Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itscnhlinecirc02p Structured version   Visualization version   GIF version

Theorem itscnhlinecirc02p 46019
Description: Intersection of a nonhorizontal line with a circle: A nonhorizontal line passing through a point within a circle around the origin intersects the circle at exactly two different points. (Contributed by AV, 28-Jan-2023.)
Hypotheses
Ref Expression
itscnhlinecirc02p.i 𝐼 = {1, 2}
itscnhlinecirc02p.e 𝐸 = (ℝ^‘𝐼)
itscnhlinecirc02p.p 𝑃 = (ℝ ↑m 𝐼)
itscnhlinecirc02p.s 𝑆 = (Sphere‘𝐸)
itscnhlinecirc02p.0 0 = (𝐼 × {0})
itscnhlinecirc02p.l 𝐿 = (LineM𝐸)
itscnhlinecirc02p.d 𝐷 = (dist‘𝐸)
itscnhlinecirc02p.z 𝑍 = {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}
Assertion
Ref Expression
itscnhlinecirc02p (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → ∃!𝑠 ∈ 𝒫 ℝ((♯‘𝑠) = 2 ∧ ∀𝑦𝑠 ∃!𝑥 ∈ ℝ (𝑍 ∈ ( 0 𝑆𝑅) ∧ 𝑍 ∈ (𝑋𝐿𝑌))))
Distinct variable groups:   𝐷,𝑠,𝑥,𝑦   𝑃,𝑠,𝑦   𝑅,𝑠,𝑦   𝑋,𝑠,𝑦   𝑌,𝑠,𝑦   0 ,𝑠,𝑦   𝑥,𝑃   𝑥,𝑅   𝑥,𝑋   𝑥, 0   𝑥,𝑌
Allowed substitution hints:   𝑆(𝑥,𝑦,𝑠)   𝐸(𝑥,𝑦,𝑠)   𝐼(𝑥,𝑦,𝑠)   𝐿(𝑥,𝑦,𝑠)   𝑍(𝑥,𝑦,𝑠)

Proof of Theorem itscnhlinecirc02p
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 itscnhlinecirc02p.i . . . 4 𝐼 = {1, 2}
2 itscnhlinecirc02p.e . . . 4 𝐸 = (ℝ^‘𝐼)
3 itscnhlinecirc02p.p . . . 4 𝑃 = (ℝ ↑m 𝐼)
4 itscnhlinecirc02p.s . . . 4 𝑆 = (Sphere‘𝐸)
5 itscnhlinecirc02p.0 . . . 4 0 = (𝐼 × {0})
6 itscnhlinecirc02p.l . . . 4 𝐿 = (LineM𝐸)
7 itscnhlinecirc02p.d . . . 4 𝐷 = (dist‘𝐸)
81, 2, 3, 4, 5, 6, 7itscnhlinecirc02plem3 46018 . . 3 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → 0 < ((-(2 · (((𝑌‘1) − (𝑋‘1)) · (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))))↑2) − (4 · (((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)) · (((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2) − ((((𝑋‘2) − (𝑌‘2))↑2) · (𝑅↑2)))))))
91, 3rrx2pyel 45946 . . . . . . . . 9 (𝑋𝑃 → (𝑋‘2) ∈ ℝ)
1093ad2ant1 1131 . . . . . . . 8 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) → (𝑋‘2) ∈ ℝ)
1110adantr 480 . . . . . . 7 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (𝑋‘2) ∈ ℝ)
121, 3rrx2pyel 45946 . . . . . . . . 9 (𝑌𝑃 → (𝑌‘2) ∈ ℝ)
13123ad2ant2 1132 . . . . . . . 8 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) → (𝑌‘2) ∈ ℝ)
1413adantr 480 . . . . . . 7 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (𝑌‘2) ∈ ℝ)
1511, 14resubcld 11333 . . . . . 6 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → ((𝑋‘2) − (𝑌‘2)) ∈ ℝ)
1615resqcld 13893 . . . . 5 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (((𝑋‘2) − (𝑌‘2))↑2) ∈ ℝ)
171, 3rrx2pxel 45945 . . . . . . . . 9 (𝑌𝑃 → (𝑌‘1) ∈ ℝ)
18173ad2ant2 1132 . . . . . . . 8 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) → (𝑌‘1) ∈ ℝ)
1918adantr 480 . . . . . . 7 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (𝑌‘1) ∈ ℝ)
201, 3rrx2pxel 45945 . . . . . . . . 9 (𝑋𝑃 → (𝑋‘1) ∈ ℝ)
21203ad2ant1 1131 . . . . . . . 8 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) → (𝑋‘1) ∈ ℝ)
2221adantr 480 . . . . . . 7 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (𝑋‘1) ∈ ℝ)
2319, 22resubcld 11333 . . . . . 6 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → ((𝑌‘1) − (𝑋‘1)) ∈ ℝ)
2423resqcld 13893 . . . . 5 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (((𝑌‘1) − (𝑋‘1))↑2) ∈ ℝ)
2516, 24readdcld 10935 . . . 4 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → ((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)) ∈ ℝ)
2610, 13resubcld 11333 . . . . . . . 8 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) → ((𝑋‘2) − (𝑌‘2)) ∈ ℝ)
