MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmqusnsglem2 Structured version   Visualization version   GIF version

Theorem ghmqusnsglem2 19312
Description: Lemma for ghmqusnsg 19313. (Contributed by Thierry Arnoux, 13-May-2025.)
Hypotheses
Ref Expression
ghmqusnsg.0 0 = (0g𝐻)
ghmqusnsg.f (𝜑𝐹 ∈ (𝐺 GrpHom 𝐻))
ghmqusnsg.k 𝐾 = (𝐹 “ { 0 })
ghmqusnsg.q 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁))
ghmqusnsg.j 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ (𝐹𝑞))
ghmqusnsg.n (𝜑𝑁𝐾)
ghmqusnsg.1 (𝜑𝑁 ∈ (NrmSGrp‘𝐺))
ghmqusnsglem2.y (𝜑𝑌 ∈ (Base‘𝑄))
Assertion
Ref Expression
ghmqusnsglem2 (𝜑 → ∃𝑥𝑌 (𝐽𝑌) = (𝐹𝑥))
Distinct variable groups:   𝐹,𝑞   𝐺,𝑞,𝑥   𝐾,𝑞,𝑥   𝑁,𝑞   𝑄,𝑞   𝜑,𝑞,𝑥   𝑥,𝑁   𝑌,𝑞,𝑥
Allowed substitution hints:   𝑄(𝑥)   𝐹(𝑥)   𝐻(𝑥,𝑞)   𝐽(𝑥,𝑞)   0 (𝑥,𝑞)

Proof of Theorem ghmqusnsglem2
StepHypRef Expression
1 ghmqusnsglem2.y . . 3 (𝜑𝑌 ∈ (Base‘𝑄))
2 ghmqusnsg.q . . . . . 6 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁))
32a1i 11 . . . . 5 (𝜑𝑄 = (𝐺 /s (𝐺 ~QG 𝑁)))
4 eqidd 2736 . . . . 5 (𝜑 → (Base‘𝐺) = (Base‘𝐺))
5 ovexd 7466 . . . . 5 (𝜑 → (𝐺 ~QG 𝑁) ∈ V)
6 ghmqusnsg.f . . . . . 6 (𝜑𝐹 ∈ (𝐺 GrpHom 𝐻))
7 ghmgrp1 19249 . . . . . 6 (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐺 ∈ Grp)
86, 7syl 17 . . . . 5 (𝜑𝐺 ∈ Grp)
93, 4, 5, 8qusbas 17592 . . . 4 (𝜑 → ((Base‘𝐺) / (𝐺 ~QG 𝑁)) = (Base‘𝑄))
101, 9eleqtrrd 2842 . . 3 (𝜑𝑌 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝑁)))
11 elqsg 8807 . . . 4 (𝑌 ∈ (Base‘𝑄) → (𝑌 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝑁)) ↔ ∃𝑥 ∈ (Base‘𝐺)𝑌 = [𝑥](𝐺 ~QG 𝑁)))
1211biimpa 476 . . 3 ((𝑌 ∈ (Base‘𝑄) ∧ 𝑌 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝑁))) → ∃𝑥 ∈ (Base‘𝐺)𝑌 = [𝑥](𝐺 ~QG 𝑁))
131, 10, 12syl2anc 584 . 2 (𝜑 → ∃𝑥 ∈ (Base‘𝐺)𝑌 = [𝑥](𝐺 ~QG 𝑁))
14 ghmqusnsg.1 . . . . . . . . 9 (𝜑𝑁 ∈ (NrmSGrp‘𝐺))
15 nsgsubg 19189 . . . . . . . . 9 (𝑁 ∈ (NrmSGrp‘𝐺) → 𝑁 ∈ (SubGrp‘𝐺))
16 eqid 2735 . . . . . . . . . 10 (Base‘𝐺) = (Base‘𝐺)
17 eqid 2735 . . . . . . . . . 10 (𝐺 ~QG 𝑁) = (𝐺 ~QG 𝑁)
1816, 17eqger 19209 . . . . . . . . 9 (𝑁 ∈ (SubGrp‘𝐺) → (𝐺 ~QG 𝑁) Er (Base‘𝐺))
1914, 15, 183syl 18 . . . . . . . 8 (𝜑 → (𝐺 ~QG 𝑁) Er (Base‘𝐺))
2019ad2antrr 726 . . . . . . 7 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝑁)) → (𝐺 ~QG 𝑁) Er (Base‘𝐺))
21 simplr 769 . . . . . . 7 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝑁)) → 𝑥 ∈ (Base‘𝐺))
22 ecref 8789 . . . . . . 7 (((𝐺 ~QG 𝑁) Er (Base‘𝐺) ∧ 𝑥 ∈ (Base‘𝐺)) → 𝑥 ∈ [𝑥](𝐺 ~QG 𝑁))
