝐾)))
32unieqd 4916 . . 3 (𝑞 = [𝑋](𝐺 ~QG 𝐾) → (𝐹𝑞) = (𝐹 “ [𝑋](𝐺 ~QG 𝐾)))
4 ghmquskerlem1.x . . . . 5 (𝜑𝑋 ∈ (Base‘𝐺))
5 ovex 7447 . . . . . 6 (𝐺 ~QG 𝐾) ∈ V
65ecelqsi 8783 . . . . 5 (𝑋 ∈ (Base‘𝐺) → [𝑋](𝐺 ~QG 𝐾) ∈ ((Base‘𝐺) / (𝐺 ~QG 𝐾)))
74, 6syl 17 . . . 4 (𝜑 → [𝑋](𝐺 ~QG 𝐾) ∈ ((Base‘𝐺) / (𝐺 ~QG 𝐾)))
8 ghmqusker.q . . . . . 6 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾))
98a1i 11 . . . . 5 (𝜑𝑄 = (𝐺 /s (𝐺 ~QG 𝐾)))
10 eqidd 2728 . . . . 5 (𝜑 → (Base‘𝐺) = (Base‘𝐺))
11 ovexd 7449 . . . . 5 (𝜑 → (𝐺 ~QG 𝐾) ∈ V)
12 ghmqusker.f . . . . . 6 (𝜑𝐹 ∈ (𝐺 GrpHom 𝐻))
13 ghmgrp1 19163 . . . . . 6 (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐺 ∈ Grp)
1412, 13syl 17 . . . . 5 (𝜑𝐺 ∈ Grp)
159, 10, 11, 14qusbas 17518 . . . 4 (𝜑 → ((Base‘𝐺) / (𝐺 ~QG 𝐾)) = (Base‘𝑄))
167, 15eleqtrd 2830 . . 3 (𝜑 → [𝑋](𝐺 ~QG 𝐾) ∈ (Base‘𝑄))
1712imaexd 7918 . . . 4 (𝜑 → (𝐹 “ [𝑋](𝐺 ~QG 𝐾)) ∈ V)
1817uniexd 7741 . . 3 (𝜑 (𝐹 “ [𝑋](𝐺 ~QG 𝐾)) ∈ V)
191, 3, 16, 18fvmptd3 7022 . 2 (𝜑 → (𝐽‘[𝑋](𝐺 ~QG 𝐾)) = (𝐹 “ [𝑋](𝐺 ~QG 𝐾)))
20 eqid 2727 . . . . . . . . . 10 (Base‘𝐺) = (Base‘𝐺)
21 eqid 2727 . . . . . . . . . 10 (Base‘𝐻) = (Base‘𝐻)
2220, 21ghmf 19165 . . . . . . . . 9 (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐹:(Base‘𝐺)⟶(Base‘𝐻))
2312, 22syl 17 . . . . . . . 8 (𝜑𝐹:(Base‘𝐺)⟶(Base‘𝐻))
2423ffnd 6717 . . . . . . 7 (𝜑𝐹 Fn (Base‘𝐺))
25 ghmqusker.k . . . . . . . . . 10 𝐾 = (𝐹 “ { 0 })
26 ghmqusker.1 . . . . . . . . . . . 12 0 = (0g𝐻)
2726ghmker 19187 . . . . . . . . . . 11 (𝐹 ∈ (𝐺 GrpHom 𝐻) → (𝐹 “ { 0 }) ∈ (NrmSGrp‘𝐺))
2812, 27syl 17 . . . . . . . . . 10 (𝜑 → (𝐹 “ { 0 }) ∈ (NrmSGrp‘𝐺))
2925, 28eqeltrid 2832 . . . . . . . . 9 (𝜑𝐾 ∈ (NrmSGrp‘𝐺))
30 nsgsubg 19104 . . . . . . . . 9 (𝐾 ∈ (NrmSGrp‘𝐺) → 𝐾 ∈ (SubGrp‘𝐺))
31 eqid 2727 . . . . . . . . . 10 (𝐺 ~QG 𝐾) = (𝐺 ~QG 𝐾)
3220, 31eqger 19124 . . . . . . . . 9 (𝐾 ∈ (SubGrp‘𝐺) → (𝐺 ~QG 𝐾) Er (Base‘𝐺))
3329, 30, 323syl 18 . . . . . . . 8 (𝜑 → (𝐺 ~QG 𝐾) Er (Base‘𝐺))
3433ecss 8765 . . . . . . 7 (𝜑 → [𝑋](𝐺 ~QG 𝐾) ⊆ (Base‘𝐺))
3524, 34fvelimabd 6966 . . . . . 6 (𝜑 → (𝑦 ∈ (𝐹 “ [𝑋](𝐺 ~QG 𝐾)) ↔ ∃𝑧 ∈ [ 𝑋](𝐺 ~QG 𝐾)(𝐹𝑧) = 𝑦))
