MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmquskerlem1 Structured version   Visualization version   GIF version

Theorem ghmquskerlem1 19233
Description: Lemma for ghmqusker 19237. (Contributed by Thierry Arnoux, 14-Feb-2025.)
Hypotheses
Ref Expression
ghmqusker.1 0 = (0g𝐻)
ghmqusker.f (𝜑𝐹 ∈ (𝐺 GrpHom 𝐻))
ghmqusker.k 𝐾 = (𝐹 “ { 0 })
ghmqusker.q 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾))
ghmqusker.j 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ (𝐹𝑞))
ghmquskerlem1.x (𝜑𝑋 ∈ (Base‘𝐺))
Assertion
Ref Expression
ghmquskerlem1 (𝜑 → (𝐽‘[𝑋](𝐺 ~QG 𝐾)) = (𝐹𝑋))
Distinct variable groups:   𝐹,𝑞   𝐺,𝑞   𝐻,𝑞   𝐽,𝑞   𝐾,𝑞   𝑄,𝑞   𝑋,𝑞   𝜑,𝑞
Allowed substitution hint:   0 (𝑞)

Proof of Theorem ghmquskerlem1
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ghmqusker.j . . 3 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ (𝐹𝑞))
2 imaeq2 6055 . . . 4 (𝑞 = [𝑋](𝐺 ~QG 𝐾) → (𝐹𝑞) = (𝐹 “ [𝑋](𝐺 ~QG 𝐾)))
32unieqd 4917 . . 3 (𝑞 = [𝑋](𝐺 ~QG 𝐾) → (𝐹𝑞) = (𝐹 “ [𝑋](𝐺 ~QG 𝐾)))
4 ghmquskerlem1.x . . . . 5 (𝜑𝑋 ∈ (Base‘𝐺))
5 ovex 7446 . . . . . 6 (𝐺 ~QG 𝐾) ∈ V
65ecelqsi 8785 . . . . 5 (𝑋 ∈ (Base‘𝐺) → [𝑋](𝐺 ~QG 𝐾) ∈ ((Base‘𝐺) / (𝐺 ~QG 𝐾)))
74, 6syl 17 . . . 4 (𝜑 → [𝑋](𝐺 ~QG 𝐾) ∈ ((Base‘𝐺) / (𝐺 ~QG 𝐾)))
8 ghmqusker.q . . . . . 6 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾))
98a1i 11 . . . . 5 (𝜑𝑄 = (𝐺 /s (𝐺 ~QG 𝐾)))
10 eqidd 2726 . . . . 5 (𝜑 → (Base‘𝐺) = (Base‘𝐺))
11 ovexd 7448 . . . . 5 (𝜑 → (𝐺 ~QG 𝐾) ∈ V)
12 ghmqusker.f . . . . . 6 (𝜑𝐹 ∈ (𝐺 GrpHom 𝐻))
13 ghmgrp1 19171 . . . . . 6 (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐺 ∈ Grp)
1412, 13syl 17 . . . . 5 (𝜑𝐺 ∈ Grp)
159, 10, 11, 14qusbas 17521 . . . 4 (𝜑 → ((Base‘𝐺) / (𝐺 ~QG 𝐾)) = (Base‘𝑄))
167, 15eleqtrd 2827 . . 3 (𝜑 → [𝑋](𝐺 ~QG 𝐾) ∈ (Base‘𝑄))
1712imaexd 7918 . . . 4 (𝜑 → (𝐹 “ [𝑋](𝐺 ~QG 𝐾)) ∈ V)
1817uniexd 7742 . . 3 (𝜑 (𝐹 “ [𝑋](𝐺 ~QG 𝐾)) ∈ V)
191, 3, 16, 18fvmptd3 7021 . 2 (𝜑 → (𝐽‘[𝑋](𝐺 ~QG 𝐾)) = (𝐹 “ [𝑋](𝐺 ~QG 𝐾)))
20 eqid 2725 . . . . . . . . . 10 (Base‘𝐺) = (Base‘𝐺)
21 eqid 2725 . . . . . . . . . 10 (Base‘𝐻) = (Base‘𝐻)
2220, 21ghmf 19173 . . . . . . . . 9 (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐹:(Base‘𝐺)⟶(Base‘𝐻))
2312, 22syl 17 . . . . . . . 8 (𝜑𝐹:(Base‘𝐺)⟶(Base‘𝐻))
2423ffnd 6718 . . . . . . 7 (𝜑𝐹 Fn (Base‘𝐺))
25 ghmqusker.k . . . . . . . . . 10 𝐾 = (𝐹 “ { 0 })