2320, 21, 22syl2anc 584 . . . . . 6 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝑁)) → 𝑥 ∈ [𝑥](𝐺 ~QG 𝑁))
24 simpr 484 . . . . . 6 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝑁)) → 𝑌 = [𝑥](𝐺 ~QG 𝑁))
2523, 24eleqtrrd 2842 . . . . 5 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝑁)) → 𝑥𝑌)
2624fveq2d 6911 . . . . . 6 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝑁)) → (𝐽𝑌) = (𝐽‘[𝑥](𝐺 ~QG 𝑁)))
27 ghmqusnsg.0 . . . . . . 7 0 = (0g𝐻)
286ad2antrr 726 . . . . . . 7 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝑁)) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
29 ghmqusnsg.k . . . . . . 7 𝐾 = (𝐹 “ { 0 })
30 ghmqusnsg.j . . . . . . 7 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ (𝐹𝑞))
31 ghmqusnsg.n . . . . . . . 8 (𝜑𝑁𝐾)
3231ad2antrr 726 . . . . . . 7 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝑁)) → 𝑁𝐾)
3314ad2antrr 726 . . . . . . 7 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝑁)) → 𝑁 ∈ (NrmSGrp‘𝐺))
3427, 28, 29, 2, 30, 32, 33, 21ghmqusnsglem1 19311 . . . . . 6 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝑁)) → (𝐽‘[𝑥](𝐺 ~QG 𝑁)) = (𝐹𝑥))
3526, 34eqtrd 2775 . . . . 5 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝑁)) → (𝐽𝑌) = (𝐹𝑥))
3625, 35jca 511 . . . 4 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝑁)) → (𝑥𝑌 ∧ (𝐽𝑌) = (𝐹𝑥)))
3736expl 457 . . 3 (𝜑 → ((𝑥 ∈ (Base‘𝐺) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝑁)) → (𝑥𝑌 ∧ (𝐽𝑌) = (𝐹𝑥))))
3837reximdv2 3162 . 2 (𝜑 → (∃𝑥 ∈ (Base‘𝐺)𝑌 = [𝑥](𝐺 ~QG 𝑁) → ∃𝑥𝑌 (𝐽𝑌) = (𝐹𝑥)))
3913, 38mpd 15 1 (𝜑 → ∃𝑥𝑌 (𝐽𝑌) = (𝐹𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wrex 3068  Vcvv 3478  wss 3963  {csn 4631   cuni 4912  cmpt 5231  ccnv 5688  cima 5692  cfv 6563  (class class class)co 7431   Er wer 8741  [cec 8742   / cqs 8743  Basecbs 17245  0gc0g 17486   /s cqus 17552  Grpcgrp 18964  SubGrpcsubg 19151  NrmSGrpcnsg 19152   ~QG cqg 19153   GrpHom cghm 19243
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-ec 8746  df-qs 8750  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-fz 13545  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-0g 17488  df-imas 17555  df-qus 17556  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-minusg 18968  df-subg 19154  df-nsg 19155  df-eqg 19156  df-ghm 19244
This theorem is referenced by:  ghmqusnsg  19313  rhmqusnsg  21313
  Copyright terms: Public domain W3C validator