2726resqcld 13893 . . . . . . 7 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) → (((𝑋‘2) − (𝑌‘2))↑2) ∈ ℝ)
2818, 21resubcld 11333 . . . . . . . 8 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) → ((𝑌‘1) − (𝑋‘1)) ∈ ℝ)
2928resqcld 13893 . . . . . . 7 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) → (((𝑌‘1) − (𝑋‘1))↑2) ∈ ℝ)
3010recnd 10934 . . . . . . . . 9 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) → (𝑋‘2) ∈ ℂ)
3113recnd 10934 . . . . . . . . 9 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) → (𝑌‘2) ∈ ℂ)
32 simp3 1136 . . . . . . . . 9 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) → (𝑋‘2) ≠ (𝑌‘2))
3330, 31, 32subne0d 11271 . . . . . . . 8 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) → ((𝑋‘2) − (𝑌‘2)) ≠ 0)
3426, 33sqgt0d 13895 . . . . . . 7 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) → 0 < (((𝑋‘2) − (𝑌‘2))↑2))
3528sqge0d 13894 . . . . . . 7 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) → 0 ≤ (((𝑌‘1) − (𝑋‘1))↑2))
3627, 29, 34, 35addgtge0d 11479 . . . . . 6 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) → 0 < ((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)))
3736gt0ne0d 11469 . . . . 5 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) → ((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)) ≠ 0)
3837adantr 480 . . . 4 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → ((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)) ≠ 0)
39 2re 11977 . . . . . . 7 2 ∈ ℝ
4039a1i 11 . . . . . 6 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → 2 ∈ ℝ)
4111, 19remulcld 10936 . . . . . . . 8 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → ((𝑋‘2) · (𝑌‘1)) ∈ ℝ)
4222, 14remulcld 10936 . . . . . . . 8 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → ((𝑋‘1) · (𝑌‘2)) ∈ ℝ)
4341, 42resubcld 11333 . . . . . . 7 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))) ∈ ℝ)
4423, 43remulcld 10936 . . . . . 6 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (((𝑌‘1) − (𝑋‘1)) · (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))) ∈ ℝ)
4540, 44remulcld 10936 . . . . 5 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (2 · (((𝑌‘1) − (𝑋‘1)) · (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))) ∈ ℝ)
4645renegcld 11332 . . . 4 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → -(2 · (((𝑌‘1) − (𝑋‘1)) · (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))) ∈ ℝ)
4743resqcld 13893 . . . . 5 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → ((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2) ∈ ℝ)
48 rpre 12667 . . . . . . . . 9 (𝑅 ∈ ℝ+𝑅 ∈ ℝ)
4948adantr 480 . . . . . . . 8 ((𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅) → 𝑅 ∈ ℝ)
5049adantl 481 . . . . . . 7 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → 𝑅 ∈ ℝ)
5150resqcld 13893 . . . . . 6 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (𝑅↑2) ∈ ℝ)
5216, 51remulcld 10936 . . . . 5 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → ((((𝑋‘2) − (𝑌‘2))↑2) · (𝑅↑2)) ∈ ℝ)
5347, 52resubcld 11333 . . . 4 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2) − ((((𝑋‘2) − (𝑌‘2))↑2) · (𝑅↑2))) ∈ ℝ)
54 eqidd 2739 . . . 4 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → ((-(2 · (((𝑌‘1) − (𝑋‘1)) · (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))))↑2) − (4 · (((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)) · (((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2) − ((((𝑋‘2) − (𝑌‘2))↑2) · (𝑅↑2)))))) = ((-(2 · (((𝑌‘1) − (𝑋‘1)) · (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))))↑2) − (4 · (((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)) · (((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2) − ((((𝑋‘2) − (𝑌‘2))↑2) · (𝑅↑2)))))))
