| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > homarel | Structured version Visualization version GIF version | ||
| Description: An arrow is an ordered pair. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| Ref | Expression |
|---|---|
| homahom.h | ⊢ 𝐻 = (Homa‘𝐶) |
| Ref | Expression |
|---|---|
| homarel | ⊢ Rel (𝑋𝐻𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpss 5639 | . . . 4 ⊢ (((Base‘𝐶) × (Base‘𝐶)) × V) ⊆ (V × V) | |
| 2 | homahom.h | . . . . . . 7 ⊢ 𝐻 = (Homa‘𝐶) | |
| 3 | eqid 2729 | . . . . . . 7 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 4 | 2 | homarcl 17953 | . . . . . . 7 ⊢ (𝑓 ∈ (𝑋𝐻𝑌) → 𝐶 ∈ Cat) |
| 5 | 2, 3, 4 | homaf 17955 | . . . . . 6 ⊢ (𝑓 ∈ (𝑋𝐻𝑌) → 𝐻:((Base‘𝐶) × (Base‘𝐶))⟶𝒫 (((Base‘𝐶) × (Base‘𝐶)) × V)) |
| 6 | 2, 3 | homarcl2 17960 | . . . . . . 7 ⊢ (𝑓 ∈ (𝑋𝐻𝑌) → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶))) |
| 7 | 6 | simpld 494 | . . . . . 6 ⊢ (𝑓 ∈ (𝑋𝐻𝑌) → 𝑋 ∈ (Base‘𝐶)) |
| 8 | 6 | simprd 495 | . . . . . 6 ⊢ (𝑓 ∈ (𝑋𝐻𝑌) → 𝑌 ∈ (Base‘𝐶)) |
| 9 | 5, 7, 8 | fovcdmd 7525 | . . . . 5 ⊢ (𝑓 ∈ (𝑋𝐻𝑌) → (𝑋𝐻𝑌) ∈ 𝒫 (((Base‘𝐶) × (Base‘𝐶)) × V)) |
| 10 | elelpwi 4563 | . . . . 5 ⊢ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ (𝑋𝐻𝑌) ∈ 𝒫 (((Base‘𝐶) × (Base‘𝐶)) × V)) → 𝑓 ∈ (((Base‘𝐶) × (Base‘𝐶)) × V)) | |
| 11 | 9, 10 | mpdan 687 | . . . 4 ⊢ (𝑓 ∈ (𝑋𝐻𝑌) → 𝑓 ∈ (((Base‘𝐶) × (Base‘𝐶)) × V)) |
| 12 | 1, 11 | sselid 3935 | . . 3 ⊢ (𝑓 ∈ (𝑋𝐻𝑌) → 𝑓 ∈ (V × V)) |
| 13 | 12 | ssriv 3941 | . 2 ⊢ (𝑋𝐻𝑌) ⊆ (V × V) |
| 14 | df-rel 5630 | . 2 ⊢ (Rel (𝑋𝐻𝑌) ↔ (𝑋𝐻𝑌) ⊆ (V × V)) | |
| 15 | 13, 14 | mpbir 231 | 1 ⊢ Rel (𝑋𝐻𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 Vcvv 3438 ⊆ wss 3905 𝒫 cpw 4553 × cxp 5621 Rel wrel 5628 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 Homachoma 17948 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-homa 17951 |
| This theorem is referenced by: homahom 17964 homadm 17965 homacd 17966 homadmcd 17967 |
| Copyright terms: Public domain | W3C validator |