![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > homarel | Structured version Visualization version GIF version |
Description: An arrow is an ordered pair. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
homahom.h | ⊢ 𝐻 = (Homa‘𝐶) |
Ref | Expression |
---|---|
homarel | ⊢ Rel (𝑋𝐻𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpss 5704 | . . . 4 ⊢ (((Base‘𝐶) × (Base‘𝐶)) × V) ⊆ (V × V) | |
2 | homahom.h | . . . . . . 7 ⊢ 𝐻 = (Homa‘𝐶) | |
3 | eqid 2734 | . . . . . . 7 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
4 | 2 | homarcl 18081 | . . . . . . 7 ⊢ (𝑓 ∈ (𝑋𝐻𝑌) → 𝐶 ∈ Cat) |
5 | 2, 3, 4 | homaf 18083 | . . . . . 6 ⊢ (𝑓 ∈ (𝑋𝐻𝑌) → 𝐻:((Base‘𝐶) × (Base‘𝐶))⟶𝒫 (((Base‘𝐶) × (Base‘𝐶)) × V)) |
6 | 2, 3 | homarcl2 18088 | . . . . . . 7 ⊢ (𝑓 ∈ (𝑋𝐻𝑌) → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶))) |
7 | 6 | simpld 494 | . . . . . 6 ⊢ (𝑓 ∈ (𝑋𝐻𝑌) → 𝑋 ∈ (Base‘𝐶)) |
8 | 6 | simprd 495 | . . . . . 6 ⊢ (𝑓 ∈ (𝑋𝐻𝑌) → 𝑌 ∈ (Base‘𝐶)) |
9 | 5, 7, 8 | fovcdmd 7604 | . . . . 5 ⊢ (𝑓 ∈ (𝑋𝐻𝑌) → (𝑋𝐻𝑌) ∈ 𝒫 (((Base‘𝐶) × (Base‘𝐶)) × V)) |
10 | elelpwi 4614 | . . . . 5 ⊢ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ (𝑋𝐻𝑌) ∈ 𝒫 (((Base‘𝐶) × (Base‘𝐶)) × V)) → 𝑓 ∈ (((Base‘𝐶) × (Base‘𝐶)) × V)) | |
11 | 9, 10 | mpdan 687 | . . . 4 ⊢ (𝑓 ∈ (𝑋𝐻𝑌) → 𝑓 ∈ (((Base‘𝐶) × (Base‘𝐶)) × V)) |
12 | 1, 11 | sselid 3992 | . . 3 ⊢ (𝑓 ∈ (𝑋𝐻𝑌) → 𝑓 ∈ (V × V)) |
13 | 12 | ssriv 3998 | . 2 ⊢ (𝑋𝐻𝑌) ⊆ (V × V) |
14 | df-rel 5695 | . 2 ⊢ (Rel (𝑋𝐻𝑌) ↔ (𝑋𝐻𝑌) ⊆ (V × V)) | |
15 | 13, 14 | mpbir 231 | 1 ⊢ Rel (𝑋𝐻𝑌) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1536 ∈ wcel 2105 Vcvv 3477 ⊆ wss 3962 𝒫 cpw 4604 × cxp 5686 Rel wrel 5693 ‘cfv 6562 (class class class)co 7430 Basecbs 17244 Homachoma 18076 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-ov 7433 df-homa 18079 |
This theorem is referenced by: homahom 18092 homadm 18093 homacd 18094 homadmcd 18095 |
Copyright terms: Public domain | W3C validator |