26 ghmqusker.1 . . . . . . . . . . . 12 0 = (0g𝐻)
2726ghmker 19195 . . . . . . . . . . 11 (𝐹 ∈ (𝐺 GrpHom 𝐻) → (𝐹 “ { 0 }) ∈ (NrmSGrp‘𝐺))
2812, 27syl 17 . . . . . . . . . 10 (𝜑 → (𝐹 “ { 0 }) ∈ (NrmSGrp‘𝐺))
2925, 28eqeltrid 2829 . . . . . . . . 9 (𝜑𝐾 ∈ (NrmSGrp‘𝐺))
30 nsgsubg 19112 . . . . . . . . 9 (𝐾 ∈ (NrmSGrp‘𝐺) → 𝐾 ∈ (SubGrp‘𝐺))
31 eqid 2725 . . . . . . . . . 10 (𝐺 ~QG 𝐾) = (𝐺 ~QG 𝐾)
3220, 31eqger 19132 . . . . . . . . 9 (𝐾 ∈ (SubGrp‘𝐺) → (𝐺 ~QG 𝐾) Er (Base‘𝐺))
3329, 30, 323syl 18 . . . . . . . 8 (𝜑 → (𝐺 ~QG 𝐾) Er (Base‘𝐺))
3433ecss 8765 . . . . . . 7 (𝜑 → [𝑋](𝐺 ~QG 𝐾) ⊆ (Base‘𝐺))
3524, 34fvelimabd 6965 . . . . . 6 (𝜑 → (𝑦 ∈ (𝐹 “ [𝑋](𝐺 ~QG 𝐾)) ↔ ∃𝑧 ∈ [ 𝑋](𝐺 ~QG 𝐾)(𝐹𝑧) = 𝑦))
36 simpr 483 . . . . . . . . . 10 (((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) ∧ (𝐹𝑧) = 𝑦) → (𝐹𝑧) = 𝑦)
3712adantr 479 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
38 eqid 2725 . . . . . . . . . . . . . . . 16 (invg𝐺) = (invg𝐺)
3937, 13syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → 𝐺 ∈ Grp)
404adantr 479 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → 𝑋 ∈ (Base‘𝐺))
4120, 38, 39, 40grpinvcld 18944 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → ((invg𝐺)‘𝑋) ∈ (Base‘𝐺))
4234sselda 3973 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → 𝑧 ∈ (Base‘𝐺))
43 eqid 2725 . . . . . . . . . . . . . . . 16 (+g𝐺) = (+g𝐺)
44 eqid 2725 . . . . . . . . . . . . . . . 16 (+g𝐻) = (+g𝐻)
4520, 43, 44ghmlin 19174 . . . . . . . . . . . . . . 15 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ ((invg𝐺)‘𝑋) ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺)) → (𝐹‘(((invg𝐺)‘𝑋)(+g𝐺)𝑧)) = ((𝐹‘((invg𝐺)‘𝑋))(+g𝐻)(𝐹𝑧)))
4637, 41, 42, 45syl3anc 1368 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → (𝐹‘(((invg𝐺)‘𝑋)(+g𝐺)𝑧)) = ((𝐹‘((invg𝐺)‘𝑋))(+g𝐻)(𝐹𝑧)))
4724adantr 479 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → 𝐹 Fn (Base‘𝐺))
4820subgss 19081 . . . . . . . . . . . . . . . . . . . 20 (𝐾 ∈ (SubGrp‘𝐺) → 𝐾 ⊆ (Base‘𝐺))
4929, 30, 483syl 18 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐾 ⊆ (Base‘𝐺))
5049adantr 479 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → 𝐾 ⊆ (Base‘𝐺))
51 vex 3467 . . . . . . . . . . . . . . . . . . . . 21 𝑧 ∈ V
52 elecg 8761 . . . . . . . . . . . . . . . . . . . . 21 ((𝑧 ∈ V ∧ 𝑋 ∈ (Base‘𝐺)) → (𝑧 ∈ [𝑋](𝐺 ~QG 𝐾) ↔ 𝑋(𝐺 ~QG 𝐾)𝑧))