36 simpr 484 . . . . . . . . . 10 (((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) ∧ (𝐹𝑧) = 𝑦) → (𝐹𝑧) = 𝑦)
3712adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
38 eqid 2727 . . . . . . . . . . . . . . . 16 (invg𝐺) = (invg𝐺)
3937, 13syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → 𝐺 ∈ Grp)
404adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → 𝑋 ∈ (Base‘𝐺))
4120, 38, 39, 40grpinvcld 18936 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → ((invg𝐺)‘𝑋) ∈ (Base‘𝐺))
4234sselda 3978 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → 𝑧 ∈ (Base‘𝐺))
43 eqid 2727 . . . . . . . . . . . . . . . 16 (+g𝐺) = (+g𝐺)
44 eqid 2727 . . . . . . . . . . . . . . . 16 (+g𝐻) = (+g𝐻)
4520, 43, 44ghmlin 19166 . . . . . . . . . . . . . . 15 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ ((invg𝐺)‘𝑋) ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺)) → (𝐹‘(((invg𝐺)‘𝑋)(+g𝐺)𝑧)) = ((𝐹‘((invg𝐺)‘𝑋))(+g𝐻)(𝐹𝑧)))
4637, 41, 42, 45syl3anc 1369 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → (𝐹‘(((invg𝐺)‘𝑋)(+g𝐺)𝑧)) = ((𝐹‘((invg𝐺)‘𝑋))(+g𝐻)(𝐹𝑧)))
4724adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → 𝐹 Fn (Base‘𝐺))
4820subgss 19073 . . . . . . . . . . . . . . . . . . . 20 (𝐾 ∈ (SubGrp‘𝐺) → 𝐾 ⊆ (Base‘𝐺))
4929, 30, 483syl 18 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐾 ⊆ (Base‘𝐺))
5049adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → 𝐾 ⊆ (Base‘𝐺))
51 vex 3473 . . . . . . . . . . . . . . . . . . . . 21 𝑧 ∈ V
52 elecg 8761 . . . . . . . . . . . . . . . . . . . . 21 ((𝑧 ∈ V ∧ 𝑋 ∈ (Base‘𝐺)) → (𝑧 ∈ [𝑋](𝐺 ~QG 𝐾) ↔ 𝑋(𝐺 ~QG 𝐾)𝑧))
5351, 52mpan 689 . . . . . . . . . . . . . . . . . . . 20 (𝑋 ∈ (Base‘𝐺) → (𝑧 ∈ [𝑋](𝐺 ~QG 𝐾) ↔ 𝑋(𝐺 ~QG 𝐾)𝑧))
5453biimpa 476 . . . . . . . . . . . . . . . . . . 19 ((𝑋 ∈ (Base‘𝐺) ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → 𝑋(𝐺 ~QG 𝐾)𝑧)
554, 54sylan 579 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → 𝑋(𝐺 ~QG 𝐾)𝑧)
5620, 38, 43, 31eqgval 19123 . . . . . . . . . . . . . . . . . . . 20 ((𝐺 ∈ Grp ∧ 𝐾 ⊆ (Base‘𝐺)) → (𝑋(𝐺 ~QG 𝐾)𝑧 ↔ (𝑋 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺) ∧ (((invg𝐺)‘𝑋)(+g𝐺)𝑧) ∈ 𝐾)))
