Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  scmsuppss Structured version   Visualization version   GIF version

Theorem scmsuppss 45596
Description: The support of a mapping of a scalar multiplication with a function of scalars is a subset of the support of the function of scalars. (Contributed by AV, 5-Apr-2019.)
Hypotheses
Ref Expression
scmsuppss.s 𝑆 = (Scalar‘𝑀)
scmsuppss.r 𝑅 = (Base‘𝑆)
Assertion
Ref Expression
scmsuppss ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝐴 ∈ (𝑅m 𝑉)) → ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) supp (0g𝑀)) ⊆ (𝐴 supp (0g𝑆)))
Distinct variable groups:   𝑣,𝐴   𝑣,𝑀   𝑣,𝑅   𝑣,𝑉
Allowed substitution hint:   𝑆(𝑣)

Proof of Theorem scmsuppss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elmapi 8595 . . . . 5 (𝐴 ∈ (𝑅m 𝑉) → 𝐴:𝑉𝑅)
2 fdm 6593 . . . . . 6 (𝐴:𝑉𝑅 → dom 𝐴 = 𝑉)
3 eqidd 2739 . . . . . . . . . . . 12 ((((dom 𝐴 = 𝑉𝐴:𝑉𝑅) ∧ (𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝑀 ∈ LMod)) ∧ 𝑥𝑉) → (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) = (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)))
4 fveq2 6756 . . . . . . . . . . . . . 14 (𝑣 = 𝑥 → (𝐴𝑣) = (𝐴𝑥))
5 id 22 . . . . . . . . . . . . . 14 (𝑣 = 𝑥𝑣 = 𝑥)
64, 5oveq12d 7273 . . . . . . . . . . . . 13 (𝑣 = 𝑥 → ((𝐴𝑣)( ·𝑠𝑀)𝑣) = ((𝐴𝑥)( ·𝑠𝑀)𝑥))
76adantl 481 . . . . . . . . . . . 12 (((((dom 𝐴 = 𝑉𝐴:𝑉𝑅) ∧ (𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝑀 ∈ LMod)) ∧ 𝑥𝑉) ∧ 𝑣 = 𝑥) → ((𝐴𝑣)( ·𝑠𝑀)𝑣) = ((𝐴𝑥)( ·𝑠𝑀)𝑥))
8 simpr 484 . . . . . . . . . . . 12 ((((dom 𝐴 = 𝑉𝐴:𝑉𝑅) ∧ (𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝑀 ∈ LMod)) ∧ 𝑥𝑉) → 𝑥𝑉)
9 ovex 7288 . . . . . . . . . . . . 13 ((𝐴𝑥)( ·𝑠𝑀)𝑥) ∈ V
109a1i 11 . . . . . . . . . . . 12 ((((dom 𝐴 = 𝑉𝐴:𝑉𝑅) ∧ (𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝑀 ∈ LMod)) ∧ 𝑥𝑉) → ((𝐴𝑥)( ·𝑠𝑀)𝑥) ∈ V)
113, 7, 8, 10fvmptd 6864 . . . . . . . . . . 11 ((((dom 𝐴 = 𝑉𝐴:𝑉𝑅) ∧ (𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝑀 ∈ LMod)) ∧ 𝑥𝑉) → ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣))‘𝑥) = ((𝐴𝑥)( ·𝑠𝑀)𝑥))
1211neeq1d 3002 . . . . . . . . . 10 ((((dom 𝐴 = 𝑉𝐴:𝑉𝑅) ∧ (𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝑀 ∈ LMod)) ∧ 𝑥𝑉) → (((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣))‘𝑥) ≠ (0g𝑀) ↔ ((𝐴𝑥)( ·𝑠𝑀)𝑥) ≠ (0g𝑀)))
13 oveq1 7262 . . . . . . . . . . . . 13 ((𝐴𝑥) = (0g𝑆) → ((𝐴𝑥)( ·𝑠𝑀)𝑥) = ((0g𝑆)( ·𝑠𝑀)𝑥))
14 simplrr 774 . . . . . . . . . . . . . 14 ((((dom 𝐴 = 𝑉𝐴:𝑉𝑅) ∧ (𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝑀 ∈ LMod)) ∧ 𝑥𝑉) → 𝑀 ∈ LMod)
15 elelpwi 4542 . . . . . . . . . . . . . . . . . 18 ((𝑥𝑉𝑉 ∈ 𝒫 (Base‘𝑀)) → 𝑥 ∈ (Base‘𝑀))
1615expcom 413 . . . . . . . . . . . . . . . . 17 (𝑉 ∈ 𝒫 (Base‘𝑀) → (𝑥𝑉𝑥 ∈ (Base‘𝑀)))
