Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  scmsuppss Structured version   Visualization version   GIF version

Theorem scmsuppss 48496
Description: The support of a mapping of a scalar multiplication with a function of scalars is a subset of the support of the function of scalars. (Contributed by AV, 5-Apr-2019.)
Hypotheses
Ref Expression
scmsuppss.s 𝑆 = (Scalar‘𝑀)
scmsuppss.r 𝑅 = (Base‘𝑆)
Assertion
Ref Expression
scmsuppss ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝐴 ∈ (𝑅m 𝑉)) → ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) supp (0g𝑀)) ⊆ (𝐴 supp (0g𝑆)))
Distinct variable groups:   𝑣,𝐴   𝑣,𝑀   𝑣,𝑅   𝑣,𝑉
Allowed substitution hint:   𝑆(𝑣)

Proof of Theorem scmsuppss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elmapi 8779 . . . . 5 (𝐴 ∈ (𝑅m 𝑉) → 𝐴:𝑉𝑅)
2 fdm 6665 . . . . . 6 (𝐴:𝑉𝑅 → dom 𝐴 = 𝑉)
3 eqidd 2734 . . . . . . . . . . . 12 ((((dom 𝐴 = 𝑉𝐴:𝑉𝑅) ∧ (𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝑀 ∈ LMod)) ∧ 𝑥𝑉) → (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) = (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)))
4 fveq2 6828 . . . . . . . . . . . . . 14 (𝑣 = 𝑥 → (𝐴𝑣) = (𝐴𝑥))
5 id 22 . . . . . . . . . . . . . 14 (𝑣 = 𝑥𝑣 = 𝑥)
64, 5oveq12d 7370 . . . . . . . . . . . . 13 (𝑣 = 𝑥 → ((𝐴𝑣)( ·𝑠𝑀)𝑣) = ((𝐴𝑥)( ·𝑠𝑀)𝑥))
76adantl 481 . . . . . . . . . . . 12 (((((dom 𝐴 = 𝑉𝐴:𝑉𝑅) ∧ (𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝑀 ∈ LMod)) ∧ 𝑥𝑉) ∧ 𝑣 = 𝑥) → ((𝐴𝑣)( ·𝑠𝑀)𝑣) = ((𝐴𝑥)( ·𝑠𝑀)𝑥))
8 simpr 484 . . . . . . . . . . . 12 ((((dom 𝐴 = 𝑉𝐴:𝑉𝑅) ∧ (𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝑀 ∈ LMod)) ∧ 𝑥𝑉) → 𝑥𝑉)
9 ovex 7385 . . . . . . . . . . . . 13 ((𝐴𝑥)( ·𝑠𝑀)𝑥) ∈ V
109a1i 11 . . . . . . . . . . . 12 ((((dom 𝐴 = 𝑉𝐴:𝑉𝑅) ∧ (𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝑀 ∈ LMod)) ∧ 𝑥𝑉) → ((𝐴𝑥)( ·𝑠𝑀)𝑥) ∈ V)
113, 7, 8, 10fvmptd 6942 . . . . . . . . . . 11 ((((dom 𝐴 = 𝑉𝐴:𝑉𝑅) ∧ (𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝑀 ∈ LMod)) ∧ 𝑥𝑉) → ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣))‘𝑥) = ((𝐴𝑥)( ·𝑠𝑀)𝑥))
1211neeq1d 2988 . . . . . . . . . 10 ((((dom 𝐴 = 𝑉𝐴:𝑉𝑅) ∧ (𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝑀 ∈ LMod)) ∧ 𝑥𝑉) → (((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣))‘𝑥) ≠ (0g𝑀) ↔ ((𝐴𝑥)( ·𝑠𝑀)𝑥) ≠ (0g𝑀)))
13 oveq1 7359 . . . . . . . . . . . . 13 ((𝐴𝑥) = (0g𝑆) → ((𝐴𝑥)( ·𝑠𝑀)𝑥) = ((0g𝑆)( ·𝑠𝑀)𝑥))
14 simplrr 777 . . . . . . . . . . . . . 14 ((((dom 𝐴 = 𝑉𝐴:𝑉𝑅) ∧ (𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝑀 ∈ LMod)) ∧ 𝑥𝑉) → 𝑀 ∈ LMod)
15 elelpwi 4559 . . . . . . . . . . . . . . . . . 18 ((𝑥𝑉𝑉 ∈ 𝒫 (Base‘𝑀)) → 𝑥 ∈ (Base‘𝑀))
1615expcom 413 . . . . . . . . . . . . . . . . 17 (𝑉 ∈ 𝒫 (Base‘𝑀) → (𝑥𝑉𝑥 ∈ (Base‘𝑀)))