5756biimpa 476 . . . . . . . . . . . . . . . . . . 19 (((𝐺 ∈ Grp ∧ 𝐾 ⊆ (Base‘𝐺)) ∧ 𝑋(𝐺 ~QG 𝐾)𝑧) → (𝑋 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺) ∧ (((invg𝐺)‘𝑋)(+g𝐺)𝑧) ∈ 𝐾))
5857simp3d 1142 . . . . . . . . . . . . . . . . . 18 (((𝐺 ∈ Grp ∧ 𝐾 ⊆ (Base‘𝐺)) ∧ 𝑋(𝐺 ~QG 𝐾)𝑧) → (((invg𝐺)‘𝑋)(+g𝐺)𝑧) ∈ 𝐾)
5939, 50, 55, 58syl21anc 837 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → (((invg𝐺)‘𝑋)(+g𝐺)𝑧) ∈ 𝐾)
6059, 25eleqtrdi 2838 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → (((invg𝐺)‘𝑋)(+g𝐺)𝑧) ∈ (𝐹 “ { 0 }))
61 fniniseg 7063 . . . . . . . . . . . . . . . . 17 (𝐹 Fn (Base‘𝐺) → ((((invg𝐺)‘𝑋)(+g𝐺)𝑧) ∈ (𝐹 “ { 0 }) ↔ ((((invg𝐺)‘𝑋)(+g𝐺)𝑧) ∈ (Base‘𝐺) ∧ (𝐹‘(((invg𝐺)‘𝑋)(+g𝐺)𝑧)) = 0 )))
6261biimpa 476 . . . . . . . . . . . . . . . 16 ((𝐹 Fn (Base‘𝐺) ∧ (((invg𝐺)‘𝑋)(+g𝐺)𝑧) ∈ (𝐹 “ { 0 })) → ((((invg𝐺)‘𝑋)(+g𝐺)𝑧) ∈ (Base‘𝐺) ∧ (𝐹‘(((invg𝐺)‘𝑋)(+g𝐺)𝑧)) = 0 ))
6347, 60, 62syl2anc 583 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → ((((invg𝐺)‘𝑋)(+g𝐺)𝑧) ∈ (Base‘𝐺) ∧ (𝐹‘(((invg𝐺)‘𝑋)(+g𝐺)𝑧)) = 0 ))
6463simprd 495 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → (𝐹‘(((invg𝐺)‘𝑋)(+g𝐺)𝑧)) = 0 )
6546, 64eqtr3d 2769 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → ((𝐹‘((invg𝐺)‘𝑋))(+g𝐻)(𝐹𝑧)) = 0 )
6665oveq2d 7430 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → ((𝐹𝑋)(+g𝐻)((𝐹‘((invg𝐺)‘𝑋))(+g𝐻)(𝐹𝑧))) = ((𝐹𝑋)(+g𝐻) 0 ))
67 eqid 2727 . . . . . . . . . . . . . . . . 17 (invg𝐻) = (invg𝐻)
6820, 38, 67ghminv 19168 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑋 ∈ (Base‘𝐺)) → (𝐹‘((invg𝐺)‘𝑋)) = ((invg𝐻)‘(𝐹𝑋)))
6937, 40, 68syl2anc 583 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → (𝐹‘((invg𝐺)‘𝑋)) = ((invg𝐻)‘(𝐹𝑋)))
7069oveq1d 7429 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → ((𝐹‘((invg𝐺)‘𝑋))(+g𝐻)(𝐹𝑧)) = (((invg𝐻)‘(𝐹𝑋))(+g𝐻)(𝐹𝑧)))
7170oveq2d 7430 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → ((𝐹𝑋)(+g𝐻)((𝐹‘((invg𝐺)‘𝑋))(+g𝐻)(𝐹𝑧))) = ((𝐹𝑋)(+g𝐻)(((invg𝐻)‘(𝐹𝑋))(+g𝐻)(𝐹𝑧))))
