MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmqusnsglem2 Structured version   Visualization version   GIF version

Theorem ghmqusnsglem2 19268
Description: Lemma for ghmqusnsg 19269. (Contributed by Thierry Arnoux, 13-May-2025.)
Hypotheses
Ref Expression
ghmqusnsg.0 0 = (0g𝐻)
ghmqusnsg.f (𝜑𝐹 ∈ (𝐺 GrpHom 𝐻))
ghmqusnsg.k 𝐾 = (𝐹 “ { 0 })
ghmqusnsg.q 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁))
ghmqusnsg.j 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ (𝐹𝑞))
ghmqusnsg.n (𝜑𝑁𝐾)
ghmqusnsg.1 (𝜑𝑁 ∈ (NrmSGrp‘𝐺))
ghmqusnsglem2.y (𝜑𝑌 ∈ (Base‘𝑄))
Assertion
Ref Expression
ghmqusnsglem2 (𝜑 → ∃𝑥𝑌 (𝐽𝑌) = (𝐹𝑥))
Distinct variable groups:   𝐹,𝑞   𝐺,𝑞,𝑥   𝐾,𝑞,𝑥   𝑁,𝑞   𝑄,𝑞   𝜑,𝑞,𝑥   𝑥,𝑁   𝑌,𝑞,𝑥
Allowed substitution hints:   𝑄(𝑥)   𝐹(𝑥)   𝐻(𝑥,𝑞)   𝐽(𝑥,𝑞)   0 (𝑥,𝑞)

Proof of Theorem ghmqusnsglem2
StepHypRef Expression
1 ghmqusnsglem2.y . . 3 (𝜑𝑌 ∈ (Base‘𝑄))
2 ghmqusnsg.q . . . . . 6 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁))
32a1i 11 . . . . 5 (𝜑𝑄 = (𝐺 /s (𝐺 ~QG 𝑁)))
4 eqidd 2735 . . . . 5 (𝜑 → (Base‘𝐺) = (Base‘𝐺))
5 ovexd 7448 . . . . 5 (𝜑 → (𝐺 ~QG 𝑁) ∈ V)
6 ghmqusnsg.f . . . . . 6 (𝜑𝐹 ∈ (𝐺 GrpHom 𝐻))
7 ghmgrp1 19205 . . . . . 6 (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐺 ∈ Grp)
86, 7syl 17 . . . . 5 (𝜑𝐺 ∈ Grp)
93, 4, 5, 8qusbas 17561 . . . 4 (𝜑 → ((Base‘𝐺) / (𝐺 ~QG 𝑁)) = (Base‘𝑄))
101, 9eleqtrrd 2836 . . 3 (𝜑𝑌 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝑁)))
11 elqsg 8790 . . . 4 (𝑌 ∈ (Base‘𝑄) → (𝑌 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝑁)) ↔ ∃𝑥 ∈ (Base‘𝐺)𝑌 = [𝑥](𝐺 ~QG 𝑁)))
1211biimpa 476 . . 3 ((𝑌 ∈ (Base‘𝑄) ∧ 𝑌 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝑁))) → ∃𝑥 ∈ (Base‘𝐺)𝑌 = [𝑥](𝐺 ~QG 𝑁))
131, 10, 12syl2anc 584 . 2 (𝜑 → ∃𝑥 ∈ (Base‘𝐺)𝑌 = [𝑥](𝐺 ~QG 𝑁))
14 ghmqusnsg.1 . . . . . . . . 9 (𝜑𝑁 ∈ (NrmSGrp‘𝐺))
15 nsgsubg 19145 . . . . . . . . 9 (𝑁 ∈ (NrmSGrp‘𝐺) → 𝑁 ∈ (SubGrp‘𝐺))
16 eqid 2734 . . . . . . . . . 10 (Base‘𝐺) = (Base‘𝐺)
17 eqid 2734 . . . . . . . . . 10 (𝐺 ~QG 𝑁) = (𝐺 ~QG 𝑁)
1816, 17eqger 19165 . . . . . . . . 9 (𝑁 ∈ (SubGrp‘𝐺) → (𝐺 ~QG 𝑁) Er (Base‘𝐺))
1914, 15, 183syl 18 . . . . . . . 8 (𝜑 → (𝐺 ~QG 𝑁) Er (Base‘𝐺))
2019ad2antrr 726 . . . . . . 7 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝑁)) → (𝐺 ~QG 𝑁) Er (Base‘𝐺))
21 simplr 768 . . . . . . 7 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝑁)) → 𝑥 ∈ (Base‘𝐺))
22 ecref 8772 . . . . . . 7 (((𝐺 ~QG 𝑁) Er (Base‘𝐺) ∧ 𝑥 ∈ (Base‘𝐺)) → 𝑥 ∈ [𝑥](𝐺 ~QG 𝑁))
2320, 21, 22syl2anc 584 . . . . . 6 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝑁)) → 𝑥 ∈ [𝑥](𝐺 ~QG 𝑁))
