Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itscnhlinecirc02p Structured version   Visualization version   GIF version

Theorem itscnhlinecirc02p 44174
Description: Intersection of a nonhorizontal line with a circle: A nonhorizontal line passing through a point within a circle around the origin intersects the circle at exactly two different points. (Contributed by AV, 28-Jan-2023.)
Hypotheses
Ref Expression
itscnhlinecirc02p.i 𝐼 = {1, 2}
itscnhlinecirc02p.e 𝐸 = (ℝ^‘𝐼)
itscnhlinecirc02p.p 𝑃 = (ℝ ↑𝑚 𝐼)
itscnhlinecirc02p.s 𝑆 = (Sphere‘𝐸)
itscnhlinecirc02p.0 0 = (𝐼 × {0})
itscnhlinecirc02p.l 𝐿 = (LineM𝐸)
itscnhlinecirc02p.d 𝐷 = (dist‘𝐸)
itscnhlinecirc02p.z 𝑍 = {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}
Assertion
Ref Expression
itscnhlinecirc02p (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → ∃!𝑠 ∈ 𝒫 ℝ((♯‘𝑠) = 2 ∧ ∀𝑦𝑠 ∃!𝑥 ∈ ℝ (𝑍 ∈ ( 0 𝑆𝑅) ∧ 𝑍 ∈ (𝑋𝐿𝑌))))
Distinct variable groups:   𝐷,𝑠,𝑥,𝑦   𝑃,𝑠,𝑦   𝑅,𝑠,𝑦   𝑋,𝑠,𝑦   𝑌,𝑠,𝑦   0 ,𝑠,𝑦   𝑥,𝑃   𝑥,𝑅   𝑥,𝑋   𝑥, 0   𝑥,𝑌
Allowed substitution hints:   𝑆(𝑥,𝑦,𝑠)   𝐸(𝑥,𝑦,𝑠)   𝐼(𝑥,𝑦,𝑠)   𝐿(𝑥,𝑦,𝑠)   𝑍(𝑥,𝑦,𝑠)

Proof of Theorem itscnhlinecirc02p
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 itscnhlinecirc02p.i . . . 4 𝐼 = {1, 2}
2 itscnhlinecirc02p.e . . . 4 𝐸 = (ℝ^‘𝐼)
3 itscnhlinecirc02p.p . . . 4 𝑃 = (ℝ ↑𝑚 𝐼)
4 itscnhlinecirc02p.s . . . 4 𝑆 = (Sphere‘𝐸)
5 itscnhlinecirc02p.0 . . . 4 0 = (𝐼 × {0})
6 itscnhlinecirc02p.l . . . 4 𝐿 = (LineM𝐸)
7 itscnhlinecirc02p.d . . . 4 𝐷 = (dist‘𝐸)
81, 2, 3, 4, 5, 6, 7itscnhlinecirc02plem3 44173 . . 3 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → 0 < ((-(2 · (((𝑌‘1) − (𝑋‘1)) · (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))))↑2) − (4 · (((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)) · (((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2) − ((((𝑋‘2) − (𝑌‘2))↑2) · (𝑅↑2)))))))
91, 3rrx2pyel 44101 . . . . . . . . 9 (𝑋𝑃 → (𝑋‘2) ∈ ℝ)
1093ad2ant1 1114 . . . . . . . 8 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) → (𝑋‘2) ∈ ℝ)
1110adantr 473 . . . . . . 7 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (𝑋‘2) ∈ ℝ)
121, 3rrx2pyel 44101 . . . . . . . . 9 (𝑌𝑃 → (𝑌‘2) ∈ ℝ)
13123ad2ant2 1115 . . . . . . . 8 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) → (𝑌‘2) ∈ ℝ)
1413adantr 473 . . . . . . 7 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (𝑌‘2) ∈ ℝ)
1511, 14resubcld 10867 . . . . . 6 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → ((𝑋‘2) − (𝑌‘2)) ∈ ℝ)
1615resqcld 13424 . . . . 5 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (((𝑋‘2) − (𝑌‘2))↑2) ∈ ℝ)
171, 3rrx2pxel 44100 . . . . . . . . 9 (𝑌𝑃 → (𝑌‘1) ∈ ℝ)
18173ad2ant2 1115 . . . . . . . 8 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) → (𝑌‘1) ∈ ℝ)
1918adantr 473 . . . . . . 7 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (𝑌‘1) ∈ ℝ)
201, 3rrx2pxel 44100 . . . . . . . . 9 (𝑋𝑃 → (𝑋‘1) ∈ ℝ)
21203ad2ant1 1114 . . . . . . . 8 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) → (𝑋‘1) ∈ ℝ)
2221adantr 473 . . . . . . 7 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (𝑋‘1) ∈ ℝ)
2319, 22resubcld 10867 . . . . . 6 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → ((𝑌‘1) − (𝑋‘1)) ∈ ℝ)
2423resqcld 13424 . . . . 5 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (((𝑌‘1) − (𝑋‘1))↑2) ∈ ℝ)