5525, 38, 46, 53, 54requad2 44963 . . 3 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (∃!𝑠 ∈ 𝒫 ℝ((♯‘𝑠) = 2 ∧ ∀𝑦𝑠 ((((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)) · (𝑦↑2)) + ((-(2 · (((𝑌‘1) − (𝑋‘1)) · (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))) · 𝑦) + (((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2) − ((((𝑋‘2) − (𝑌‘2))↑2) · (𝑅↑2))))) = 0) ↔ 0 < ((-(2 · (((𝑌‘1) − (𝑋‘1)) · (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))))↑2) − (4 · (((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)) · (((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2) − ((((𝑋‘2) − (𝑌‘2))↑2) · (𝑅↑2))))))))
568, 55mpbird 256 . 2 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → ∃!𝑠 ∈ 𝒫 ℝ((♯‘𝑠) = 2 ∧ ∀𝑦𝑠 ((((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)) · (𝑦↑2)) + ((-(2 · (((𝑌‘1) − (𝑋‘1)) · (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))) · 𝑦) + (((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2) − ((((𝑋‘2) − (𝑌‘2))↑2) · (𝑅↑2))))) = 0))
57 0xr 10953 . . . . . . . . . . . . . . . . . . 19 0 ∈ ℝ*
5857a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ ℝ+ → 0 ∈ ℝ*)
59 pnfxr 10960 . . . . . . . . . . . . . . . . . . 19 +∞ ∈ ℝ*
6059a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ ℝ+ → +∞ ∈ ℝ*)
61 rpxr 12668 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ ℝ+𝑅 ∈ ℝ*)
62 rpge0 12672 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ ℝ+ → 0 ≤ 𝑅)
63 ltpnf 12785 . . . . . . . . . . . . . . . . . . 19 (𝑅 ∈ ℝ → 𝑅 < +∞)
6448, 63syl 17 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ ℝ+𝑅 < +∞)
6558, 60, 61, 62, 64elicod 13058 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ ℝ+𝑅 ∈ (0[,)+∞))
66 eqid 2738 . . . . . . . . . . . . . . . . . 18 {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)} = {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)}
671, 2, 3, 4, 5, 662sphere0 45984 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ (0[,)+∞) → ( 0 𝑆𝑅) = {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)})
6865, 67syl 17 . . . . . . . . . . . . . . . 16 (𝑅 ∈ ℝ+ → ( 0 𝑆𝑅) = {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)})
6968adantr 480 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅) → ( 0 𝑆𝑅) = {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)})
7069adantl 481 . . . . . . . . . . . . . 14 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → ( 0 𝑆𝑅) = {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)})
7170adantr 480 . . . . . . . . . . . . 13 ((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) → ( 0 𝑆𝑅) = {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)})
7271adantr 480 . . . . . . . . . . . 12 (((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) → ( 0 𝑆𝑅) = {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)})
7372adantr 480 . . . . . . . . . . 11 ((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) → ( 0 𝑆𝑅) = {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)})
7473adantr 480 . . . . . . . . . 10 (((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) ∧ 𝑥 ∈ ℝ) → ( 0 𝑆𝑅) = {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)})
