| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | elmapi 8889 | . . . . 5
⊢ (𝐴 ∈ (𝑅 ↑m 𝑉) → 𝐴:𝑉⟶𝑅) | 
| 2 |  | fdm 6745 | . . . . . 6
⊢ (𝐴:𝑉⟶𝑅 → dom 𝐴 = 𝑉) | 
| 3 |  | eqidd 2738 | . . . . . . . . . . . 12
⊢ ((((dom
𝐴 = 𝑉 ∧ 𝐴:𝑉⟶𝑅) ∧ (𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝑀 ∈ LMod)) ∧ 𝑥 ∈ 𝑉) → (𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠
‘𝑀)𝑣)) = (𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠
‘𝑀)𝑣))) | 
| 4 |  | fveq2 6906 | . . . . . . . . . . . . . 14
⊢ (𝑣 = 𝑥 → (𝐴‘𝑣) = (𝐴‘𝑥)) | 
| 5 |  | id 22 | . . . . . . . . . . . . . 14
⊢ (𝑣 = 𝑥 → 𝑣 = 𝑥) | 
| 6 | 4, 5 | oveq12d 7449 | . . . . . . . . . . . . 13
⊢ (𝑣 = 𝑥 → ((𝐴‘𝑣)( ·𝑠
‘𝑀)𝑣) = ((𝐴‘𝑥)( ·𝑠
‘𝑀)𝑥)) | 
| 7 | 6 | adantl 481 | . . . . . . . . . . . 12
⊢ (((((dom
𝐴 = 𝑉 ∧ 𝐴:𝑉⟶𝑅) ∧ (𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝑀 ∈ LMod)) ∧ 𝑥 ∈ 𝑉) ∧ 𝑣 = 𝑥) → ((𝐴‘𝑣)( ·𝑠
‘𝑀)𝑣) = ((𝐴‘𝑥)( ·𝑠
‘𝑀)𝑥)) | 
| 8 |  | simpr 484 | . . . . . . . . . . . 12
⊢ ((((dom
𝐴 = 𝑉 ∧ 𝐴:𝑉⟶𝑅) ∧ (𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝑀 ∈ LMod)) ∧ 𝑥 ∈ 𝑉) → 𝑥 ∈ 𝑉) | 
| 9 |  | ovex 7464 | . . . . . . . . . . . . 13
⊢ ((𝐴‘𝑥)( ·𝑠
‘𝑀)𝑥) ∈ V | 
| 10 | 9 | a1i 11 | . . . . . . . . . . . 12
⊢ ((((dom
𝐴 = 𝑉 ∧ 𝐴:𝑉⟶𝑅) ∧ (𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝑀 ∈ LMod)) ∧ 𝑥 ∈ 𝑉) → ((𝐴‘𝑥)( ·𝑠
‘𝑀)𝑥) ∈ V) | 
| 11 | 3, 7, 8, 10 | fvmptd 7023 | . . . . . . . . . . 11
⊢ ((((dom
𝐴 = 𝑉 ∧ 𝐴:𝑉⟶𝑅) ∧ (𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝑀 ∈ LMod)) ∧ 𝑥 ∈ 𝑉) → ((𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠
‘𝑀)𝑣))‘𝑥) = ((𝐴‘𝑥)( ·𝑠
‘𝑀)𝑥)) | 
| 12 | 11 | neeq1d 3000 | . . . . . . . . . 10
⊢ ((((dom
𝐴 = 𝑉 ∧ 𝐴:𝑉⟶𝑅) ∧ (𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝑀 ∈ LMod)) ∧ 𝑥 ∈ 𝑉) → (((𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠
‘𝑀)𝑣))‘𝑥) ≠ (0g‘𝑀) ↔ ((𝐴‘𝑥)( ·𝑠
‘𝑀)𝑥) ≠ (0g‘𝑀))) | 
| 13 |  | oveq1 7438 | . . . . . . . . . . . . 13
⊢ ((𝐴‘𝑥) = (0g‘𝑆) → ((𝐴‘𝑥)( ·𝑠
‘𝑀)𝑥) = ((0g‘𝑆)( ·𝑠
‘𝑀)𝑥)) | 
| 14 |  | simplrr 778 | . . . . . . . . . . . . . 14
⊢ ((((dom
𝐴 = 𝑉 ∧ 𝐴:𝑉⟶𝑅) ∧ (𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝑀 ∈ LMod)) ∧ 𝑥 ∈ 𝑉) → 𝑀 ∈ LMod) | 
