![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > homarel | Structured version Visualization version GIF version |
Description: An arrow is an ordered pair. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
homahom.h | ⊢ 𝐻 = (Homa‘𝐶) |
Ref | Expression |
---|---|
homarel | ⊢ Rel (𝑋𝐻𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpss 5358 | . . . 4 ⊢ (((Base‘𝐶) × (Base‘𝐶)) × V) ⊆ (V × V) | |
2 | homahom.h | . . . . . . 7 ⊢ 𝐻 = (Homa‘𝐶) | |
3 | eqid 2825 | . . . . . . 7 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
4 | 2 | homarcl 17030 | . . . . . . 7 ⊢ (𝑓 ∈ (𝑋𝐻𝑌) → 𝐶 ∈ Cat) |
5 | 2, 3, 4 | homaf 17032 | . . . . . 6 ⊢ (𝑓 ∈ (𝑋𝐻𝑌) → 𝐻:((Base‘𝐶) × (Base‘𝐶))⟶𝒫 (((Base‘𝐶) × (Base‘𝐶)) × V)) |
6 | 2, 3 | homarcl2 17037 | . . . . . . 7 ⊢ (𝑓 ∈ (𝑋𝐻𝑌) → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶))) |
7 | 6 | simpld 490 | . . . . . 6 ⊢ (𝑓 ∈ (𝑋𝐻𝑌) → 𝑋 ∈ (Base‘𝐶)) |
8 | 6 | simprd 491 | . . . . . 6 ⊢ (𝑓 ∈ (𝑋𝐻𝑌) → 𝑌 ∈ (Base‘𝐶)) |
9 | 5, 7, 8 | fovrnd 7066 | . . . . 5 ⊢ (𝑓 ∈ (𝑋𝐻𝑌) → (𝑋𝐻𝑌) ∈ 𝒫 (((Base‘𝐶) × (Base‘𝐶)) × V)) |
10 | elelpwi 4391 | . . . . 5 ⊢ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ (𝑋𝐻𝑌) ∈ 𝒫 (((Base‘𝐶) × (Base‘𝐶)) × V)) → 𝑓 ∈ (((Base‘𝐶) × (Base‘𝐶)) × V)) | |
11 | 9, 10 | mpdan 680 | . . . 4 ⊢ (𝑓 ∈ (𝑋𝐻𝑌) → 𝑓 ∈ (((Base‘𝐶) × (Base‘𝐶)) × V)) |
12 | 1, 11 | sseldi 3825 | . . 3 ⊢ (𝑓 ∈ (𝑋𝐻𝑌) → 𝑓 ∈ (V × V)) |
13 | 12 | ssriv 3831 | . 2 ⊢ (𝑋𝐻𝑌) ⊆ (V × V) |
14 | df-rel 5349 | . 2 ⊢ (Rel (𝑋𝐻𝑌) ↔ (𝑋𝐻𝑌) ⊆ (V × V)) | |
15 | 13, 14 | mpbir 223 | 1 ⊢ Rel (𝑋𝐻𝑌) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1658 ∈ wcel 2166 Vcvv 3414 ⊆ wss 3798 𝒫 cpw 4378 × cxp 5340 Rel wrel 5347 ‘cfv 6123 (class class class)co 6905 Basecbs 16222 Homachoma 17025 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-rep 4994 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4659 df-iun 4742 df-br 4874 df-opab 4936 df-mpt 4953 df-id 5250 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-ov 6908 df-homa 17028 |
This theorem is referenced by: homahom 17041 homadm 17042 homacd 17043 homadmcd 17044 |
Copyright terms: Public domain | W3C validator |