1716adantr 480 . . . . . . . . . . . . . . . 16 ((𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝑀 ∈ LMod) → (𝑥𝑉𝑥 ∈ (Base‘𝑀)))
1817adantl 481 . . . . . . . . . . . . . . 15 (((dom 𝐴 = 𝑉𝐴:𝑉𝑅) ∧ (𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝑀 ∈ LMod)) → (𝑥𝑉𝑥 ∈ (Base‘𝑀)))
1918imp 406 . . . . . . . . . . . . . 14 ((((dom 𝐴 = 𝑉𝐴:𝑉𝑅) ∧ (𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝑀 ∈ LMod)) ∧ 𝑥𝑉) → 𝑥 ∈ (Base‘𝑀))
20 eqid 2733 . . . . . . . . . . . . . . 15 (Base‘𝑀) = (Base‘𝑀)
21 scmsuppss.s . . . . . . . . . . . . . . 15 𝑆 = (Scalar‘𝑀)
22 eqid 2733 . . . . . . . . . . . . . . 15 ( ·𝑠𝑀) = ( ·𝑠𝑀)
23 eqid 2733 . . . . . . . . . . . . . . 15 (0g𝑆) = (0g𝑆)
24 eqid 2733 . . . . . . . . . . . . . . 15 (0g𝑀) = (0g𝑀)
2520, 21, 22, 23, 24lmod0vs 20830 . . . . . . . . . . . . . 14 ((𝑀 ∈ LMod ∧ 𝑥 ∈ (Base‘𝑀)) → ((0g𝑆)( ·𝑠𝑀)𝑥) = (0g𝑀))
2614, 19, 25syl2anc 584 . . . . . . . . . . . . 13 ((((dom 𝐴 = 𝑉𝐴:𝑉𝑅) ∧ (𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝑀 ∈ LMod)) ∧ 𝑥𝑉) → ((0g𝑆)( ·𝑠𝑀)𝑥) = (0g𝑀))
2713, 26sylan9eqr 2790 . . . . . . . . . . . 12 (((((dom 𝐴 = 𝑉𝐴:𝑉𝑅) ∧ (𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝑀 ∈ LMod)) ∧ 𝑥𝑉) ∧ (𝐴𝑥) = (0g𝑆)) → ((𝐴𝑥)( ·𝑠𝑀)𝑥) = (0g𝑀))
2827ex 412 . . . . . . . . . . 11 ((((dom 𝐴 = 𝑉𝐴:𝑉𝑅) ∧ (𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝑀 ∈ LMod)) ∧ 𝑥𝑉) → ((𝐴𝑥) = (0g𝑆) → ((𝐴𝑥)( ·𝑠𝑀)𝑥) = (0g𝑀)))
2928necon3d 2950 . . . . . . . . . 10 ((((dom 𝐴 = 𝑉𝐴:𝑉𝑅) ∧ (𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝑀 ∈ LMod)) ∧ 𝑥𝑉) → (((𝐴𝑥)( ·𝑠𝑀)𝑥) ≠ (0g𝑀) → (𝐴𝑥) ≠ (0g𝑆)))
3012, 29sylbid 240 . . . . . . . . 9 ((((dom 𝐴 = 𝑉𝐴:𝑉𝑅) ∧ (𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝑀 ∈ LMod)) ∧ 𝑥𝑉) → (((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣))‘𝑥) ≠ (0g𝑀) → (𝐴𝑥) ≠ (0g𝑆)))
3130ss2rabdv 4024 . . . . . . . 8 (((dom 𝐴 = 𝑉𝐴:𝑉𝑅) ∧ (𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝑀 ∈ LMod)) → {𝑥𝑉 ∣ ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣))‘𝑥) ≠ (0g𝑀)} ⊆ {𝑥𝑉 ∣ (𝐴𝑥) ≠ (0g𝑆)})
32 ovex 7385 . . . . . . . . . . . . 13 ((𝐴𝑣)( ·𝑠𝑀)𝑣) ∈ V
33 eqid 2733 . . . . . . . . . . . . 13 (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) = (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣))
3432, 33dmmpti 6630 . . . . . . . . . . . 12 dom (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) = 𝑉
35 rabeq 3410 . . . . . . . . . . . 12 (dom (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) = 𝑉 → {𝑥 ∈ dom (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) ∣ ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣))‘𝑥) ≠ (0g𝑀)} = {𝑥𝑉 ∣ ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣))‘𝑥) ≠ (0g𝑀)})