| 15 |  | elelpwi 4610 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ∈ 𝑉 ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → 𝑥 ∈ (Base‘𝑀)) | 
| 16 | 15 | expcom 413 | . . . . . . . . . . . . . . . . 17
⊢ (𝑉 ∈ 𝒫
(Base‘𝑀) →
(𝑥 ∈ 𝑉 → 𝑥 ∈ (Base‘𝑀))) | 
| 17 | 16 | adantr 480 | . . . . . . . . . . . . . . . 16
⊢ ((𝑉 ∈ 𝒫
(Base‘𝑀) ∧ 𝑀 ∈ LMod) → (𝑥 ∈ 𝑉 → 𝑥 ∈ (Base‘𝑀))) | 
| 18 | 17 | adantl 481 | . . . . . . . . . . . . . . 15
⊢ (((dom
𝐴 = 𝑉 ∧ 𝐴:𝑉⟶𝑅) ∧ (𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝑀 ∈ LMod)) → (𝑥 ∈ 𝑉 → 𝑥 ∈ (Base‘𝑀))) | 
| 19 | 18 | imp 406 | . . . . . . . . . . . . . 14
⊢ ((((dom
𝐴 = 𝑉 ∧ 𝐴:𝑉⟶𝑅) ∧ (𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝑀 ∈ LMod)) ∧ 𝑥 ∈ 𝑉) → 𝑥 ∈ (Base‘𝑀)) | 
| 20 |  | eqid 2737 | . . . . . . . . . . . . . . 15
⊢
(Base‘𝑀) =
(Base‘𝑀) | 
| 21 |  | scmsuppss.s | . . . . . . . . . . . . . . 15
⊢ 𝑆 = (Scalar‘𝑀) | 
| 22 |  | eqid 2737 | . . . . . . . . . . . . . . 15
⊢ (
·𝑠 ‘𝑀) = ( ·𝑠
‘𝑀) | 
| 23 |  | eqid 2737 | . . . . . . . . . . . . . . 15
⊢
(0g‘𝑆) = (0g‘𝑆) | 
| 24 |  | eqid 2737 | . . . . . . . . . . . . . . 15
⊢
(0g‘𝑀) = (0g‘𝑀) | 
| 25 | 20, 21, 22, 23, 24 | lmod0vs 20893 | . . . . . . . . . . . . . 14
⊢ ((𝑀 ∈ LMod ∧ 𝑥 ∈ (Base‘𝑀)) →
((0g‘𝑆)(
·𝑠 ‘𝑀)𝑥) = (0g‘𝑀)) | 
| 26 | 14, 19, 25 | syl2anc 584 | . . . . . . . . . . . . 13
⊢ ((((dom
𝐴 = 𝑉 ∧ 𝐴:𝑉⟶𝑅) ∧ (𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝑀 ∈ LMod)) ∧ 𝑥 ∈ 𝑉) → ((0g‘𝑆)(
·𝑠 ‘𝑀)𝑥) = (0g‘𝑀)) | 
| 27 | 13, 26 | sylan9eqr 2799 | . . . . . . . . . . . 12
⊢ (((((dom
𝐴 = 𝑉 ∧ 𝐴:𝑉⟶𝑅) ∧ (𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝑀 ∈ LMod)) ∧ 𝑥 ∈ 𝑉) ∧ (𝐴‘𝑥) = (0g‘𝑆)) → ((𝐴‘𝑥)( ·𝑠
‘𝑀)𝑥) = (0g‘𝑀)) | 
| 28 | 27 | ex 412 | . . . . . . . . . . 11
⊢ ((((dom
𝐴 = 𝑉 ∧ 𝐴:𝑉⟶𝑅) ∧ (𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝑀 ∈ LMod)) ∧ 𝑥 ∈ 𝑉) → ((𝐴‘𝑥) = (0g‘𝑆) → ((𝐴‘𝑥)( ·𝑠
‘𝑀)𝑥) = (0g‘𝑀))) | 
| 29 | 28 | necon3d 2961 | . . . . . . . . . 10
⊢ ((((dom
𝐴 = 𝑉 ∧ 𝐴:𝑉⟶𝑅) ∧ (𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝑀 ∈ LMod)) ∧ 𝑥 ∈ 𝑉) → (((𝐴‘𝑥)( ·𝑠
‘𝑀)𝑥) ≠ (0g‘𝑀) → (𝐴‘𝑥) ≠ (0g‘𝑆))) | 
| 30 | 12, 29 | sylbid 240 | . . . . . . . . 9
⊢ ((((dom
𝐴 = 𝑉 ∧ 𝐴:𝑉⟶𝑅) ∧ (𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝑀 ∈ LMod)) ∧ 𝑥 ∈ 𝑉) → (((𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠
‘𝑀)𝑣))‘𝑥) ≠ (0g‘𝑀) → (𝐴‘𝑥) ≠ (0g‘𝑆))) | 
| 31 | 30 | ss2rabdv 4076 | . . . . . . . 8
⊢ (((dom
𝐴 = 𝑉 ∧ 𝐴:𝑉⟶𝑅) ∧ (𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝑀 ∈ LMod)) → {𝑥 ∈ 𝑉 ∣ ((𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠
‘𝑀)𝑣))‘𝑥) ≠ (0g‘𝑀)} ⊆ {𝑥 ∈ 𝑉 ∣ (𝐴‘𝑥) ≠ (0g‘𝑆)}) | 
| 32 |  | ovex 7464 | . . . . . . . . . . . . 13
⊢ ((𝐴‘𝑣)( ·𝑠
‘𝑀)𝑣) ∈ V | 
| 33 |  | eqid 2737 | . . . . . . . . . . . . 13
⊢ (𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠
‘𝑀)𝑣)) = (𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠
‘𝑀)𝑣)) | 
| 34 | 32, 33 | dmmpti 6712 | . . . . . . . . . . . 12
⊢ dom
(𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠
‘𝑀)𝑣)) = 𝑉 | 
| 35 |  | rabeq 3451 | . . . . . . . . . . . 12
⊢ (dom
(𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠
‘𝑀)𝑣)) = 𝑉 → {𝑥 ∈ dom (𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠
‘𝑀)𝑣)) ∣ ((𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠
‘𝑀)𝑣))‘𝑥) ≠ (0g‘𝑀)} = {𝑥 ∈ 𝑉 ∣ ((𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠
‘𝑀)𝑣))‘𝑥) ≠ (0g‘𝑀)}) | 
| 36 | 34, 35 | mp1i 13 | . . . . . . . . . . 11
⊢ (dom
𝐴 = 𝑉 → {𝑥 ∈ dom (𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠
‘𝑀)𝑣)) ∣ ((𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠
‘𝑀)𝑣))‘𝑥) ≠ (0g‘𝑀)} = {𝑥 ∈ 𝑉 ∣ ((𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠
‘𝑀)𝑣))‘𝑥) ≠ (0g‘𝑀)}) | 
| 37 |  | rabeq 3451 | . . . . . . . . . . 11
⊢ (dom
𝐴 = 𝑉 → {𝑥 ∈ dom 𝐴 ∣ (𝐴‘𝑥) ≠ (0g‘𝑆)} = {𝑥 ∈ 𝑉 ∣ (𝐴‘𝑥) ≠ (0g‘𝑆)}) | 
| 38 | 36, 37 | sseq12d 4017 | . . . . . . . . . 10
⊢ (dom
𝐴 = 𝑉 → ({𝑥 ∈ dom (𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠
‘𝑀)𝑣)) ∣ ((𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠
‘𝑀)𝑣))‘𝑥) ≠ (0g‘𝑀)} ⊆ {𝑥 ∈ dom 𝐴 ∣ (𝐴‘𝑥) ≠ (0g‘𝑆)} ↔ {𝑥 ∈ 𝑉 ∣ ((𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠
‘𝑀)𝑣))‘𝑥) ≠ (0g‘𝑀)} ⊆ {𝑥 ∈ 𝑉 ∣ (𝐴‘𝑥) ≠ (0g‘𝑆)})) | 
| 39 | 38 | adantr 480 | . . . . . . . . 9
⊢ ((dom
𝐴 = 𝑉 ∧ 𝐴:𝑉⟶𝑅) → ({𝑥 ∈ dom (𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠
‘𝑀)𝑣)) ∣ ((𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠
‘𝑀)𝑣))‘𝑥) ≠ (0g‘𝑀)} ⊆ {𝑥 ∈ dom 𝐴 ∣ (𝐴‘𝑥) ≠ (0g‘𝑆)} ↔ {𝑥 ∈ 𝑉 ∣ ((𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠
‘𝑀)𝑣))‘𝑥) ≠ (0g‘𝑀)} ⊆ {𝑥 ∈ 𝑉 ∣ (𝐴‘𝑥) ≠ (0g‘𝑆)})) | 
| 40 | 39 | adantr 480 | . . . . . . . 8
⊢ (((dom
𝐴 = 𝑉 ∧ 𝐴:𝑉⟶𝑅) ∧ (𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝑀 ∈ LMod)) → ({𝑥 ∈ dom (𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠
‘𝑀)𝑣)) ∣ ((𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠
‘𝑀)𝑣))‘𝑥) ≠ (0g‘𝑀)} ⊆ {𝑥 ∈ dom 𝐴 ∣ (𝐴‘𝑥) ≠ (0g‘𝑆)} ↔ {𝑥 ∈ 𝑉 ∣ ((𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠
‘𝑀)𝑣))‘𝑥) ≠ (0g‘𝑀)} ⊆ {𝑥 ∈ 𝑉 ∣ (𝐴‘𝑥) ≠ (0g‘𝑆)})) | 
| 41 | 31, 40 | mpbird 257 | . . . . . . 7
⊢ (((dom
𝐴 = 𝑉 ∧ 𝐴:𝑉⟶𝑅) ∧ (𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝑀 ∈ LMod)) → {𝑥 ∈ dom (𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠
‘𝑀)𝑣)) ∣ ((𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠
‘𝑀)𝑣))‘𝑥) ≠ (0g‘𝑀)} ⊆ {𝑥 ∈ dom 𝐴 ∣ (𝐴‘𝑥) ≠ (0g‘𝑆)}) | 
| 42 | 41 | exp43 436 | . . . . . 6
⊢ (dom
𝐴 = 𝑉 → (𝐴:𝑉⟶𝑅 → (𝑉 ∈ 𝒫 (Base‘𝑀) → (𝑀 ∈ LMod → {𝑥 ∈ dom (𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠
‘𝑀)𝑣)) ∣ ((𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠
‘𝑀)𝑣))‘𝑥) ≠ (0g‘𝑀)} ⊆ {𝑥 ∈ dom 𝐴 ∣ (𝐴‘𝑥) ≠ (0g‘𝑆)})))) | 
| 43 | 2, 42 | mpcom 38 | . . . . 5
⊢ (𝐴:𝑉⟶𝑅 → (𝑉 ∈ 𝒫 (Base‘𝑀) → (𝑀 ∈ LMod → {𝑥 ∈ dom (𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠
‘𝑀)𝑣)) ∣ ((𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠
‘𝑀)𝑣))‘𝑥) ≠ (0g‘𝑀)} ⊆ {𝑥 ∈ dom 𝐴 ∣ (𝐴‘𝑥) ≠ (0g‘𝑆)}))) | 
| 44 | 1, 43 | syl 17 | . . . 4
⊢ (𝐴 ∈ (𝑅 ↑m 𝑉) → (𝑉 ∈ 𝒫 (Base‘𝑀) → (𝑀 ∈ LMod → {𝑥 ∈ dom (𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠
‘𝑀)𝑣)) ∣ ((𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠
‘𝑀)𝑣))‘𝑥) ≠ (0g‘𝑀)} ⊆ {𝑥 ∈ dom 𝐴 ∣ (𝐴‘𝑥) ≠ (0g‘𝑆)}))) | 
| 45 | 44 | com13 88 | . . 3
⊢ (𝑀 ∈ LMod → (𝑉 ∈ 𝒫
(Base‘𝑀) →
(𝐴 ∈ (𝑅 ↑m 𝑉) → {𝑥 ∈ dom (𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠
‘𝑀)𝑣)) ∣ ((𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠
‘𝑀)𝑣))‘𝑥) ≠ (0g‘𝑀)} ⊆ {𝑥 ∈ dom 𝐴 ∣ (𝐴‘𝑥) ≠ (0g‘𝑆)}))) | 
| 46 | 45 | 3imp 1111 | . 2
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → {𝑥 ∈ dom (𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠
‘𝑀)𝑣)) ∣ ((𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠
‘𝑀)𝑣))‘𝑥) ≠ (0g‘𝑀)} ⊆ {𝑥 ∈ dom 𝐴 ∣ (𝐴‘𝑥) ≠ (0g‘𝑆)}) | 
| 47 |  | funmpt 6604 | . . . 4
