MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  homarel Structured version   Visualization version   GIF version

Theorem homarel 18047
Description: An arrow is an ordered pair. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypothesis
Ref Expression
homahom.h 𝐻 = (Homa𝐶)
Assertion
Ref Expression
homarel Rel (𝑋𝐻𝑌)

Proof of Theorem homarel
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 xpss 5670 . . . 4 (((Base‘𝐶) × (Base‘𝐶)) × V) ⊆ (V × V)
2 homahom.h . . . . . . 7 𝐻 = (Homa𝐶)
3 eqid 2735 . . . . . . 7 (Base‘𝐶) = (Base‘𝐶)
42homarcl 18039 . . . . . . 7 (𝑓 ∈ (𝑋𝐻𝑌) → 𝐶 ∈ Cat)
52, 3, 4homaf 18041 . . . . . 6 (𝑓 ∈ (𝑋𝐻𝑌) → 𝐻:((Base‘𝐶) × (Base‘𝐶))⟶𝒫 (((Base‘𝐶) × (Base‘𝐶)) × V))
62, 3homarcl2 18046 . . . . . . 7 (𝑓 ∈ (𝑋𝐻𝑌) → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶)))
76simpld 494 . . . . . 6 (𝑓 ∈ (𝑋𝐻𝑌) → 𝑋 ∈ (Base‘𝐶))
86simprd 495 . . . . . 6 (𝑓 ∈ (𝑋𝐻𝑌) → 𝑌 ∈ (Base‘𝐶))
95, 7, 8fovcdmd 7577 . . . . 5 (𝑓 ∈ (𝑋𝐻𝑌) → (𝑋𝐻𝑌) ∈ 𝒫 (((Base‘𝐶) × (Base‘𝐶)) × V))
10 elelpwi 4585 . . . . 5 ((𝑓 ∈ (𝑋𝐻𝑌) ∧ (𝑋𝐻𝑌) ∈ 𝒫 (((Base‘𝐶) × (Base‘𝐶)) × V)) → 𝑓 ∈ (((Base‘𝐶) × (Base‘𝐶)) × V))
119, 10mpdan 687 . . . 4 (𝑓 ∈ (𝑋𝐻𝑌) → 𝑓 ∈ (((Base‘𝐶) × (Base‘𝐶)) × V))
121, 11sselid 3956 . . 3 (𝑓 ∈ (𝑋𝐻𝑌) → 𝑓 ∈ (V × V))
1312ssriv 3962 . 2 (𝑋𝐻𝑌) ⊆ (V × V)
14 df-rel 5661 . 2 (Rel (𝑋𝐻𝑌) ↔ (𝑋𝐻𝑌) ⊆ (V × V))
1513, 14mpbir 231 1 Rel (𝑋𝐻𝑌)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2108  Vcvv 3459  wss 3926  𝒫 cpw 4575   × cxp 5652  Rel wrel 5659  cfv 6530  (class class class)co 7403  Basecbs 17226  Homachoma 18034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-ov 7406  df-homa 18037
This theorem is referenced by:  homahom  18050  homadm  18051  homacd  18052  homadmcd  18053
  Copyright terms: Public domain W3C validator