5351, 52mpan 688 . . . . . . . . . . . . . . . . . . . 20 (𝑋 ∈ (Base‘𝐺) → (𝑧 ∈ [𝑋](𝐺 ~QG 𝐾) ↔ 𝑋(𝐺 ~QG 𝐾)𝑧))
5453biimpa 475 . . . . . . . . . . . . . . . . . . 19 ((𝑋 ∈ (Base‘𝐺) ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → 𝑋(𝐺 ~QG 𝐾)𝑧)
554, 54sylan 578 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → 𝑋(𝐺 ~QG 𝐾)𝑧)
5620, 38, 43, 31eqgval 19131 . . . . . . . . . . . . . . . . . . . 20 ((𝐺 ∈ Grp ∧ 𝐾 ⊆ (Base‘𝐺)) → (𝑋(𝐺 ~QG 𝐾)𝑧 ↔ (𝑋 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺) ∧ (((invg𝐺)‘𝑋)(+g𝐺)𝑧) ∈ 𝐾)))
5756biimpa 475 . . . . . . . . . . . . . . . . . . 19 (((𝐺 ∈ Grp ∧ 𝐾 ⊆ (Base‘𝐺)) ∧ 𝑋(𝐺 ~QG 𝐾)𝑧) → (𝑋 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺) ∧ (((invg𝐺)‘𝑋)(+g𝐺)𝑧) ∈ 𝐾))
5857simp3d 1141 . . . . . . . . . . . . . . . . . 18 (((𝐺 ∈ Grp ∧ 𝐾 ⊆ (Base‘𝐺)) ∧ 𝑋(𝐺 ~QG 𝐾)𝑧) → (((invg𝐺)‘𝑋)(+g𝐺)𝑧) ∈ 𝐾)
5939, 50, 55, 58syl21anc 836 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → (((invg𝐺)‘𝑋)(+g𝐺)𝑧) ∈ 𝐾)
6059, 25eleqtrdi 2835 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → (((invg𝐺)‘𝑋)(+g𝐺)𝑧) ∈ (𝐹 “ { 0 }))
61 fniniseg 7062 . . . . . . . . . . . . . . . . 17 (𝐹 Fn (Base‘𝐺) → ((((invg𝐺)‘𝑋)(+g𝐺)𝑧) ∈ (𝐹 “ { 0 }) ↔ ((((invg𝐺)‘𝑋)(+g𝐺)𝑧) ∈ (Base‘𝐺) ∧ (𝐹‘(((invg𝐺)‘𝑋)(+g𝐺)𝑧)) = 0 )))
6261biimpa 475 . . . . . . . . . . . . . . . 16 ((𝐹 Fn (Base‘𝐺) ∧ (((invg𝐺)‘𝑋)(+g𝐺)𝑧) ∈ (𝐹 “ { 0 })) → ((((invg𝐺)‘𝑋)(+g𝐺)𝑧) ∈ (Base‘𝐺) ∧ (𝐹‘(((invg𝐺)‘𝑋)(+g𝐺)𝑧)) = 0 ))
6347, 60, 62syl2anc 582 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → ((((invg𝐺)‘𝑋)(+g𝐺)𝑧) ∈ (Base‘𝐺) ∧ (𝐹‘(((invg𝐺)‘𝑋)(+g𝐺)𝑧)) = 0 ))
6463simprd 494 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → (𝐹‘(((invg𝐺)‘𝑋)(+g𝐺)𝑧)) = 0 )
6546, 64eqtr3d 2767 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → ((𝐹‘((invg𝐺)‘𝑋))(+g𝐻)(𝐹𝑧)) = 0 )
6665oveq2d 7429 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → ((𝐹𝑋)(+g𝐻)((𝐹‘((invg𝐺)‘𝑋))(+g𝐻)(𝐹𝑧))) = ((𝐹𝑋)(+g𝐻) 0 ))
67 eqid 2725 . . . . . . . . . . . . . . . . 17 (invg𝐻) = (invg𝐻)
6820, 38, 67ghminv 19176 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑋 ∈ (Base‘𝐺)) → (𝐹‘((invg𝐺)‘𝑋)) = ((invg𝐻)‘(𝐹𝑋)))
6937, 40, 68syl2anc 582 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → (𝐹‘((invg𝐺)‘𝑋)) = ((invg𝐻)‘(𝐹𝑋)))
7069oveq1d 7428 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → ((𝐹‘((invg𝐺)‘𝑋))(+g𝐻)(𝐹𝑧)) = (((invg𝐻)‘(𝐹𝑋))(+g𝐻)(𝐹𝑧)))