⊢ Fun
(𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠
‘𝑀)𝑣)) | 
| 48 | 47 | a1i 11 | . . 3
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → Fun (𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠
‘𝑀)𝑣))) | 
| 49 |  | mptexg 7241 | . . . 4
⊢ (𝑉 ∈ 𝒫
(Base‘𝑀) →
(𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠
‘𝑀)𝑣)) ∈ V) | 
| 50 | 49 | 3ad2ant2 1135 | . . 3
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → (𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠
‘𝑀)𝑣)) ∈ V) | 
| 51 |  | fvexd 6921 | . . 3
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → (0g‘𝑀) ∈ V) | 
| 52 |  | suppval1 8191 | . . 3
⊢ ((Fun
(𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠
‘𝑀)𝑣)) ∧ (𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠
‘𝑀)𝑣)) ∈ V ∧ (0g‘𝑀) ∈ V) → ((𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠
‘𝑀)𝑣)) supp (0g‘𝑀)) = {𝑥 ∈ dom (𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠
‘𝑀)𝑣)) ∣ ((𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠
‘𝑀)𝑣))‘𝑥) ≠ (0g‘𝑀)}) | 
| 53 | 48, 50, 51, 52 | syl3anc 1373 | . 2
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → ((𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠
‘𝑀)𝑣)) supp (0g‘𝑀)) = {𝑥 ∈ dom (𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠
‘𝑀)𝑣)) ∣ ((𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠
‘𝑀)𝑣))‘𝑥) ≠ (0g‘𝑀)}) | 
| 54 |  | elmapfun 8906 | . . . 4
⊢ (𝐴 ∈ (𝑅 ↑m 𝑉) → Fun 𝐴) | 
| 55 | 54 | 3ad2ant3 1136 | . . 3
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → Fun 𝐴) | 
| 56 |  | simp3 1139 | . . 3
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → 𝐴 ∈ (𝑅 ↑m 𝑉)) | 
| 57 |  | fvexd 6921 | . . 3
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → (0g‘𝑆) ∈ V) | 
| 58 |  | suppval1 8191 | . . 3
⊢ ((Fun
𝐴 ∧ 𝐴 ∈ (𝑅 ↑m 𝑉) ∧ (0g‘𝑆) ∈ V) → (𝐴 supp (0g‘𝑆)) = {𝑥 ∈ dom 𝐴 ∣ (𝐴‘𝑥) ≠ (0g‘𝑆)}) | 
| 59 | 55, 56, 57, 58 | syl3anc 1373 | . 2
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → (𝐴 supp (0g‘𝑆)) = {𝑥 ∈ dom 𝐴 ∣ (𝐴‘𝑥) ≠ (0g‘𝑆)}) | 
| 60 | 46, 53, 59 | 3sstr4d 4039 | 1
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → ((𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠
‘𝑀)𝑣)) supp (0g‘𝑀)) ⊆ (𝐴 supp (0g‘𝑆))) |