| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > homarel | Structured version Visualization version GIF version | ||
| Description: An arrow is an ordered pair. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| Ref | Expression |
|---|---|
| homahom.h | ⊢ 𝐻 = (Homa‘𝐶) |
| Ref | Expression |
|---|---|
| homarel | ⊢ Rel (𝑋𝐻𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpss 5670 | . . . 4 ⊢ (((Base‘𝐶) × (Base‘𝐶)) × V) ⊆ (V × V) | |
| 2 | homahom.h | . . . . . . 7 ⊢ 𝐻 = (Homa‘𝐶) | |
| 3 | eqid 2735 | . . . . . . 7 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 4 | 2 | homarcl 18039 | . . . . . . 7 ⊢ (𝑓 ∈ (𝑋𝐻𝑌) → 𝐶 ∈ Cat) |
| 5 | 2, 3, 4 | homaf 18041 | . . . . . 6 ⊢ (𝑓 ∈ (𝑋𝐻𝑌) → 𝐻:((Base‘𝐶) × (Base‘𝐶))⟶𝒫 (((Base‘𝐶) × (Base‘𝐶)) × V)) |
| 6 | 2, 3 | homarcl2 18046 | . . . . . . 7 ⊢ (𝑓 ∈ (𝑋𝐻𝑌) → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶))) |
| 7 | 6 | simpld 494 | . . . . . 6 ⊢ (𝑓 ∈ (𝑋𝐻𝑌) → 𝑋 ∈ (Base‘𝐶)) |
| 8 | 6 | simprd 495 | . . . . . 6 ⊢ (𝑓 ∈ (𝑋𝐻𝑌) → 𝑌 ∈ (Base‘𝐶)) |
| 9 | 5, 7, 8 | fovcdmd 7577 | . . . . 5 ⊢ (𝑓 ∈ (𝑋𝐻𝑌) → (𝑋𝐻𝑌) ∈ 𝒫 (((Base‘𝐶) × (Base‘𝐶)) × V)) |
| 10 | elelpwi 4585 | . . . . 5 ⊢ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ (𝑋𝐻𝑌) ∈ 𝒫 (((Base‘𝐶) × (Base‘𝐶)) × V)) → 𝑓 ∈ (((Base‘𝐶) × (Base‘𝐶)) × V)) | |
| 11 | 9, 10 | mpdan 687 | . . . 4 ⊢ (𝑓 ∈ (𝑋𝐻𝑌) → 𝑓 ∈ (((Base‘𝐶) × (Base‘𝐶)) × V)) |
| 12 | 1, 11 | sselid 3956 | . . 3 ⊢ (𝑓 ∈ (𝑋𝐻𝑌) → 𝑓 ∈ (V × V)) |
| 13 | 12 | ssriv 3962 | . 2 ⊢ (𝑋𝐻𝑌) ⊆ (V × V) |
| 14 | df-rel 5661 | . 2 ⊢ (Rel (𝑋𝐻𝑌) ↔ (𝑋𝐻𝑌) ⊆ (V × V)) | |
| 15 | 13, 14 | mpbir 231 | 1 ⊢ Rel (𝑋𝐻𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 Vcvv 3459 ⊆ wss 3926 𝒫 cpw 4575 × cxp 5652 Rel wrel 5659 ‘cfv 6530 (class class class)co 7403 Basecbs 17226 Homachoma 18034 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-ov 7406 df-homa 18037 |
| This theorem is referenced by: homahom 18050 homadm 18051 homacd 18052 homadmcd 18053 |
| Copyright terms: Public domain | W3C validator |