7574eleq2d 2824 . . . . . . . . 9 (((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) ∧ 𝑥 ∈ ℝ) → (𝑍 ∈ ( 0 𝑆𝑅) ↔ 𝑍 ∈ {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)}))
76 fveq1 6755 . . . . . . . . . . . . . . 15 (𝑝 = 𝑍 → (𝑝‘1) = (𝑍‘1))
77 itscnhlinecirc02p.z . . . . . . . . . . . . . . . . . 18 𝑍 = {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}
7877fveq1i 6757 . . . . . . . . . . . . . . . . 17 (𝑍‘1) = ({⟨1, 𝑥⟩, ⟨2, 𝑦⟩}‘1)
79 1ne2 12111 . . . . . . . . . . . . . . . . . 18 1 ≠ 2
80 1ex 10902 . . . . . . . . . . . . . . . . . . 19 1 ∈ V
81 vex 3426 . . . . . . . . . . . . . . . . . . 19 𝑥 ∈ V
8280, 81fvpr1 7047 . . . . . . . . . . . . . . . . . 18 (1 ≠ 2 → ({⟨1, 𝑥⟩, ⟨2, 𝑦⟩}‘1) = 𝑥)
8379, 82ax-mp 5 . . . . . . . . . . . . . . . . 17 ({⟨1, 𝑥⟩, ⟨2, 𝑦⟩}‘1) = 𝑥
8478, 83eqtri 2766 . . . . . . . . . . . . . . . 16 (𝑍‘1) = 𝑥
8584a1i 11 . . . . . . . . . . . . . . 15 (𝑝 = 𝑍 → (𝑍‘1) = 𝑥)
8676, 85eqtrd 2778 . . . . . . . . . . . . . 14 (𝑝 = 𝑍 → (𝑝‘1) = 𝑥)
8786oveq1d 7270 . . . . . . . . . . . . 13 (𝑝 = 𝑍 → ((𝑝‘1)↑2) = (𝑥↑2))
88 fveq1 6755 . . . . . . . . . . . . . . 15 (𝑝 = 𝑍 → (𝑝‘2) = (𝑍‘2))
8977fveq1i 6757 . . . . . . . . . . . . . . . . 17 (𝑍‘2) = ({⟨1, 𝑥⟩, ⟨2, 𝑦⟩}‘2)
90 2ex 11980 . . . . . . . . . . . . . . . . . . 19 2 ∈ V
91 vex 3426 . . . . . . . . . . . . . . . . . . 19 𝑦 ∈ V
9290, 91fvpr2 7049 . . . . . . . . . . . . . . . . . 18 (1 ≠ 2 → ({⟨1, 𝑥⟩, ⟨2, 𝑦⟩}‘2) = 𝑦)
9379, 92ax-mp 5 . . . . . . . . . . . . . . . . 17 ({⟨1, 𝑥⟩, ⟨2, 𝑦⟩}‘2) = 𝑦
9489, 93eqtri 2766 . . . . . . . . . . . . . . . 16 (𝑍‘2) = 𝑦
9594a1i 11 . . . . . . . . . . . . . . 15 (𝑝 = 𝑍 → (𝑍‘2) = 𝑦)
9688, 95eqtrd 2778 . . . . . . . . . . . . . 14 (𝑝 = 𝑍 → (𝑝‘2) = 𝑦)
9796oveq1d 7270 . . . . . . . . . . . . 13 (𝑝 = 𝑍 → ((𝑝‘2)↑2) = (𝑦↑2))
9887, 97oveq12d 7273 . . . . . . . . . . . 12 (𝑝 = 𝑍 → (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = ((𝑥↑2) + (𝑦↑2)))
9998eqeq1d 2740 . . . . . . . . . . 11 (𝑝 = 𝑍 → ((((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2) ↔ ((𝑥↑2) + (𝑦↑2)) = (𝑅↑2)))
10099elrab 3617 . . . . . . . . . 10 (𝑍 ∈ {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)} ↔ (𝑍𝑃 ∧ ((𝑥↑2) + (𝑦↑2)) = (𝑅↑2)))
101100a1i 11 . . . . . . . . 9 (((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) ∧ 𝑥 ∈ ℝ) → (𝑍 ∈ {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)} ↔ (𝑍𝑃 ∧ ((𝑥↑2) + (𝑦↑2)) = (𝑅↑2))))
10275, 101bitrd 278 . . . . . . . 8 (((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) ∧ 𝑥 ∈ ℝ) → (𝑍 ∈ ( 0 𝑆𝑅) ↔ (𝑍𝑃 ∧ ((𝑥↑2) + (𝑦↑2)) = (𝑅↑2))))
103 simp1 1134 . . . . . . . . . . . . . . . . 17 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) → 𝑋𝑃)
104 simp2 1135 . . . . . . . . . . . . . . . . 17 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) → 𝑌𝑃)
105 fveq1 6755 . . . . . . . . . . . . . . . . . . . . 21 (𝑋 = 𝑌 → (𝑋‘2) = (𝑌‘2))
106105a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝑋𝑃𝑌𝑃) → (𝑋 = 𝑌 → (𝑋‘2) = (𝑌‘2)))
107106necon3d 2963 . . . . . . . . . . . . . . . . . . 19 ((𝑋𝑃𝑌𝑃) → ((𝑋‘2) ≠ (𝑌‘2) → 𝑋𝑌))
108107ex 412 . . . . . . . . . . . . . . . . . 18 (𝑋𝑃 → (𝑌𝑃 → ((𝑋‘2) ≠ (𝑌‘2) → 𝑋𝑌)))
1091083imp 1109 . . . . . . . . . . . . . . . . 17 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) → 𝑋𝑌)
110103, 104, 1093jca 1126 . . . . . . . . . . . . . . . 16 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) → (𝑋𝑃𝑌𝑃𝑋𝑌))
111110adantr 480 . . . . . . . . . . . . . . 15 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (𝑋𝑃𝑌𝑃𝑋𝑌))
112111adantr 480 . . . . . . . . . . . . . 14 ((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) → (𝑋𝑃𝑌𝑃𝑋𝑌))