3634, 35mp1i 13 . . . . . . . . . . 11 (dom 𝐴 = 𝑉 → {𝑥 ∈ dom (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) ∣ ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣))‘𝑥) ≠ (0g𝑀)} = {𝑥𝑉 ∣ ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣))‘𝑥) ≠ (0g𝑀)})
37 rabeq 3410 . . . . . . . . . . 11 (dom 𝐴 = 𝑉 → {𝑥 ∈ dom 𝐴 ∣ (𝐴𝑥) ≠ (0g𝑆)} = {𝑥𝑉 ∣ (𝐴𝑥) ≠ (0g𝑆)})
3836, 37sseq12d 3964 . . . . . . . . . 10 (dom 𝐴 = 𝑉 → ({𝑥 ∈ dom (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) ∣ ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣))‘𝑥) ≠ (0g𝑀)} ⊆ {𝑥 ∈ dom 𝐴 ∣ (𝐴𝑥) ≠ (0g𝑆)} ↔ {𝑥𝑉 ∣ ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣))‘𝑥) ≠ (0g𝑀)} ⊆ {𝑥𝑉 ∣ (𝐴𝑥) ≠ (0g𝑆)}))
3938adantr 480 . . . . . . . . 9 ((dom 𝐴 = 𝑉𝐴:𝑉𝑅) → ({𝑥 ∈ dom (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) ∣ ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣))‘𝑥) ≠ (0g𝑀)} ⊆ {𝑥 ∈ dom 𝐴 ∣ (𝐴𝑥) ≠ (0g𝑆)} ↔ {𝑥𝑉 ∣ ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣))‘𝑥) ≠ (0g𝑀)} ⊆ {𝑥𝑉 ∣ (𝐴𝑥) ≠ (0g𝑆)}))
4039adantr 480 . . . . . . . 8 (((dom 𝐴 = 𝑉𝐴:𝑉𝑅) ∧ (𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝑀 ∈ LMod)) → ({𝑥 ∈ dom (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) ∣ ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣))‘𝑥) ≠ (0g𝑀)} ⊆ {𝑥 ∈ dom 𝐴 ∣ (𝐴𝑥) ≠ (0g𝑆)} ↔ {𝑥𝑉 ∣ ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣))‘𝑥) ≠ (0g𝑀)} ⊆ {𝑥𝑉 ∣ (𝐴𝑥) ≠ (0g𝑆)}))
4131, 40mpbird 257 . . . . . . 7 (((dom 𝐴 = 𝑉𝐴:𝑉𝑅) ∧ (𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝑀 ∈ LMod)) → {𝑥 ∈ dom (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) ∣ ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣))‘𝑥) ≠ (0g𝑀)} ⊆ {𝑥 ∈ dom 𝐴 ∣ (𝐴𝑥) ≠ (0g𝑆)})
4241exp43 436 . . . . . 6 (dom 𝐴 = 𝑉 → (𝐴:𝑉𝑅 → (𝑉 ∈ 𝒫 (Base‘𝑀) → (𝑀 ∈ LMod → {𝑥 ∈ dom (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) ∣ ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣))‘𝑥) ≠ (0g𝑀)} ⊆ {𝑥 ∈ dom 𝐴 ∣ (𝐴𝑥) ≠ (0g𝑆)}))))
432, 42mpcom 38 . . . . 5 (𝐴:𝑉𝑅 → (𝑉 ∈ 𝒫 (Base‘𝑀) → (𝑀 ∈ LMod → {𝑥 ∈ dom (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) ∣ ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣))‘𝑥) ≠ (0g𝑀)} ⊆ {𝑥 ∈ dom 𝐴 ∣ (𝐴𝑥) ≠ (0g𝑆)})))
441, 43syl 17 . . . 4 (𝐴 ∈ (𝑅m 𝑉) → (𝑉 ∈ 𝒫 (Base‘𝑀) → (𝑀 ∈ LMod → {𝑥 ∈ dom (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) ∣ ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣))‘𝑥) ≠ (0g𝑀)} ⊆ {𝑥 ∈ dom 𝐴 ∣ (𝐴𝑥) ≠ (0g𝑆)})))
4544com13 88 . . 3 (𝑀 ∈ LMod → (𝑉 ∈ 𝒫 (Base‘𝑀) → (𝐴 ∈ (𝑅m 𝑉) → {𝑥 ∈ dom (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) ∣ ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣))‘𝑥) ≠ (0g𝑀)} ⊆ {𝑥 ∈ dom 𝐴 ∣ (𝐴𝑥) ≠ (0g𝑆)})))
46453imp 1110 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝐴 ∈ (𝑅m 𝑉)) → {𝑥 ∈ dom (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) ∣ ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣))‘𝑥) ≠ (0g𝑀)} ⊆ {𝑥 ∈ dom 𝐴 ∣ (𝐴𝑥) ≠ (0g𝑆)})