7170oveq2d 7429 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → ((𝐹𝑋)(+g𝐻)((𝐹‘((invg𝐺)‘𝑋))(+g𝐻)(𝐹𝑧))) = ((𝐹𝑋)(+g𝐻)(((invg𝐻)‘(𝐹𝑋))(+g𝐻)(𝐹𝑧))))
72 ghmgrp2 19172 . . . . . . . . . . . . . . 15 (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐻 ∈ Grp)
7337, 72syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → 𝐻 ∈ Grp)
7437, 22syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → 𝐹:(Base‘𝐺)⟶(Base‘𝐻))
7574, 40ffvelcdmd 7088 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → (𝐹𝑋) ∈ (Base‘𝐻))
7674, 42ffvelcdmd 7088 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → (𝐹𝑧) ∈ (Base‘𝐻))
7721, 44, 67grpasscan1 18957 . . . . . . . . . . . . . 14 ((𝐻 ∈ Grp ∧ (𝐹𝑋) ∈ (Base‘𝐻) ∧ (𝐹𝑧) ∈ (Base‘𝐻)) → ((𝐹𝑋)(+g𝐻)(((invg𝐻)‘(𝐹𝑋))(+g𝐻)(𝐹𝑧))) = (𝐹𝑧))
7873, 75, 76, 77syl3anc 1368 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → ((𝐹𝑋)(+g𝐻)(((invg𝐻)‘(𝐹𝑋))(+g𝐻)(𝐹𝑧))) = (𝐹𝑧))
7971, 78eqtrd 2765 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → ((𝐹𝑋)(+g𝐻)((𝐹‘((invg𝐺)‘𝑋))(+g𝐻)(𝐹𝑧))) = (𝐹𝑧))
8021, 44, 26grprid 18924 . . . . . . . . . . . . 13 ((𝐻 ∈ Grp ∧ (𝐹𝑋) ∈ (Base‘𝐻)) → ((𝐹𝑋)(+g𝐻) 0 ) = (𝐹𝑋))
8173, 75, 80syl2anc 582 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → ((𝐹𝑋)(+g𝐻) 0 ) = (𝐹𝑋))
8266, 79, 813eqtr3d 2773 . . . . . . . . . . 11 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) → (𝐹𝑧) = (𝐹𝑋))
8382adantr 479 . . . . . . . . . 10 (((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) ∧ (𝐹𝑧) = 𝑦) → (𝐹𝑧) = (𝐹𝑋))
8436, 83eqtr3d 2767 . . . . . . . . 9 (((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝐾)) ∧ (𝐹𝑧) = 𝑦) → 𝑦 = (𝐹𝑋))
8584r19.29an 3148 . . . . . . . 8 ((𝜑 ∧ ∃𝑧 ∈ [ 𝑋](𝐺 ~QG 𝐾)(𝐹𝑧) = 𝑦) → 𝑦 = (𝐹𝑋))
86 ecref 8762 . . . . . . . . . . 11 (((𝐺 ~QG 𝐾) Er (Base‘𝐺) ∧ 𝑋 ∈ (Base‘𝐺)) → 𝑋 ∈ [𝑋](𝐺 ~QG 𝐾))
8733, 4, 86syl2anc 582 . . . . . . . . . 10 (𝜑𝑋 ∈ [𝑋](𝐺 ~QG 𝐾))
8887adantr 479 . . . . . . . . 9 ((𝜑𝑦 = (𝐹𝑋)) → 𝑋 ∈ [𝑋](𝐺 ~QG 𝐾))
89 fveqeq2 6899 . . . . . . . . . 10 (𝑧 = 𝑋 → ((𝐹𝑧) = 𝑦 ↔ (𝐹𝑋) = 𝑦))
9089adantl 480 . . . . . . . . 9 (((𝜑𝑦 = (𝐹𝑋)) ∧ 𝑧 = 𝑋) → ((𝐹𝑧) = 𝑦 ↔ (𝐹𝑋) = 𝑦))
91 simpr 483 . . . . . . . . . 10 ((𝜑𝑦 = (𝐹𝑋)) → 𝑦 = (𝐹𝑋))
9291eqcomd 2731 . . . . . . . . 9 ((𝜑𝑦 = (𝐹𝑋)) → (𝐹𝑋) = 𝑦)
9388, 90, 92rspcedvd 3605 . . . . . . . 8 ((𝜑𝑦 = (𝐹𝑋)) → ∃𝑧 ∈ [ 𝑋](𝐺 ~QG 𝐾)(𝐹𝑧) = 𝑦)
