![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ghmqusnsglem2 | Structured version Visualization version GIF version |
Description: Lemma for ghmqusnsg 19245. (Contributed by Thierry Arnoux, 13-May-2025.) |
Ref | Expression |
---|---|
ghmqusnsg.0 | ⊢ 0 = (0g‘𝐻) |
ghmqusnsg.f | ⊢ (𝜑 → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
ghmqusnsg.k | ⊢ 𝐾 = (◡𝐹 “ { 0 }) |
ghmqusnsg.q | ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁)) |
ghmqusnsg.j | ⊢ 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ ∪ (𝐹 “ 𝑞)) |
ghmqusnsg.n | ⊢ (𝜑 → 𝑁 ⊆ 𝐾) |
ghmqusnsg.1 | ⊢ (𝜑 → 𝑁 ∈ (NrmSGrp‘𝐺)) |
ghmqusnsglem2.y | ⊢ (𝜑 → 𝑌 ∈ (Base‘𝑄)) |
Ref | Expression |
---|---|
ghmqusnsglem2 | ⊢ (𝜑 → ∃𝑥 ∈ 𝑌 (𝐽‘𝑌) = (𝐹‘𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ghmqusnsglem2.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝑄)) | |
2 | ghmqusnsg.q | . . . . . 6 ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁)) | |
3 | 2 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁))) |
4 | eqidd 2726 | . . . . 5 ⊢ (𝜑 → (Base‘𝐺) = (Base‘𝐺)) | |
5 | ovexd 7454 | . . . . 5 ⊢ (𝜑 → (𝐺 ~QG 𝑁) ∈ V) | |
6 | ghmqusnsg.f | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ (𝐺 GrpHom 𝐻)) | |
7 | ghmgrp1 19181 | . . . . . 6 ⊢ (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐺 ∈ Grp) | |
8 | 6, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ Grp) |
9 | 3, 4, 5, 8 | qusbas 17530 | . . . 4 ⊢ (𝜑 → ((Base‘𝐺) / (𝐺 ~QG 𝑁)) = (Base‘𝑄)) |
10 | 1, 9 | eleqtrrd 2828 | . . 3 ⊢ (𝜑 → 𝑌 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝑁))) |
11 | elqsg 8787 | . . . 4 ⊢ (𝑌 ∈ (Base‘𝑄) → (𝑌 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝑁)) ↔ ∃𝑥 ∈ (Base‘𝐺)𝑌 = [𝑥](𝐺 ~QG 𝑁))) | |
12 | 11 | biimpa 475 | . . 3 ⊢ ((𝑌 ∈ (Base‘𝑄) ∧ 𝑌 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝑁))) → ∃𝑥 ∈ (Base‘𝐺)𝑌 = [𝑥](𝐺 ~QG 𝑁)) |
13 | 1, 10, 12 | syl2anc 582 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ (Base‘𝐺)𝑌 = [𝑥](𝐺 ~QG 𝑁)) |
14 | ghmqusnsg.1 | . . . . . . . . 9 ⊢ (𝜑 → 𝑁 ∈ (NrmSGrp‘𝐺)) | |
15 | nsgsubg 19121 | . . . . . . . . 9 ⊢ (𝑁 ∈ (NrmSGrp‘𝐺) → 𝑁 ∈ (SubGrp‘𝐺)) | |
16 | eqid 2725 | . . . . . . . . . 10 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
17 | eqid 2725 | . . . . . . . . . 10 ⊢ (𝐺 ~QG 𝑁) = (𝐺 ~QG 𝑁) | |
18 | 16, 17 | eqger 19141 | . . . . . . . . 9 ⊢ (𝑁 ∈ (SubGrp‘𝐺) → (𝐺 ~QG 𝑁) Er (Base‘𝐺)) |
19 | 14, 15, 18 | 3syl 18 | . . . . . . . 8 ⊢ (𝜑 → (𝐺 ~QG 𝑁) Er (Base‘𝐺)) |
20 | 19 | ad2antrr 724 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝑁)) → (𝐺 ~QG 𝑁) Er (Base‘𝐺)) |
21 | simplr 767 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝑁)) → 𝑥 ∈ (Base‘𝐺)) | |
22 | ecref 8769 | . . . . . . 7 ⊢ (((𝐺 ~QG 𝑁) Er (Base‘𝐺) ∧ 𝑥 ∈ (Base‘𝐺)) → 𝑥 ∈ [𝑥](𝐺 ~QG 𝑁)) | |
