| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > homarel | Structured version Visualization version GIF version | ||
| Description: An arrow is an ordered pair. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| Ref | Expression |
|---|---|
| homahom.h | ⊢ 𝐻 = (Homa‘𝐶) |
| Ref | Expression |
|---|---|
| homarel | ⊢ Rel (𝑋𝐻𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpss 5635 | . . . 4 ⊢ (((Base‘𝐶) × (Base‘𝐶)) × V) ⊆ (V × V) | |
| 2 | homahom.h | . . . . . . 7 ⊢ 𝐻 = (Homa‘𝐶) | |
| 3 | eqid 2733 | . . . . . . 7 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 4 | 2 | homarcl 17937 | . . . . . . 7 ⊢ (𝑓 ∈ (𝑋𝐻𝑌) → 𝐶 ∈ Cat) |
| 5 | 2, 3, 4 | homaf 17939 | . . . . . 6 ⊢ (𝑓 ∈ (𝑋𝐻𝑌) → 𝐻:((Base‘𝐶) × (Base‘𝐶))⟶𝒫 (((Base‘𝐶) × (Base‘𝐶)) × V)) |
| 6 | 2, 3 | homarcl2 17944 | . . . . . . 7 ⊢ (𝑓 ∈ (𝑋𝐻𝑌) → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶))) |
| 7 | 6 | simpld 494 | . . . . . 6 ⊢ (𝑓 ∈ (𝑋𝐻𝑌) → 𝑋 ∈ (Base‘𝐶)) |
| 8 | 6 | simprd 495 | . . . . . 6 ⊢ (𝑓 ∈ (𝑋𝐻𝑌) → 𝑌 ∈ (Base‘𝐶)) |
| 9 | 5, 7, 8 | fovcdmd 7524 | . . . . 5 ⊢ (𝑓 ∈ (𝑋𝐻𝑌) → (𝑋𝐻𝑌) ∈ 𝒫 (((Base‘𝐶) × (Base‘𝐶)) × V)) |
| 10 | elelpwi 4559 | . . . . 5 ⊢ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ (𝑋𝐻𝑌) ∈ 𝒫 (((Base‘𝐶) × (Base‘𝐶)) × V)) → 𝑓 ∈ (((Base‘𝐶) × (Base‘𝐶)) × V)) | |
| 11 | 9, 10 | mpdan 687 | . . . 4 ⊢ (𝑓 ∈ (𝑋𝐻𝑌) → 𝑓 ∈ (((Base‘𝐶) × (Base‘𝐶)) × V)) |
| 12 | 1, 11 | sselid 3928 | . . 3 ⊢ (𝑓 ∈ (𝑋𝐻𝑌) → 𝑓 ∈ (V × V)) |
| 13 | 12 | ssriv 3934 | . 2 ⊢ (𝑋𝐻𝑌) ⊆ (V × V) |
| 14 | df-rel 5626 | . 2 ⊢ (Rel (𝑋𝐻𝑌) ↔ (𝑋𝐻𝑌) ⊆ (V × V)) | |
| 15 | 13, 14 | mpbir 231 | 1 ⊢ Rel (𝑋𝐻𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2113 Vcvv 3437 ⊆ wss 3898 𝒫 cpw 4549 × cxp 5617 Rel wrel 5624 ‘cfv 6486 (class class class)co 7352 Basecbs 17122 Homachoma 17932 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-homa 17935 |
| This theorem is referenced by: homahom 17948 homadm 17949 homacd 17950 homadmcd 17951 |
| Copyright terms: Public domain | W3C validator |