72 ghmgrp2 19164 . . . . . . . . . . . . . . 15 (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐻 ∈ Grp)
7337, 72syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → 𝐻 ∈ Grp)
7437, 22syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → 𝐹:(Base‘𝐺)⟶(Base‘𝐻))
7574, 40ffvelcdmd 7089 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → (𝐹𝑋) ∈ (Base‘𝐻))
7674, 42ffvelcdmd 7089 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → (𝐹𝑧) ∈ (Base‘𝐻))
7721, 44, 67grpasscan1 18949 . . . . . . . . . . . . . 14 ((𝐻 ∈ Grp ∧ (𝐹𝑋) ∈ (Base‘𝐻) ∧ (𝐹𝑧) ∈ (Base‘𝐻)) → ((𝐹𝑋)(+g𝐻)(((invg𝐻)‘(𝐹𝑋))(+g𝐻)(𝐹𝑧))) = (𝐹𝑧))
7873, 75, 76, 77syl3anc 1369 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → ((𝐹𝑋)(+g𝐻)(((invg𝐻)‘(𝐹𝑋))(+g𝐻)(𝐹𝑧))) = (𝐹𝑧))
7971, 78eqtrd 2767 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → ((𝐹𝑋)(+g𝐻)((𝐹‘((invg𝐺)‘𝑋))(+g𝐻)(𝐹𝑧))) = (𝐹𝑧))
8021, 44, 26grprid 18916 . . . . . . . . . . . . 13 ((𝐻 ∈ Grp ∧ (𝐹𝑋) ∈ (Base‘𝐻)) → ((𝐹𝑋)(+g𝐻) 0 ) = (𝐹𝑋))
8173, 75, 80syl2anc 583 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → ((𝐹𝑋)(+g𝐻) 0 ) = (𝐹𝑋))
8266, 79, 813eqtr3d 2775 . . . . . . . . . . 11 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → (𝐹𝑧) = (𝐹𝑋))
8382adantr 480 . . . . . . . . . 10 (((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) ∧ (𝐹𝑧) = 𝑦) → (𝐹𝑧) = (𝐹𝑋))
8436, 83eqtr3d 2769 . . . . . . . . 9 (((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) ∧ (𝐹𝑧) = 𝑦) → 𝑦 = (𝐹𝑋))
8584r19.29an 3153 . . . . . . . 8 ((𝜑 ∧ ∃𝑧 ∈ [ 𝑋](𝐺 ~QG 𝐾)(𝐹𝑧) = 𝑦) → 𝑦 = (𝐹𝑋))
86 ecref 8762 . . . . . . . . . . 11 (((𝐺 ~QG 𝐾) Er (Base‘𝐺) ∧ 𝑋 ∈ (Base‘𝐺)) → 𝑋 ∈ [𝑋](𝐺 ~QG 𝐾))
8733, 4, 86syl2anc 583 . . . . . . . . . 10 (𝜑𝑋 ∈ [𝑋](𝐺 ~QG 𝐾))
8887adantr 480 . . . . . . . . 9 ((𝜑𝑦 = (𝐹𝑋)) → 𝑋 ∈ [𝑋](𝐺 ~QG 𝐾))
89 fveqeq2 6900 . . . . . . . . . 10 (𝑧 = 𝑋 → ((𝐹𝑧) = 𝑦 ↔ (𝐹𝑋) = 𝑦))
9089adantl 481 . . . . . . . . 9 (((𝜑𝑦 = (𝐹𝑋)) ∧ 𝑧 = 𝑋) → ((𝐹𝑧) = 𝑦 ↔ (𝐹𝑋) = 𝑦))
91 simpr 484 . . . . . . . . . 10 ((𝜑𝑦 = (𝐹𝑋)) → 𝑦 = (𝐹𝑋))
9291eqcomd 2733 . . . . . . . . 9 ((𝜑𝑦 = (𝐹𝑋)) → (𝐹𝑋) = 𝑦)
9388, 90, 92rspcedvd 3609 . . . . . . . 8 ((𝜑𝑦 = (𝐹𝑋)) → ∃𝑧 ∈ [ 𝑋](𝐺 ~QG 𝐾)(𝐹𝑧) = 𝑦)