113112adantr 480 . . . . . . . . . . . . 13 (((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) → (𝑋𝑃𝑌𝑃𝑋𝑌))
114113adantr 480 . . . . . . . . . . . 12 ((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) → (𝑋𝑃𝑌𝑃𝑋𝑌))
115114adantr 480 . . . . . . . . . . 11 (((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) ∧ 𝑥 ∈ ℝ) → (𝑋𝑃𝑌𝑃𝑋𝑌))
116 eqid 2738 . . . . . . . . . . . 12 ((𝑋‘2) − (𝑌‘2)) = ((𝑋‘2) − (𝑌‘2))
117 eqid 2738 . . . . . . . . . . . 12 ((𝑌‘1) − (𝑋‘1)) = ((𝑌‘1) − (𝑋‘1))
118 eqid 2738 . . . . . . . . . . . 12 (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))
1191, 2, 3, 6, 116, 117, 118rrx2linest2 45978 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ ((((𝑋‘2) − (𝑌‘2)) · (𝑝‘1)) + (((𝑌‘1) − (𝑋‘1)) · (𝑝‘2))) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))})
120115, 119syl 17 . . . . . . . . . 10 (((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) ∧ 𝑥 ∈ ℝ) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ ((((𝑋‘2) − (𝑌‘2)) · (𝑝‘1)) + (((𝑌‘1) − (𝑋‘1)) · (𝑝‘2))) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))})
121120eleq2d 2824 . . . . . . . . 9 (((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) ∧ 𝑥 ∈ ℝ) → (𝑍 ∈ (𝑋𝐿𝑌) ↔ 𝑍 ∈ {𝑝𝑃 ∣ ((((𝑋‘2) − (𝑌‘2)) · (𝑝‘1)) + (((𝑌‘1) − (𝑋‘1)) · (𝑝‘2))) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))}))
12286oveq2d 7271 . . . . . . . . . . . . 13 (𝑝 = 𝑍 → (((𝑋‘2) − (𝑌‘2)) · (𝑝‘1)) = (((𝑋‘2) − (𝑌‘2)) · 𝑥))
12396oveq2d 7271 . . . . . . . . . . . . 13 (𝑝 = 𝑍 → (((𝑌‘1) − (𝑋‘1)) · (𝑝‘2)) = (((𝑌‘1) − (𝑋‘1)) · 𝑦))
124122, 123oveq12d 7273 . . . . . . . . . . . 12 (𝑝 = 𝑍 → ((((𝑋‘2) − (𝑌‘2)) · (𝑝‘1)) + (((𝑌‘1) − (𝑋‘1)) · (𝑝‘2))) = ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)))
125124eqeq1d 2740 . . . . . . . . . . 11 (𝑝 = 𝑍 → (((((𝑋‘2) − (𝑌‘2)) · (𝑝‘1)) + (((𝑌‘1) − (𝑋‘1)) · (𝑝‘2))) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))) ↔ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))))
126125elrab 3617 . . . . . . . . . 10 (𝑍 ∈ {𝑝𝑃 ∣ ((((𝑋‘2) − (𝑌‘2)) · (𝑝‘1)) + (((𝑌‘1) − (𝑋‘1)) · (𝑝‘2))) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))} ↔ (𝑍𝑃 ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))))
127126a1i 11 . . . . . . . . 9 (((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) ∧ 𝑥 ∈ ℝ) → (𝑍 ∈ {𝑝𝑃 ∣ ((((𝑋‘2) − (𝑌‘2)) · (𝑝‘1)) + (((𝑌‘1) − (𝑋‘1)) · (𝑝‘2))) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))} ↔ (𝑍𝑃 ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))))
128121, 127bitrd 278 . . . . . . . 8 (((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) ∧ 𝑥 ∈ ℝ) → (𝑍 ∈ (𝑋𝐿𝑌) ↔ (𝑍𝑃 ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))))
129102, 128anbi12d 630 . . . . . . 7 (((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) ∧ 𝑥 ∈ ℝ) → ((𝑍 ∈ ( 0 𝑆𝑅) ∧ 𝑍 ∈ (𝑋𝐿𝑌)) ↔ ((𝑍𝑃 ∧ ((𝑥↑2) + (𝑦↑2)) = (𝑅↑2)) ∧ (𝑍𝑃 ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))))))
130129reubidva 3314 . . . . . 6 ((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) → (∃!𝑥 ∈ ℝ (𝑍 ∈ ( 0 𝑆𝑅) ∧ 𝑍 ∈ (𝑋𝐿𝑌)) ↔ ∃!𝑥 ∈ ℝ ((𝑍𝑃 ∧ ((𝑥↑2) + (𝑦↑2)) = (𝑅↑2)) ∧ (𝑍𝑃 ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))))))
131 elelpwi 4542 . . . . . . . . . . . 12 ((𝑦𝑠𝑠 ∈ 𝒫 ℝ) → 𝑦 ∈ ℝ)
1321, 3prelrrx2 45947 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → {⟨1, 𝑥⟩, ⟨2, 𝑦⟩} ∈ 𝑃)
133132ancoms 458 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → {⟨1, 𝑥⟩, ⟨2, 𝑦⟩} ∈ 𝑃)
13477eleq1i 2829 . . . . . . . . . . . . . . . . 17 (𝑍𝑃 ↔ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩} ∈ 𝑃)
135133, 134sylibr 233 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → 𝑍𝑃)