23 | 20, 21, 22 | syl2anc 582 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝑁)) → 𝑥 ∈ [𝑥](𝐺 ~QG 𝑁)) |
24 | simpr 483 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝑁)) → 𝑌 = [𝑥](𝐺 ~QG 𝑁)) | |
25 | 23, 24 | eleqtrrd 2828 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝑁)) → 𝑥 ∈ 𝑌) |
26 | 24 | fveq2d 6900 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝑁)) → (𝐽‘𝑌) = (𝐽‘[𝑥](𝐺 ~QG 𝑁))) |
27 | ghmqusnsg.0 | . . . . . . 7 ⊢ 0 = (0g‘𝐻) | |
28 | 6 | ad2antrr 724 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝑁)) → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
29 | ghmqusnsg.k | . . . . . . 7 ⊢ 𝐾 = (◡𝐹 “ { 0 }) | |
30 | ghmqusnsg.j | . . . . . . 7 ⊢ 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ ∪ (𝐹 “ 𝑞)) | |
31 | ghmqusnsg.n | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ⊆ 𝐾) | |
32 | 31 | ad2antrr 724 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝑁)) → 𝑁 ⊆ 𝐾) |
33 | 14 | ad2antrr 724 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝑁)) → 𝑁 ∈ (NrmSGrp‘𝐺)) |
34 | 27, 28, 29, 2, 30, 32, 33, 21 | ghmqusnsglem1 19243 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝑁)) → (𝐽‘[𝑥](𝐺 ~QG 𝑁)) = (𝐹‘𝑥)) |
35 | 26, 34 | eqtrd 2765 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝑁)) → (𝐽‘𝑌) = (𝐹‘𝑥)) |
36 | 25, 35 | jca 510 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝑁)) → (𝑥 ∈ 𝑌 ∧ (𝐽‘𝑌) = (𝐹‘𝑥))) |
37 | 36 | expl 456 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ (Base‘𝐺) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝑁)) → (𝑥 ∈ 𝑌 ∧ (𝐽‘𝑌) = (𝐹‘𝑥)))) |
38 | 37 | reximdv2 3153 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ (Base‘𝐺)𝑌 = [𝑥](𝐺 ~QG 𝑁) → ∃𝑥 ∈ 𝑌 (𝐽‘𝑌) = (𝐹‘𝑥))) |
39 | 13, 38 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝑌 (𝐽‘𝑌) = (𝐹‘𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∃wrex 3059 Vcvv 3461 ⊆ wss 3944 {csn 4630 ∪ cuni 4909 ↦ cmpt 5232 ◡ccnv 5677 “ cima 5681 ‘cfv 6549 (class class class)co 7419 Er wer 8722 [cec 8723 / cqs 8724 Basecbs 17183 0gc0g 17424 /s cqus 17490 Grpcgrp 18898 SubGrpcsubg 19083 NrmSGrpcnsg 19084 ~QG cqg 19085 GrpHom cghm 19175 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-ec 8727 df-qs 8731 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9467 df-inf 9468 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12506 df-z 12592 df-dec 12711 df-uz 12856 df-fz 13520 df-struct 17119 df-sets 17136 df-slot 17154 df-ndx 17166 df-base 17184 df-ress 17213 df-plusg 17249 df-mulr 17250 df-sca 17252 df-vsca 17253 df-ip 17254 df-tset 17255 df-ple 17256 df-ds 17258 df-0g 17426 df-imas 17493 df-qus 17494 df-mgm 18603 df-sgrp 18682 df-mnd 18698 df-grp 18901 df-minusg 18902 df-subg 19086 df-nsg 19087 df-eqg 19088 df-ghm 19176 |
This theorem is referenced by: ghmqusnsg 19245 rhmqusnsg 21192 |
Copyright terms: Public domain | W3C validator |