9485, 93impbida 799 . . . . . . 7 (𝜑 → (∃𝑧 ∈ [ 𝑋](𝐺 ~QG 𝐾)(𝐹𝑧) = 𝑦𝑦 = (𝐹𝑋)))
95 velsn 4641 . . . . . . 7 (𝑦 ∈ {(𝐹𝑋)} ↔ 𝑦 = (𝐹𝑋))
9694, 95bitr4di 288 . . . . . 6 (𝜑 → (∃𝑧 ∈ [ 𝑋](𝐺 ~QG 𝐾)(𝐹𝑧) = 𝑦𝑦 ∈ {(𝐹𝑋)}))
9735, 96bitrd 278 . . . . 5 (𝜑 → (𝑦 ∈ (𝐹 “ [𝑋](𝐺 ~QG 𝐾)) ↔ 𝑦 ∈ {(𝐹𝑋)}))
9897eqrdv 2723 . . . 4 (𝜑 → (𝐹 “ [𝑋](𝐺 ~QG 𝐾)) = {(𝐹𝑋)})
9998unieqd 4917 . . 3 (𝜑 (𝐹 “ [𝑋](𝐺 ~QG 𝐾)) = {(𝐹𝑋)})
100 fvex 6903 . . . 4 (𝐹𝑋) ∈ V
101100unisn 4925 . . 3 {(𝐹𝑋)} = (𝐹𝑋)
10299, 101eqtrdi 2781 . 2 (𝜑 (𝐹 “ [𝑋](𝐺 ~QG 𝐾)) = (𝐹𝑋))
10319, 102eqtrd 2765 1 (𝜑 → (𝐽‘[𝑋](𝐺 ~QG 𝐾)) = (𝐹𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wrex 3060  Vcvv 3463  wss 3941  {csn 4625   cuni 4904   class class class wbr 5144  cmpt 5227  ccnv 5672  cima 5676   Fn wfn 6538  wf 6539  cfv 6543  (class class class)co 7413   Er wer 8715  [cec 8716   / cqs 8717  Basecbs 17174  +gcplusg 17227  0gc0g 17415   /s cqus 17481  Grpcgrp 18889  invgcminusg 18890  SubGrpcsubg 19074  NrmSGrpcnsg 19075   ~QG cqg 19076   GrpHom cghm 19166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-cnex 11189  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209  ax-pre-mulgt0 11210
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3961  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4905  df-iun 4994  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7866  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-ec 8720  df-qs 8724  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-sup 9460  df-inf 9461  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-sub 11471  df-neg 11472  df-nn 12238  df-2 12300  df-3 12301  df-4 12302  df-5 12303  df-6 12304  df-7 12305  df-8 12306  df-9 12307  df-n0 12498  df-z 12584  df-dec 12703  df-uz 12848  df-fz 13512  df-struct 17110  df-sets 17127  df-slot 17145  df-ndx 17157  df-base 17175  df-ress 17204  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-0g 17417  df-imas 17484  df-qus 17485  df-mgm 18594  df-sgrp 18673  df-mnd 18689  df-submnd 18735  df-grp 18892  df-minusg 18893  df-sbg 18894  df-subg 19077  df-nsg 19078  df-eqg 19079  df-ghm 19167
This theorem is referenced by:  ghmquskerco  19234  ghmquskerlem2  19235  ghmquskerlem3  19236  ghmqusker  19237  lmhmqusker  33172  rhmquskerlem  33185
  Copyright terms: Public domain W3C validator