2516, 24readdcld 10467 . . . 4 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → ((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)) ∈ ℝ)
2610, 13resubcld 10867 . . . . . . . 8 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) → ((𝑋‘2) − (𝑌‘2)) ∈ ℝ)
2726resqcld 13424 . . . . . . 7 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) → (((𝑋‘2) − (𝑌‘2))↑2) ∈ ℝ)
2818, 21resubcld 10867 . . . . . . . 8 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) → ((𝑌‘1) − (𝑋‘1)) ∈ ℝ)
2928resqcld 13424 . . . . . . 7 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) → (((𝑌‘1) − (𝑋‘1))↑2) ∈ ℝ)
3010recnd 10466 . . . . . . . . 9 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) → (𝑋‘2) ∈ ℂ)
3113recnd 10466 . . . . . . . . 9 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) → (𝑌‘2) ∈ ℂ)
32 simp3 1119 . . . . . . . . 9 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) → (𝑋‘2) ≠ (𝑌‘2))
3330, 31, 32subne0d 10805 . . . . . . . 8 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) → ((𝑋‘2) − (𝑌‘2)) ≠ 0)
3426, 33sqgt0d 13426 . . . . . . 7 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) → 0 < (((𝑋‘2) − (𝑌‘2))↑2))
3528sqge0d 13425 . . . . . . 7 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) → 0 ≤ (((𝑌‘1) − (𝑋‘1))↑2))
3627, 29, 34, 35addgtge0d 11013 . . . . . 6 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) → 0 < ((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)))
3736gt0ne0d 11003 . . . . 5 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) → ((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)) ≠ 0)
3837adantr 473 . . . 4 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → ((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)) ≠ 0)
39 2re 11512 . . . . . . 7 2 ∈ ℝ
4039a1i 11 . . . . . 6 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → 2 ∈ ℝ)
4111, 19remulcld 10468 . . . . . . . 8 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → ((𝑋‘2) · (𝑌‘1)) ∈ ℝ)
4222, 14remulcld 10468 . . . . . . . 8 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → ((𝑋‘1) · (𝑌‘2)) ∈ ℝ)
4341, 42resubcld 10867 . . . . . . 7 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))) ∈ ℝ)
4423, 43remulcld 10468 . . . . . 6 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (((𝑌‘1) − (𝑋‘1)) · (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))) ∈ ℝ)
4540, 44remulcld 10468 . . . . 5 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (2 · (((𝑌‘1) − (𝑋‘1)) · (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))) ∈ ℝ)
4645renegcld 10866 . . . 4 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → -(2 · (((𝑌‘1) − (𝑋‘1)) · (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))) ∈ ℝ)
4743resqcld 13424 . . . . 5 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → ((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2) ∈ ℝ)
48 rpre 12210 . . . . . . . . 9 (𝑅 ∈ ℝ+𝑅 ∈ ℝ)
4948adantr 473 . . . . . . . 8 ((𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅) → 𝑅 ∈ ℝ)
5049adantl 474 . . . . . . 7 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → 𝑅 ∈ ℝ)
5150resqcld 13424 . . . . . 6 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (𝑅↑2) ∈ ℝ)