136135biantrurd 532 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (((𝑥↑2) + (𝑦↑2)) = (𝑅↑2) ↔ (𝑍𝑃 ∧ ((𝑥↑2) + (𝑦↑2)) = (𝑅↑2))))
137136bicomd 222 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑍𝑃 ∧ ((𝑥↑2) + (𝑦↑2)) = (𝑅↑2)) ↔ ((𝑥↑2) + (𝑦↑2)) = (𝑅↑2)))
138135biantrurd 532 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))) ↔ (𝑍𝑃 ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))))
139138bicomd 222 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑍𝑃 ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))) ↔ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))))
140137, 139anbi12d 630 . . . . . . . . . . . . 13 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (((𝑍𝑃 ∧ ((𝑥↑2) + (𝑦↑2)) = (𝑅↑2)) ∧ (𝑍𝑃 ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))) ↔ (((𝑥↑2) + (𝑦↑2)) = (𝑅↑2) ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))))
141140reubidva 3314 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → (∃!𝑥 ∈ ℝ ((𝑍𝑃 ∧ ((𝑥↑2) + (𝑦↑2)) = (𝑅↑2)) ∧ (𝑍𝑃 ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))) ↔ ∃!𝑥 ∈ ℝ (((𝑥↑2) + (𝑦↑2)) = (𝑅↑2) ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))))
142131, 141syl 17 . . . . . . . . . . 11 ((𝑦𝑠𝑠 ∈ 𝒫 ℝ) → (∃!𝑥 ∈ ℝ ((𝑍𝑃 ∧ ((𝑥↑2) + (𝑦↑2)) = (𝑅↑2)) ∧ (𝑍𝑃 ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))) ↔ ∃!𝑥 ∈ ℝ (((𝑥↑2) + (𝑦↑2)) = (𝑅↑2) ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))))
143142expcom 413 . . . . . . . . . 10 (𝑠 ∈ 𝒫 ℝ → (𝑦𝑠 → (∃!𝑥 ∈ ℝ ((𝑍𝑃 ∧ ((𝑥↑2) + (𝑦↑2)) = (𝑅↑2)) ∧ (𝑍𝑃 ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))) ↔ ∃!𝑥 ∈ ℝ (((𝑥↑2) + (𝑦↑2)) = (𝑅↑2) ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))))))
144143adantl 481 . . . . . . . . 9 ((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) → (𝑦𝑠 → (∃!𝑥 ∈ ℝ ((𝑍𝑃 ∧ ((𝑥↑2) + (𝑦↑2)) = (𝑅↑2)) ∧ (𝑍𝑃 ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))) ↔ ∃!𝑥 ∈ ℝ (((𝑥↑2) + (𝑦↑2)) = (𝑅↑2) ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))))))
145144adantr 480 . . . . . . . 8 (((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) → (𝑦𝑠 → (∃!𝑥 ∈ ℝ ((𝑍𝑃 ∧ ((𝑥↑2) + (𝑦↑2)) = (𝑅↑2)) ∧ (𝑍𝑃 ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))) ↔ ∃!𝑥 ∈ ℝ (((𝑥↑2) + (𝑦↑2)) = (𝑅↑2) ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))))))
146145imp 406 . . . . . . 7 ((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) → (∃!𝑥 ∈ ℝ ((𝑍𝑃 ∧ ((𝑥↑2) + (𝑦↑2)) = (𝑅↑2)) ∧ (𝑍𝑃 ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))) ↔ ∃!𝑥 ∈ ℝ (((𝑥↑2) + (𝑦↑2)) = (𝑅↑2) ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))))
14726, 33jca 511 . . . . . . . . . . . 12 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) → (((𝑋‘2) − (𝑌‘2)) ∈ ℝ ∧ ((𝑋‘2) − (𝑌‘2)) ≠ 0))
148147adantr 480 . . . . . . . . . . 11 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (((𝑋‘2) − (𝑌‘2)) ∈ ℝ ∧ ((𝑋‘2) − (𝑌‘2)) ≠ 0))
149148ad3antrrr 726 . . . . . . . . . 10 ((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) → (((𝑋‘2) − (𝑌‘2)) ∈ ℝ ∧ ((𝑋‘2) − (𝑌‘2)) ≠ 0))
15019ad3antrrr 726 . . . . . . . . . . 11 ((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) → (𝑌‘1) ∈ ℝ)
15122ad3antrrr 726 . . . . . . . . . . 11 ((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) → (𝑋‘1) ∈ ℝ)
152150, 151resubcld 11333 . . . . . . . . . 10 ((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) → ((𝑌‘1) − (𝑋‘1)) ∈ ℝ)
15311ad3antrrr 726 . . . . . . . . . . . 12 ((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) → (𝑋‘2) ∈ ℝ)