9485, 93impbida 800 . . . . . . 7 (𝜑 → (∃𝑧 ∈ [ 𝑋](𝐺 ~QG 𝐾)(𝐹𝑧) = 𝑦𝑦 = (𝐹𝑋)))
95 velsn 4640 . . . . . . 7 (𝑦 ∈ {(𝐹𝑋)} ↔ 𝑦 = (𝐹𝑋))
9694, 95bitr4di 289 . . . . . 6 (𝜑 → (∃𝑧 ∈ [ 𝑋](𝐺 ~QG 𝐾)(𝐹𝑧) = 𝑦𝑦 ∈ {(𝐹𝑋)}))
9735, 96bitrd 279 . . . . 5 (𝜑 → (𝑦 ∈ (𝐹 “ [𝑋](𝐺 ~QG 𝐾)) ↔ 𝑦 ∈ {(𝐹𝑋)}))
9897eqrdv 2725 . . . 4 (𝜑 → (𝐹 “ [𝑋](𝐺 ~QG 𝐾)) = {(𝐹𝑋)})
9998unieqd 4916 . . 3 (𝜑 (𝐹 “ [𝑋](𝐺 ~QG 𝐾)) = {(𝐹𝑋)})
100 fvex 6904 . . . 4 (𝐹𝑋) ∈ V
101100unisn 4924 . . 3 {(𝐹𝑋)} = (𝐹𝑋)
10299, 101eqtrdi 2783 . 2 (𝜑 (𝐹 “ [𝑋](𝐺 ~QG 𝐾)) = (𝐹𝑋))
10319, 102eqtrd 2767 1 (𝜑 → (𝐽‘[𝑋](𝐺 ~QG 𝐾)) = (𝐹𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1534  wcel 2099  wrex 3065  Vcvv 3469  wss 3944  {csn 4624   cuni 4903   class class class wbr 5142  cmpt 5225  ccnv 5671  cima 5675   Fn wfn 6537  wf 6538  cfv 6542  (class class class)co 7414   Er wer 8715  [cec 8716   / cqs 8717  Basecbs 17171  +gcplusg 17224  0gc0g 17412   /s cqus 17478  Grpcgrp 18881  invgcminusg 18882  SubGrpcsubg 19066  NrmSGrpcnsg 19067   ~QG cqg 19068   GrpHom cghm 19158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-ec 8720  df-qs 8724  df-en 8956  df-dom 8957  df-sdom 8958  df-fin 8959  df-sup 9457  df-inf 9458  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-nn 12235  df-2 12297  df-3 12298  df-4 12299  df-5 12300  df-6 12301  df-7 12302  df-8 12303  df-9 12304  df-n0 12495  df-z 12581  df-dec 12700  df-uz 12845  df-fz 13509  df-struct 17107  df-sets 17124  df-slot 17142  df-ndx 17154  df-base 17172  df-ress 17201  df-plusg 17237  df-mulr 17238  df-sca 17240  df-vsca 17241  df-ip 17242  df-tset 17243  df-ple 17244  df-ds 17246  df-0g 17414  df-imas 17481  df-qus 17482  df-mgm 18591  df-sgrp 18670  df-mnd 18686  df-submnd 18732  df-grp 18884  df-minusg 18885  df-sbg 18886  df-subg 19069  df-nsg 19070  df-eqg 19071  df-ghm 19159
This theorem is referenced by:  ghmquskerco  19226  ghmquskerlem2  19227  ghmquskerlem3  19228  ghmqusker  19229  lmhmqusker  33067  rhmquskerlem  33076
  Copyright terms: Public domain W3C validator