5216, 51remulcld 10468 . . . . 5 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → ((((𝑋‘2) − (𝑌‘2))↑2) · (𝑅↑2)) ∈ ℝ)
5347, 52resubcld 10867 . . . 4 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2) − ((((𝑋‘2) − (𝑌‘2))↑2) · (𝑅↑2))) ∈ ℝ)
54 eqidd 2772 . . . 4 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → ((-(2 · (((𝑌‘1) − (𝑋‘1)) · (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))))↑2) − (4 · (((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)) · (((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2) − ((((𝑋‘2) − (𝑌‘2))↑2) · (𝑅↑2)))))) = ((-(2 · (((𝑌‘1) − (𝑋‘1)) · (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))))↑2) − (4 · (((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)) · (((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2) − ((((𝑋‘2) − (𝑌‘2))↑2) · (𝑅↑2)))))))
5525, 38, 46, 53, 54requad2 43190 . . 3 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (∃!𝑠 ∈ 𝒫 ℝ((♯‘𝑠) = 2 ∧ ∀𝑦𝑠 ((((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)) · (𝑦↑2)) + ((-(2 · (((𝑌‘1) − (𝑋‘1)) · (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))) · 𝑦) + (((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2) − ((((𝑋‘2) − (𝑌‘2))↑2) · (𝑅↑2))))) = 0) ↔ 0 < ((-(2 · (((𝑌‘1) − (𝑋‘1)) · (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))))↑2) − (4 · (((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)) · (((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2) − ((((𝑋‘2) − (𝑌‘2))↑2) · (𝑅↑2))))))))
568, 55mpbird 249 . 2 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → ∃!𝑠 ∈ 𝒫 ℝ((♯‘𝑠) = 2 ∧ ∀𝑦𝑠 ((((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)) · (𝑦↑2)) + ((-(2 · (((𝑌‘1) − (𝑋‘1)) · (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))) · 𝑦) + (((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2) − ((((𝑋‘2) − (𝑌‘2))↑2) · (𝑅↑2))))) = 0))
57 0xr 10485 . . . . . . . . . . . . . . . . . . 19 0 ∈ ℝ*
5857a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ ℝ+ → 0 ∈ ℝ*)
59 pnfxr 10492 . . . . . . . . . . . . . . . . . . 19 +∞ ∈ ℝ*
6059a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ ℝ+ → +∞ ∈ ℝ*)
61 rpxr 12213 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ ℝ+𝑅 ∈ ℝ*)
62 rpge0 12217 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ ℝ+ → 0 ≤ 𝑅)
63 ltpnf 12330 . . . . . . . . . . . . . . . . . . 19 (𝑅 ∈ ℝ → 𝑅 < +∞)
6448, 63syl 17 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ ℝ+𝑅 < +∞)
6558, 60, 61, 62, 64elicod 12601 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ ℝ+𝑅 ∈ (0[,)+∞))
66 eqid 2771 . . . . . . . . . . . . . . . . . 18 {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)} = {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)}
671, 2, 3, 4, 5, 662sphere0 44139 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ (0[,)+∞) → ( 0 𝑆𝑅) = {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)})
6865, 67syl 17 . . . . . . . . . . . . . . . 16 (𝑅 ∈ ℝ+ → ( 0 𝑆𝑅) = {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)})
6968adantr 473 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅) → ( 0 𝑆𝑅) = {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)})
7069adantl 474 . . . . . . . . . . . . . 14 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → ( 0 𝑆𝑅) = {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)})
7170adantr 473 . . . . . . . . . . . . 13 ((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) → ( 0 𝑆𝑅) = {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)})
7271adantr 473 . . . . . . . . . . . 12 (((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) → ( 0 𝑆𝑅) = {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)})
7372adantr 473 . . . . . . . . . . 11 ((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) → ( 0 𝑆𝑅) = {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)})
7473adantr 473 . . . . . . . . . 10 (((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) ∧ 𝑥 ∈ ℝ) → ( 0 𝑆𝑅) = {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)})
7574eleq2d 2844 . . . . . . . . 9 (((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) ∧ 𝑥 ∈ ℝ) → (𝑍 ∈ ( 0 𝑆𝑅) ↔ 𝑍 ∈ {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)}))
76 fveq1 6495 . . . . . . . . . . . . . . 15 (𝑝 = 𝑍 → (𝑝‘1) = (𝑍‘1))
77 itscnhlinecirc02p.z . . . . . . . . . . . . . . . . . 18 𝑍 = {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}
7877fveq1i 6497 . . . . . . . . . . . . . . . . 17 (𝑍‘1) = ({⟨1, 𝑥⟩, ⟨2, 𝑦⟩}‘1)
79 1ne2 11653 . . . . . . . . . . . . . . . . . 18 1 ≠ 2
80 1ex 10433 . . . . . . . . . . . . . . . . . . 19 1 ∈ V
81 vex 3411 . . . . . . . . . . . . . . . . . . 19 𝑥 ∈ V
8280, 81fvpr1 6777 . . . . . . . . . . . . . . . . . 18 (1 ≠ 2 → ({⟨1, 𝑥⟩, ⟨2, 𝑦⟩}‘1) = 𝑥)
8379, 82ax-mp 5 . . . . . . . . . . . . . . . . 17 ({⟨1, 𝑥⟩, ⟨2, 𝑦⟩}‘1) = 𝑥
8478, 83eqtri 2795 . . . . . . . . . . . . . . . 16 (𝑍‘1) = 𝑥
8584a1i 11 . . . . . . . . . . . . . . 15 (𝑝 = 𝑍 → (𝑍‘1) = 𝑥)
8676, 85eqtrd 2807 . . . . . . . . . . . . . 14 (𝑝 = 𝑍 → (𝑝‘1) = 𝑥)
8786oveq1d 6989 . . . . . . . . . . . . 13 (𝑝 = 𝑍 → ((𝑝‘1)↑2) = (𝑥↑2))
88 fveq1 6495 . . . . . . . . . . . . . . 15 (𝑝 = 𝑍 → (𝑝‘2) = (𝑍‘2))
8977fveq1i 6497 . . . . . . . . . . . . . . . . 17 (𝑍‘2) = ({⟨1, 𝑥⟩, ⟨2, 𝑦⟩}‘2)
90 2ex 11515 . . . . . . . . . . . . . . . . . . 19 2 ∈ V
91 vex 3411 . . . . . . . . . . . . . . . . . . 19 𝑦 ∈ V
9290, 91fvpr2 6778 . . . . . . . . . . . . . . . . . 18 (1 ≠ 2 → ({⟨1, 𝑥⟩, ⟨2, 𝑦⟩}‘2) = 𝑦)
9379, 92ax-mp 5 . . . . . . . . . . . . . . . . 17 ({⟨1, 𝑥⟩, ⟨2, 𝑦⟩}‘2) = 𝑦
9489, 93eqtri 2795 . . . . . . . . . . . . . . . 16 (𝑍‘2) = 𝑦
9594a1i 11 . . . . . . . . . . . . . . 15 (𝑝 = 𝑍 → (𝑍‘2) = 𝑦)
9688, 95eqtrd 2807 . . . . . . . . . . . . . 14 (𝑝 = 𝑍 → (𝑝‘2) = 𝑦)
9796oveq1d 6989 . . . . . . . . . . . . 13 (𝑝 = 𝑍 → ((𝑝‘2)↑2) = (𝑦↑2))
9887, 97oveq12d 6992 . . . . . . . . . . . 12 (𝑝 = 𝑍 → (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = ((𝑥↑2) + (𝑦↑2)))
9998eqeq1d 2773 . . . . . . . . . . 11 (𝑝 = 𝑍 → ((((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2) ↔ ((𝑥↑2) + (𝑦↑2)) = (𝑅↑2)))
10099elrab 3588 . . . . . . . . . 10 (𝑍 ∈ {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)} ↔ (𝑍𝑃 ∧ ((𝑥↑2) + (𝑦↑2)) = (𝑅↑2)))
101100a1i 11 . . . . . . . . 9 (((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) ∧ 𝑥 ∈ ℝ) → (𝑍 ∈ {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)} ↔ (𝑍𝑃 ∧ ((𝑥↑2) + (𝑦↑2)) = (𝑅↑2))))
10275, 101bitrd 271 . . . . . . . 8 (((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) ∧ 𝑥 ∈ ℝ) → (𝑍 ∈ ( 0 𝑆𝑅) ↔ (𝑍𝑃 ∧ ((𝑥↑2) + (𝑦↑2)) = (𝑅↑2))))
103 simp1 1117 . . . . . . . . . . . . . . . . 17 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) → 𝑋𝑃)
104 simp2 1118 . . . . . . . . . . . . . . . . 17 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) → 𝑌𝑃)
105 fveq1 6495 . . . . . . . . . . . . . . . . . . . . 21 (𝑋 = 𝑌 → (𝑋‘2) = (𝑌‘2))
106105a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝑋𝑃𝑌𝑃) → (𝑋 = 𝑌 → (𝑋‘2) = (𝑌‘2)))
107106necon3d 2981 . . . . . . . . . . . . . . . . . . 19 ((𝑋𝑃𝑌𝑃) → ((𝑋‘2) ≠ (𝑌‘2) → 𝑋𝑌))
108107ex 405 . . . . . . . . . . . . . . . . . 18 (𝑋𝑃 → (𝑌𝑃 → ((𝑋‘2) ≠ (𝑌‘2) → 𝑋𝑌)))
1091083imp 1092 . . . . . . . . . . . . . . . . 17 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) → 𝑋𝑌)
110103, 104, 1093jca 1109 . . . . . . . . . . . . . . . 16 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) → (𝑋𝑃𝑌𝑃𝑋𝑌))
111110adantr 473 . . . . . . . . . . . . . . 15 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (𝑋𝑃𝑌𝑃𝑋𝑌))
112111adantr 473 . . . . . . . . . . . . . 14 ((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) → (𝑋𝑃𝑌𝑃𝑋𝑌))
113112adantr 473 . . . . . . . . . . . . 13 (((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) → (𝑋𝑃𝑌𝑃𝑋𝑌))
114113adantr 473 . . . . . . . . . . . 12 ((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) → (𝑋𝑃𝑌𝑃𝑋𝑌))
115114adantr 473 . . . . . . . . . . 11 (((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) ∧ 𝑥 ∈ ℝ) → (𝑋𝑃𝑌𝑃𝑋𝑌))
116 eqid 2771 . . . . . . . . . . . 12 ((𝑋‘2) − (𝑌‘2)) = ((𝑋‘2) − (𝑌‘2))
117 eqid 2771 . . . . . . . . . . . 12 ((𝑌‘1) − (𝑋‘1)) = ((𝑌‘1) − (𝑋‘1))
118 eqid 2771 . . . . . . . . . . . 12 (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))
1191, 2, 3, 6, 116, 117, 118rrx2linest2 44133 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ ((((𝑋‘2) − (𝑌‘2)) · (𝑝‘1)) + (((𝑌‘1) − (𝑋‘1)) · (𝑝‘2))) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))})
120115, 119syl 17 . . . . . . . . . 10 (((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) ∧ 𝑥 ∈ ℝ) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ ((((𝑋‘2) − (𝑌‘2)) · (𝑝‘1)) + (((𝑌‘1) − (𝑋‘1)) · (𝑝‘2))) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))})
121120eleq2d 2844 . . . . . . . . 9 (((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) ∧ 𝑥 ∈ ℝ) → (𝑍 ∈ (𝑋𝐿𝑌) ↔ 𝑍 ∈ {𝑝𝑃 ∣ ((((𝑋‘2) − (𝑌‘2)) · (𝑝‘1)) + (((𝑌‘1) − (𝑋‘1)) · (𝑝‘2))) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))}))
12286oveq2d 6990 . . . . . . . . . . . . 13 (𝑝 = 𝑍 → (((𝑋‘2) − (𝑌‘2)) · (𝑝‘1)) = (((𝑋‘2) − (𝑌‘2)) · 𝑥))
12396oveq2d 6990 . . . . . . . . . . . . 13 (𝑝 = 𝑍 → (((𝑌‘1) − (𝑋‘1)) · (𝑝‘2)) = (((𝑌‘1) − (𝑋‘1)) · 𝑦))
124122, 123oveq12d 6992 . . . . . . . . . . . 12 (𝑝 = 𝑍 → ((((𝑋‘2) − (𝑌‘2)) · (𝑝‘1)) + (((𝑌‘1) − (𝑋‘1)) · (𝑝‘2))) = ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)))
125124eqeq1d 2773 . . . . . . . . . . 11 (𝑝 = 𝑍 → (((((𝑋‘2) − (𝑌‘2)) · (𝑝‘1)) + (((𝑌‘1) − (𝑋‘1)) · (𝑝‘2))) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))) ↔ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))))
126125elrab 3588 . . . . . . . . . 10 (𝑍 ∈ {𝑝𝑃 ∣ ((((𝑋‘2) − (𝑌‘2)) · (𝑝‘1)) + (((𝑌‘1) − (𝑋‘1)) · (𝑝‘2))) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))} ↔ (𝑍𝑃 ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))))