154153, 150remulcld 10936 . . . . . . . . . . 11 ((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) → ((𝑋‘2) · (𝑌‘1)) ∈ ℝ)
15514ad3antrrr 726 . . . . . . . . . . . 12 ((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) → (𝑌‘2) ∈ ℝ)
156151, 155remulcld 10936 . . . . . . . . . . 11 ((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) → ((𝑋‘1) · (𝑌‘2)) ∈ ℝ)
157154, 156resubcld 11333 . . . . . . . . . 10 ((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) → (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))) ∈ ℝ)
158149, 152, 1573jca 1126 . . . . . . . . 9 ((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) → ((((𝑋‘2) − (𝑌‘2)) ∈ ℝ ∧ ((𝑋‘2) − (𝑌‘2)) ≠ 0) ∧ ((𝑌‘1) − (𝑋‘1)) ∈ ℝ ∧ (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))) ∈ ℝ))
159 simplrl 773 . . . . . . . . . . 11 ((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) → 𝑅 ∈ ℝ+)
160159adantr 480 . . . . . . . . . 10 (((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) → 𝑅 ∈ ℝ+)
161160adantr 480 . . . . . . . . 9 ((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) → 𝑅 ∈ ℝ+)
162131expcom 413 . . . . . . . . . . . 12 (𝑠 ∈ 𝒫 ℝ → (𝑦𝑠𝑦 ∈ ℝ))
163162adantl 481 . . . . . . . . . . 11 ((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) → (𝑦𝑠𝑦 ∈ ℝ))
164163adantr 480 . . . . . . . . . 10 (((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) → (𝑦𝑠𝑦 ∈ ℝ))
165164imp 406 . . . . . . . . 9 ((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) → 𝑦 ∈ ℝ)
166158, 161, 1653jca 1126 . . . . . . . 8 ((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) → (((((𝑋‘2) − (𝑌‘2)) ∈ ℝ ∧ ((𝑋‘2) − (𝑌‘2)) ≠ 0) ∧ ((𝑌‘1) − (𝑋‘1)) ∈ ℝ ∧ (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))) ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑦 ∈ ℝ))
167 eqid 2738 . . . . . . . . 9 ((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)) = ((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2))
168 eqid 2738 . . . . . . . . 9 -(2 · (((𝑌‘1) − (𝑋‘1)) · (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))) = -(2 · (((𝑌‘1) − (𝑋‘1)) · (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))))
169 eqid 2738 . . . . . . . . 9 (((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2) − ((((𝑋‘2) − (𝑌‘2))↑2) · (𝑅↑2))) = (((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2) − ((((𝑋‘2) − (𝑌‘2))↑2) · (𝑅↑2)))
170167, 168, 169itsclquadeu 46011 . . . . . . . 8 ((((((𝑋‘2) − (𝑌‘2)) ∈ ℝ ∧ ((𝑋‘2) − (𝑌‘2)) ≠ 0) ∧ ((𝑌‘1) − (𝑋‘1)) ∈ ℝ ∧ (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))) ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑦 ∈ ℝ) → (∃!𝑥 ∈ ℝ (((𝑥↑2) + (𝑦↑2)) = (𝑅↑2) ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))) ↔ ((((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)) · (𝑦↑2)) + ((-(2 · (((𝑌‘1) − (𝑋‘1)) · (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))) · 𝑦) + (((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2) − ((((𝑋‘2) − (𝑌‘2))↑2) · (𝑅↑2))))) = 0))
171166, 170syl 17 . . . . . . 7 ((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) → (∃!𝑥 ∈ ℝ (((𝑥↑2) + (𝑦↑2)) = (𝑅↑2) ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))) ↔ ((((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)) · (𝑦↑2)) + ((-(2 · (((𝑌‘1) − (𝑋‘1)) · (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))) · 𝑦) + (((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2) − ((((𝑋‘2) − (𝑌‘2))↑2) · (𝑅↑2))))) = 0))