24 simpr 484 . . . . . 6 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝑁)) → 𝑌 = [𝑥](𝐺 ~QG 𝑁))
2523, 24eleqtrrd 2836 . . . . 5 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝑁)) → 𝑥𝑌)
2624fveq2d 6890 . . . . . 6 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝑁)) → (𝐽𝑌) = (𝐽‘[𝑥](𝐺 ~QG 𝑁)))
27 ghmqusnsg.0 . . . . . . 7 0 = (0g𝐻)
286ad2antrr 726 . . . . . . 7 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝑁)) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
29 ghmqusnsg.k . . . . . . 7 𝐾 = (𝐹 “ { 0 })
30 ghmqusnsg.j . . . . . . 7 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ (𝐹𝑞))
31 ghmqusnsg.n . . . . . . . 8 (𝜑𝑁𝐾)
3231ad2antrr 726 . . . . . . 7 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝑁)) → 𝑁𝐾)
3314ad2antrr 726 . . . . . . 7 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝑁)) → 𝑁 ∈ (NrmSGrp‘𝐺))
3427, 28, 29, 2, 30, 32, 33, 21ghmqusnsglem1 19267 . . . . . 6 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝑁)) → (𝐽‘[𝑥](𝐺 ~QG 𝑁)) = (𝐹𝑥))
3526, 34eqtrd 2769 . . . . 5 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝑁)) → (𝐽𝑌) = (𝐹𝑥))
3625, 35jca 511 . . . 4 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝑁)) → (𝑥𝑌 ∧ (𝐽𝑌) = (𝐹𝑥)))
3736expl 457 . . 3 (𝜑 → ((𝑥 ∈ (Base‘𝐺) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝑁)) → (𝑥𝑌 ∧ (𝐽𝑌) = (𝐹𝑥))))
3837reximdv2 3151 . 2 (𝜑 → (∃𝑥 ∈ (Base‘𝐺)𝑌 = [𝑥](𝐺 ~QG 𝑁) → ∃𝑥𝑌 (𝐽𝑌) = (𝐹𝑥)))
3913, 38mpd 15 1 (𝜑 → ∃𝑥𝑌 (𝐽𝑌) = (𝐹𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wrex 3059  Vcvv 3463  wss 3931  {csn 4606   cuni 4887  cmpt 5205  ccnv 5664  cima 5668  cfv 6541  (class class class)co 7413   Er wer 8724  [cec 8725   / cqs 8726  Basecbs 17229  0gc0g 17455   /s cqus 17521  Grpcgrp 18920  SubGrpcsubg 19107  NrmSGrpcnsg 19108   ~QG cqg 19109   GrpHom cghm 19199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-er 8727  df-ec 8729  df-qs 8733  df-map 8850  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-sup 9464  df-inf 9465  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12510  df-z 12597  df-dec 12717  df-uz 12861  df-fz 13530  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17230  df-ress 17253  df-plusg 17286  df-mulr 17287  df-sca 17289  df-vsca 17290  df-ip 17291  df-tset 17292  df-ple 17293  df-ds 17295  df-0g 17457  df-imas 17524  df-qus 17525  df-mgm 18622  df-sgrp 18701  df-mnd 18717  df-grp 18923  df-minusg 18924  df-subg 19110  df-nsg 19111  df-eqg 19112  df-ghm 19200
This theorem is referenced by:  ghmqusnsg  19269  rhmqusnsg  21257
  Copyright terms: Public domain W3C validator