1716adantr 480 . . . . . . . . . . . . . . . 16 ((𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝑀 ∈ LMod) → (𝑥𝑉𝑥 ∈ (Base‘𝑀)))
1817adantl 481 . . . . . . . . . . . . . . 15 (((dom 𝐴 = 𝑉𝐴:𝑉𝑅) ∧ (𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝑀 ∈ LMod)) → (𝑥𝑉𝑥 ∈ (Base‘𝑀)))
1918imp 406 . . . . . . . . . . . . . 14 ((((dom 𝐴 = 𝑉𝐴:𝑉𝑅) ∧ (𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝑀 ∈ LMod)) ∧ 𝑥𝑉) → 𝑥 ∈ (Base‘𝑀))
20 eqid 2738 . . . . . . . . . . . . . . 15 (Base‘𝑀) = (Base‘𝑀)
21 scmsuppss.s . . . . . . . . . . . . . . 15 𝑆 = (Scalar‘𝑀)
22 eqid 2738 . . . . . . . . . . . . . . 15 ( ·𝑠𝑀) = ( ·𝑠𝑀)
23 eqid 2738 . . . . . . . . . . . . . . 15 (0g𝑆) = (0g𝑆)
24 eqid 2738 . . . . . . . . . . . . . . 15 (0g𝑀) = (0g𝑀)
2520, 21, 22, 23, 24lmod0vs 20071 . . . . . . . . . . . . . 14 ((𝑀 ∈ LMod ∧ 𝑥 ∈ (Base‘𝑀)) → ((0g𝑆)( ·𝑠𝑀)𝑥) = (0g𝑀))
2614, 19, 25syl2anc 583 . . . . . . . . . . . . 13 ((((dom 𝐴 = 𝑉𝐴:𝑉𝑅) ∧ (𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝑀 ∈ LMod)) ∧ 𝑥𝑉) → ((0g𝑆)( ·𝑠𝑀)𝑥) = (0g𝑀))
2713, 26sylan9eqr 2801 . . . . . . . . . . . 12 (((((dom 𝐴 = 𝑉𝐴:𝑉𝑅) ∧ (𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝑀 ∈ LMod)) ∧ 𝑥𝑉) ∧ (𝐴𝑥) = (0g𝑆)) → ((𝐴𝑥)( ·𝑠𝑀)𝑥) = (0g𝑀))
2827ex 412 . . . . . . . . . . 11 ((((dom 𝐴 = 𝑉𝐴:𝑉𝑅) ∧ (𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝑀 ∈ LMod)) ∧ 𝑥𝑉) → ((𝐴𝑥) = (0g𝑆) → ((𝐴𝑥)( ·𝑠𝑀)𝑥) = (0g𝑀)))
2928necon3d 2963 . . . . . . . . . 10 ((((dom 𝐴 = 𝑉𝐴:𝑉𝑅) ∧ (𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝑀 ∈ LMod)) ∧ 𝑥𝑉) → (((𝐴𝑥)( ·𝑠𝑀)𝑥) ≠ (0g𝑀) → (𝐴𝑥) ≠ (0g𝑆)))
3012, 29sylbid 239 . . . . . . . . 9 ((((dom 𝐴 = 𝑉𝐴:𝑉𝑅) ∧ (𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝑀 ∈ LMod)) ∧ 𝑥𝑉) → (((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣))‘𝑥) ≠ (0g𝑀) → (𝐴𝑥) ≠ (0g𝑆)))
3130ss2rabdv 4005 . . . . . . . 8 (((dom 𝐴 = 𝑉𝐴:𝑉𝑅) ∧ (𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝑀 ∈ LMod)) → {𝑥𝑉 ∣ ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣))‘𝑥) ≠ (0g𝑀)} ⊆ {𝑥𝑉 ∣ (𝐴𝑥) ≠ (0g𝑆)})
32 ovex 7288 . . . . . . . . . . . . 13 ((𝐴𝑣)( ·𝑠𝑀)𝑣) ∈ V
33 eqid 2738 . . . . . . . . . . . . 13 (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) = (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣))
3432, 33dmmpti 6561 . . . . . . . . . . . 12 dom (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) = 𝑉
35 rabeq 3408 . . . . . . . . . . . 12 (dom (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) = 𝑉 → {𝑥 ∈ dom (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) ∣ ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣))‘𝑥) ≠ (0g𝑀)} = {𝑥𝑉 ∣ ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣))‘𝑥) ≠ (0g𝑀)})
3634, 35mp1i 13 . . . . . . . . . . 11 (dom 𝐴 = 𝑉 → {𝑥 ∈ dom (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) ∣ ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣))‘𝑥) ≠ (0g𝑀)} = {𝑥𝑉 ∣ ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣))‘𝑥) ≠ (0g𝑀)})
37 rabeq 3408 . . . . . . . . . . 11 (dom 𝐴 = 𝑉 → {𝑥 ∈ dom 𝐴 ∣ (𝐴𝑥) ≠ (0g𝑆)} = {𝑥𝑉 ∣ (𝐴𝑥) ≠ (0g𝑆)})
3836, 37sseq12d 3950 . . . . . . . . . 10 (dom 𝐴 = 𝑉 → ({𝑥 ∈ dom (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) ∣ ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣))‘𝑥) ≠ (0g𝑀)} ⊆ {𝑥 ∈ dom 𝐴 ∣ (𝐴𝑥) ≠ (0g𝑆)} ↔ {𝑥𝑉 ∣ ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣))‘𝑥) ≠ (0g𝑀)} ⊆ {𝑥𝑉 ∣ (𝐴𝑥) ≠ (0g𝑆)}))
3938adantr 480 . . . . . . . . 9 ((dom 𝐴 = 𝑉𝐴:𝑉𝑅) → ({𝑥 ∈ dom (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) ∣ ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣))‘𝑥) ≠ (0g𝑀)} ⊆ {𝑥 ∈ dom 𝐴 ∣ (𝐴𝑥) ≠ (0g𝑆)} ↔ {𝑥𝑉 ∣ ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣))‘𝑥) ≠ (0g𝑀)} ⊆ {𝑥𝑉 ∣ (𝐴𝑥) ≠ (0g𝑆)}))
4039adantr 480 . . . . . . . 8 (((dom 𝐴 = 𝑉𝐴:𝑉𝑅) ∧ (𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝑀 ∈ LMod)) → ({𝑥 ∈ dom (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) ∣ ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣))‘𝑥) ≠ (0g𝑀)} ⊆ {𝑥 ∈ dom 𝐴 ∣ (𝐴𝑥) ≠ (0g𝑆)} ↔ {𝑥𝑉 ∣ ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣))‘𝑥) ≠ (0g𝑀)} ⊆ {𝑥𝑉 ∣ (𝐴𝑥) ≠ (0g𝑆)}))
4131, 40mpbird 256 . . . . . . 7 (((dom 𝐴 = 𝑉𝐴:𝑉𝑅) ∧ (𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝑀 ∈ LMod)) → {𝑥 ∈ dom (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) ∣ ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣))‘𝑥) ≠ (0g𝑀)} ⊆ {𝑥 ∈ dom 𝐴 ∣ (𝐴𝑥) ≠ (0g𝑆)})
4241exp43 436 . . . . . 6 (dom 𝐴 = 𝑉 → (𝐴:𝑉𝑅 → (𝑉 ∈ 𝒫 (Base‘𝑀) → (𝑀 ∈ LMod → {𝑥 ∈ dom (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) ∣ ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣))‘𝑥) ≠ (0g𝑀)} ⊆ {𝑥 ∈ dom 𝐴 ∣ (𝐴𝑥) ≠ (0g𝑆)}))))
432, 42mpcom 38 . . . . 5 (𝐴:𝑉𝑅 → (𝑉 ∈ 𝒫 (Base‘𝑀) → (𝑀 ∈ LMod → {𝑥 ∈ dom (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) ∣ ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣))‘𝑥) ≠ (0g𝑀)} ⊆ {𝑥 ∈ dom 𝐴 ∣ (𝐴𝑥) ≠ (0g𝑆)})))
441, 43syl 17 . . . 4 (𝐴 ∈ (𝑅m 𝑉) → (𝑉 ∈ 𝒫 (Base‘𝑀) → (𝑀 ∈ LMod → {𝑥 ∈ dom (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) ∣ ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣))‘𝑥) ≠ (0g𝑀)} ⊆ {𝑥 ∈ dom 𝐴 ∣ (𝐴𝑥) ≠ (0g𝑆)})))
4544com13 88 . . 3 (𝑀 ∈ LMod → (𝑉 ∈ 𝒫 (Base‘𝑀) → (𝐴 ∈ (𝑅m 𝑉) → {𝑥 ∈ dom (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) ∣ ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣))‘𝑥) ≠ (0g𝑀)} ⊆ {𝑥 ∈ dom 𝐴 ∣ (𝐴𝑥) ≠ (0g𝑆)})))