172146, 171bitrd 278 . . . . . 6 ((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) → (∃!𝑥 ∈ ℝ ((𝑍𝑃 ∧ ((𝑥↑2) + (𝑦↑2)) = (𝑅↑2)) ∧ (𝑍𝑃 ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))) ↔ ((((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)) · (𝑦↑2)) + ((-(2 · (((𝑌‘1) − (𝑋‘1)) · (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))) · 𝑦) + (((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2) − ((((𝑋‘2) − (𝑌‘2))↑2) · (𝑅↑2))))) = 0))
173130, 172bitrd 278 . . . . 5 ((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) → (∃!𝑥 ∈ ℝ (𝑍 ∈ ( 0 𝑆𝑅) ∧ 𝑍 ∈ (𝑋𝐿𝑌)) ↔ ((((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)) · (𝑦↑2)) + ((-(2 · (((𝑌‘1) − (𝑋‘1)) · (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))) · 𝑦) + (((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2) − ((((𝑋‘2) − (𝑌‘2))↑2) · (𝑅↑2))))) = 0))
174173ralbidva 3119 . . . 4 (((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) → (∀𝑦𝑠 ∃!𝑥 ∈ ℝ (𝑍 ∈ ( 0 𝑆𝑅) ∧ 𝑍 ∈ (𝑋𝐿𝑌)) ↔ ∀𝑦𝑠 ((((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)) · (𝑦↑2)) + ((-(2 · (((𝑌‘1) − (𝑋‘1)) · (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))) · 𝑦) + (((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2) − ((((𝑋‘2) − (𝑌‘2))↑2) · (𝑅↑2))))) = 0))
175174pm5.32da 578 . . 3 ((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) → (((♯‘𝑠) = 2 ∧ ∀𝑦𝑠 ∃!𝑥 ∈ ℝ (𝑍 ∈ ( 0 𝑆𝑅) ∧ 𝑍 ∈ (𝑋𝐿𝑌))) ↔ ((♯‘𝑠) = 2 ∧ ∀𝑦𝑠 ((((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)) · (𝑦↑2)) + ((-(2 · (((𝑌‘1) − (𝑋‘1)) · (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))) · 𝑦) + (((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2) − ((((𝑋‘2) − (𝑌‘2))↑2) · (𝑅↑2))))) = 0)))
176175reubidva 3314 . 2 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (∃!𝑠 ∈ 𝒫 ℝ((♯‘𝑠) = 2 ∧ ∀𝑦𝑠 ∃!𝑥 ∈ ℝ (𝑍 ∈ ( 0 𝑆𝑅) ∧ 𝑍 ∈ (𝑋𝐿𝑌))) ↔ ∃!𝑠 ∈ 𝒫 ℝ((♯‘𝑠) = 2 ∧ ∀𝑦𝑠 ((((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)) · (𝑦↑2)) + ((-(2 · (((𝑌‘1) − (𝑋‘1)) · (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))) · 𝑦) + (((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2) − ((((𝑋‘2) − (𝑌‘2))↑2) · (𝑅↑2))))) = 0)))
17756, 176mpbird 256 1 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → ∃!𝑠 ∈ 𝒫 ℝ((♯‘𝑠) = 2 ∧ ∀𝑦𝑠 ∃!𝑥 ∈ ℝ (𝑍 ∈ ( 0 𝑆𝑅) ∧ 𝑍 ∈ (𝑋𝐿𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  ∃!wreu 3065  {crab 3067  𝒫 cpw 4530  {csn 4558  {cpr 4560  cop 4564   class class class wbr 5070   × cxp 5578  cfv 6418  (class class class)co 7255  m cmap 8573  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  +∞cpnf 10937  *cxr 10939   < clt 10940  cmin 11135  -cneg 11136  2c2 11958  4c4 11960  +crp 12659  [,)cico 13010  cexp 13710  chash 13972  distcds 16897  ℝ^crrx 24452  LineMcline 45961  Spherecsph 45962
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-er 8456  df-map 8575  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-sup 9131  df-oi 9199  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-0g 17069  df-gsum 17070  df-prds 17075  df-pws 17077  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-grp 18495  df-minusg 18496  df-sbg 18497  df-subg 18667  df-ghm 18747  df-cntz 18838  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-cring 19701  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-dvr 19840  df-rnghom 19874  df-drng 19908  df-field 19909  df-subrg 19937  df-staf 20020  df-srng 20021  df-lmod 20040  df-lss 20109  df-sra 20349  df-rgmod 20350  df-xmet 20503  df-met 20504  df-cnfld 20511  df-refld 20722  df-dsmm 20849  df-frlm 20864  df-nm 23644  df-tng 23646  df-tcph 24238  df-rrx 24454  df-ehl 24455  df-line 45963  df-sph 45964
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator