MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmqusnsglem2 Structured version   Visualization version   GIF version

Theorem ghmqusnsglem2 19244
Description: Lemma for ghmqusnsg 19245. (Contributed by Thierry Arnoux, 13-May-2025.)
Hypotheses
Ref Expression
ghmqusnsg.0 0 = (0g𝐻)
ghmqusnsg.f (𝜑𝐹 ∈ (𝐺 GrpHom 𝐻))
ghmqusnsg.k 𝐾 = (𝐹 “ { 0 })
ghmqusnsg.q 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁))
ghmqusnsg.j 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ (𝐹𝑞))
ghmqusnsg.n (𝜑𝑁𝐾)
ghmqusnsg.1 (𝜑𝑁 ∈ (NrmSGrp‘𝐺))
ghmqusnsglem2.y (𝜑𝑌 ∈ (Base‘𝑄))
Assertion
Ref Expression
ghmqusnsglem2 (𝜑 → ∃𝑥𝑌 (𝐽𝑌) = (𝐹𝑥))
Distinct variable groups:   𝐹,𝑞   𝐺,𝑞,𝑥   𝐾,𝑞,𝑥   𝑁,𝑞   𝑄,𝑞   𝜑,𝑞,𝑥   𝑥,𝑁   𝑌,𝑞,𝑥
Allowed substitution hints:   𝑄(𝑥)   𝐹(𝑥)   𝐻(𝑥,𝑞)   𝐽(𝑥,𝑞)   0 (𝑥,𝑞)

Proof of Theorem ghmqusnsglem2
StepHypRef Expression
1 ghmqusnsglem2.y . . 3 (𝜑𝑌 ∈ (Base‘𝑄))
2 ghmqusnsg.q . . . . . 6 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁))
32a1i 11 . . . . 5 (𝜑𝑄 = (𝐺 /s (𝐺 ~QG 𝑁)))
4 eqidd 2726 . . . . 5 (𝜑 → (Base‘𝐺) = (Base‘𝐺))
5 ovexd 7454 . . . . 5 (𝜑 → (𝐺 ~QG 𝑁) ∈ V)
6 ghmqusnsg.f . . . . . 6 (𝜑𝐹 ∈ (𝐺 GrpHom 𝐻))
7 ghmgrp1 19181 . . . . . 6 (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐺 ∈ Grp)
86, 7syl 17 . . . . 5 (𝜑𝐺 ∈ Grp)
93, 4, 5, 8qusbas 17530 . . . 4 (𝜑 → ((Base‘𝐺) / (𝐺 ~QG 𝑁)) = (Base‘𝑄))
101, 9eleqtrrd 2828 . . 3 (𝜑𝑌 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝑁)))
11 elqsg 8787 . . . 4 (𝑌 ∈ (Base‘𝑄) → (𝑌 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝑁)) ↔ ∃𝑥 ∈ (Base‘𝐺)𝑌 = [𝑥](𝐺 ~QG 𝑁)))
1211biimpa 475 . . 3 ((𝑌 ∈ (Base‘𝑄) ∧ 𝑌 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝑁))) → ∃𝑥 ∈ (Base‘𝐺)𝑌 = [𝑥](𝐺 ~QG 𝑁))
131, 10, 12syl2anc 582 . 2 (𝜑 → ∃𝑥 ∈ (Base‘𝐺)𝑌 = [𝑥](𝐺 ~QG 𝑁))
14 ghmqusnsg.1 . . . . . . . . 9 (𝜑𝑁 ∈ (NrmSGrp‘𝐺))
15 nsgsubg 19121 . . . . . . . . 9 (𝑁 ∈ (NrmSGrp‘𝐺) → 𝑁 ∈ (SubGrp‘𝐺))
16 eqid 2725 . . . . . . . . . 10 (Base‘𝐺) = (Base‘𝐺)
17 eqid 2725 . . . . . . . . . 10 (𝐺 ~QG 𝑁) = (𝐺 ~QG 𝑁)
1816, 17eqger 19141 . . . . . . . . 9 (𝑁 ∈ (SubGrp‘𝐺) → (𝐺 ~QG 𝑁) Er (Base‘𝐺))
1914, 15, 183syl 18 . . . . . . . 8 (𝜑 → (𝐺 ~QG 𝑁) Er (Base‘𝐺))
2019ad2antrr 724 . . . . . . 7 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝑁)) → (𝐺 ~QG 𝑁) Er (Base‘𝐺))
21 simplr 767 . . . . . . 7 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝑁)) → 𝑥 ∈ (Base‘𝐺))
22 ecref 8769 . . . . . . 7 (((𝐺 ~QG 𝑁) Er (Base‘𝐺) ∧ 𝑥 ∈ (Base‘𝐺)) → 𝑥 ∈ [𝑥](𝐺 ~QG 𝑁))
2320, 21, 22syl2anc 582 . . . . . 6 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝑁)) → 𝑥 ∈ [𝑥](𝐺 ~QG 𝑁))