47 funmpt 6524 . . . 4 Fun (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣))
4847a1i 11 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝐴 ∈ (𝑅m 𝑉)) → Fun (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)))
49 mptexg 7161 . . . 4 (𝑉 ∈ 𝒫 (Base‘𝑀) → (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) ∈ V)
50493ad2ant2 1134 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝐴 ∈ (𝑅m 𝑉)) → (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) ∈ V)
51 fvexd 6843 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝐴 ∈ (𝑅m 𝑉)) → (0g𝑀) ∈ V)
52 suppval1 8102 . . 3 ((Fun (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) ∧ (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) ∈ V ∧ (0g𝑀) ∈ V) → ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) supp (0g𝑀)) = {𝑥 ∈ dom (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) ∣ ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣))‘𝑥) ≠ (0g𝑀)})
5348, 50, 51, 52syl3anc 1373 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝐴 ∈ (𝑅m 𝑉)) → ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) supp (0g𝑀)) = {𝑥 ∈ dom (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) ∣ ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣))‘𝑥) ≠ (0g𝑀)})
54 elmapfun 8796 . . . 4 (𝐴 ∈ (𝑅m 𝑉) → Fun 𝐴)
55543ad2ant3 1135 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝐴 ∈ (𝑅m 𝑉)) → Fun 𝐴)
56 simp3 1138 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝐴 ∈ (𝑅m 𝑉)) → 𝐴 ∈ (𝑅m 𝑉))
57 fvexd 6843 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝐴 ∈ (𝑅m 𝑉)) → (0g𝑆) ∈ V)
58 suppval1 8102 . . 3 ((Fun 𝐴𝐴 ∈ (𝑅m 𝑉) ∧ (0g𝑆) ∈ V) → (𝐴 supp (0g𝑆)) = {𝑥 ∈ dom 𝐴 ∣ (𝐴𝑥) ≠ (0g𝑆)})
5955, 56, 57, 58syl3anc 1373 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝐴 ∈ (𝑅m 𝑉)) → (𝐴 supp (0g𝑆)) = {𝑥 ∈ dom 𝐴 ∣ (𝐴𝑥) ≠ (0g𝑆)})
6046, 53, 593sstr4d 3986 1 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝐴 ∈ (𝑅m 𝑉)) → ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) supp (0g𝑀)) ⊆ (𝐴 supp (0g𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2929  {crab 3396  Vcvv 3437  wss 3898  𝒫 cpw 4549  cmpt 5174  dom cdm 5619  Fun wfun 6480  wf 6482  cfv 6486  (class class class)co 7352   supp csupp 8096  m cmap 8756  Basecbs 17122  Scalarcsca 17166   ·𝑠 cvsca 17167  0gc0g 17345  LModclmod 20795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-supp 8097  df-map 8758  df-0g 17347  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-grp 18851  df-ring 20155  df-lmod 20797
This theorem is referenced by:  scmsuppfi  48499
  Copyright terms: Public domain W3C validator