46453imp 1109 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝐴 ∈ (𝑅m 𝑉)) → {𝑥 ∈ dom (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) ∣ ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣))‘𝑥) ≠ (0g𝑀)} ⊆ {𝑥 ∈ dom 𝐴 ∣ (𝐴𝑥) ≠ (0g𝑆)})
47 funmpt 6456 . . . 4 Fun (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣))
4847a1i 11 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝐴 ∈ (𝑅m 𝑉)) → Fun (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)))
49 mptexg 7079 . . . 4 (𝑉 ∈ 𝒫 (Base‘𝑀) → (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) ∈ V)
50493ad2ant2 1132 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝐴 ∈ (𝑅m 𝑉)) → (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) ∈ V)
51 fvexd 6771 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝐴 ∈ (𝑅m 𝑉)) → (0g𝑀) ∈ V)
52 suppval1 7954 . . 3 ((Fun (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) ∧ (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) ∈ V ∧ (0g𝑀) ∈ V) → ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) supp (0g𝑀)) = {𝑥 ∈ dom (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) ∣ ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣))‘𝑥) ≠ (0g𝑀)})
5348, 50, 51, 52syl3anc 1369 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝐴 ∈ (𝑅m 𝑉)) → ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) supp (0g𝑀)) = {𝑥 ∈ dom (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) ∣ ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣))‘𝑥) ≠ (0g𝑀)})
54 elmapfun 8612 . . . 4 (𝐴 ∈ (𝑅m 𝑉) → Fun 𝐴)
55543ad2ant3 1133 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝐴 ∈ (𝑅m 𝑉)) → Fun 𝐴)
56 simp3 1136 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝐴 ∈ (𝑅m 𝑉)) → 𝐴 ∈ (𝑅m 𝑉))
57 fvexd 6771 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝐴 ∈ (𝑅m 𝑉)) → (0g𝑆) ∈ V)
58 suppval1 7954 . . 3 ((Fun 𝐴𝐴 ∈ (𝑅m 𝑉) ∧ (0g𝑆) ∈ V) → (𝐴 supp (0g𝑆)) = {𝑥 ∈ dom 𝐴 ∣ (𝐴𝑥) ≠ (0g𝑆)})
5955, 56, 57, 58syl3anc 1369 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝐴 ∈ (𝑅m 𝑉)) → (𝐴 supp (0g𝑆)) = {𝑥 ∈ dom 𝐴 ∣ (𝐴𝑥) ≠ (0g𝑆)})
6046, 53, 593sstr4d 3964 1 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝐴 ∈ (𝑅m 𝑉)) → ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) supp (0g𝑀)) ⊆ (𝐴 supp (0g𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  {crab 3067  Vcvv 3422  wss 3883  𝒫 cpw 4530  cmpt 5153  dom cdm 5580  Fun wfun 6412  wf 6414  cfv 6418  (class class class)co 7255   supp csupp 7948  m cmap 8573  Basecbs 16840  Scalarcsca 16891   ·𝑠 cvsca 16892  0gc0g 17067  LModclmod 20038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-supp 7949  df-map 8575  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-ring 19700  df-lmod 20040
This theorem is referenced by:  scmsuppfi  45601
  Copyright terms: Public domain W3C validator