24 simpr 483 . . . . . 6 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝑁)) → 𝑌 = [𝑥](𝐺 ~QG 𝑁))
2523, 24eleqtrrd 2828 . . . . 5 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝑁)) → 𝑥𝑌)
2624fveq2d 6900 . . . . . 6 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝑁)) → (𝐽𝑌) = (𝐽‘[𝑥](𝐺 ~QG 𝑁)))
27 ghmqusnsg.0 . . . . . . 7 0 = (0g𝐻)
286ad2antrr 724 . . . . . . 7 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝑁)) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
29 ghmqusnsg.k . . . . . . 7 𝐾 = (𝐹 “ { 0 })
30 ghmqusnsg.j . . . . . . 7 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ (𝐹𝑞))
31 ghmqusnsg.n . . . . . . . 8 (𝜑𝑁𝐾)
3231ad2antrr 724 . . . . . . 7 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝑁)) → 𝑁𝐾)
3314ad2antrr 724 . . . . . . 7 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝑁)) → 𝑁 ∈ (NrmSGrp‘𝐺))
3427, 28, 29, 2, 30, 32, 33, 21ghmqusnsglem1 19243 . . . . . 6 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝑁)) → (𝐽‘[𝑥](𝐺 ~QG 𝑁)) = (𝐹𝑥))
3526, 34eqtrd 2765 . . . . 5 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝑁)) → (𝐽𝑌) = (𝐹𝑥))
3625, 35jca 510 . . . 4 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝑁)) → (𝑥𝑌 ∧ (𝐽𝑌) = (𝐹𝑥)))
3736expl 456 . . 3 (𝜑 → ((𝑥 ∈ (Base‘𝐺) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝑁)) → (𝑥𝑌 ∧ (𝐽𝑌) = (𝐹𝑥))))
3837reximdv2 3153 . 2 (𝜑 → (∃𝑥 ∈ (Base‘𝐺)𝑌 = [𝑥](𝐺 ~QG 𝑁) → ∃𝑥𝑌 (𝐽𝑌) = (𝐹𝑥)))
3913, 38mpd 15 1 (𝜑 → ∃𝑥𝑌 (𝐽𝑌) = (𝐹𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  wrex 3059  Vcvv 3461  wss 3944  {csn 4630   cuni 4909  cmpt 5232  ccnv 5677  cima 5681  cfv 6549  (class class class)co 7419   Er wer 8722  [cec 8723   / cqs 8724  Basecbs 17183  0gc0g 17424   /s cqus 17490  Grpcgrp 18898  SubGrpcsubg 19083  NrmSGrpcnsg 19084   ~QG cqg 19085   GrpHom cghm 19175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-ec 8727  df-qs 8731  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9467  df-inf 9468  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12506  df-z 12592  df-dec 12711  df-uz 12856  df-fz 13520  df-struct 17119  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-ress 17213  df-plusg 17249  df-mulr 17250  df-sca 17252  df-vsca 17253  df-ip 17254  df-tset 17255  df-ple 17256  df-ds 17258  df-0g 17426  df-imas 17493  df-qus 17494  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-grp 18901  df-minusg 18902  df-subg 19086  df-nsg 19087  df-eqg 19088  df-ghm 19176
This theorem is referenced by:  ghmqusnsg  19245  rhmqusnsg  21192
  Copyright terms: Public domain W3C validator