127126a1i 11 . . . . . . . . 9 (((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) ∧ 𝑥 ∈ ℝ) → (𝑍 ∈ {𝑝𝑃 ∣ ((((𝑋‘2) − (𝑌‘2)) · (𝑝‘1)) + (((𝑌‘1) − (𝑋‘1)) · (𝑝‘2))) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))} ↔ (𝑍𝑃 ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))))
128121, 127bitrd 271 . . . . . . . 8 (((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) ∧ 𝑥 ∈ ℝ) → (𝑍 ∈ (𝑋𝐿𝑌) ↔ (𝑍𝑃 ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))))
129102, 128anbi12d 622 . . . . . . 7 (((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) ∧ 𝑥 ∈ ℝ) → ((𝑍 ∈ ( 0 𝑆𝑅) ∧ 𝑍 ∈ (𝑋𝐿𝑌)) ↔ ((𝑍𝑃 ∧ ((𝑥↑2) + (𝑦↑2)) = (𝑅↑2)) ∧ (𝑍𝑃 ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))))))
130129reubidva 3320 . . . . . 6 ((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) → (∃!𝑥 ∈ ℝ (𝑍 ∈ ( 0 𝑆𝑅) ∧ 𝑍 ∈ (𝑋𝐿𝑌)) ↔ ∃!𝑥 ∈ ℝ ((𝑍𝑃 ∧ ((𝑥↑2) + (𝑦↑2)) = (𝑅↑2)) ∧ (𝑍𝑃 ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))))))
131 elelpwi 4429 . . . . . . . . . . . 12 ((𝑦𝑠𝑠 ∈ 𝒫 ℝ) → 𝑦 ∈ ℝ)
1321, 3prelrrx2 44102 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → {⟨1, 𝑥⟩, ⟨2, 𝑦⟩} ∈ 𝑃)
133132ancoms 451 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → {⟨1, 𝑥⟩, ⟨2, 𝑦⟩} ∈ 𝑃)
13477eleq1i 2849 . . . . . . . . . . . . . . . . 17 (𝑍𝑃 ↔ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩} ∈ 𝑃)
135133, 134sylibr 226 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → 𝑍𝑃)
136135biantrurd 525 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (((𝑥↑2) + (𝑦↑2)) = (𝑅↑2) ↔ (𝑍𝑃 ∧ ((𝑥↑2) + (𝑦↑2)) = (𝑅↑2))))
137136bicomd 215 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑍𝑃 ∧ ((𝑥↑2) + (𝑦↑2)) = (𝑅↑2)) ↔ ((𝑥↑2) + (𝑦↑2)) = (𝑅↑2)))
138135biantrurd 525 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))) ↔ (𝑍𝑃 ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))))
139138bicomd 215 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑍𝑃 ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))) ↔ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))))
140137, 139anbi12d 622 . . . . . . . . . . . . 13 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (((𝑍𝑃 ∧ ((𝑥↑2) + (𝑦↑2)) = (𝑅↑2)) ∧ (𝑍𝑃 ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))) ↔ (((𝑥↑2) + (𝑦↑2)) = (𝑅↑2) ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))))
141140reubidva 3320 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → (∃!𝑥 ∈ ℝ ((𝑍𝑃 ∧ ((𝑥↑2) + (𝑦↑2)) = (𝑅↑2)) ∧ (𝑍𝑃 ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))) ↔ ∃!𝑥 ∈ ℝ (((𝑥↑2) + (𝑦↑2)) = (𝑅↑2) ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))))
142131, 141syl 17 . . . . . . . . . . 11 ((𝑦𝑠𝑠 ∈ 𝒫 ℝ) → (∃!𝑥 ∈ ℝ ((𝑍𝑃 ∧ ((𝑥↑2) + (𝑦↑2)) = (𝑅↑2)) ∧ (𝑍𝑃 ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))) ↔ ∃!𝑥 ∈ ℝ (((𝑥↑2) + (𝑦↑2)) = (𝑅↑2) ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))))
143142expcom 406 . . . . . . . . . 10 (𝑠 ∈ 𝒫 ℝ → (𝑦𝑠 → (∃!𝑥 ∈ ℝ ((𝑍𝑃 ∧ ((𝑥↑2) + (𝑦↑2)) = (𝑅↑2)) ∧ (𝑍𝑃 ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))) ↔ ∃!𝑥 ∈ ℝ (((𝑥↑2) + (𝑦↑2)) = (𝑅↑2) ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))))))
144143adantl 474 . . . . . . . . 9 ((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) → (𝑦𝑠 → (∃!𝑥 ∈ ℝ ((𝑍𝑃 ∧ ((𝑥↑2) + (𝑦↑2)) = (𝑅↑2)) ∧ (𝑍𝑃 ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))) ↔ ∃!𝑥 ∈ ℝ (((𝑥↑2) + (𝑦↑2)) = (𝑅↑2) ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))))))
145144adantr 473 . . . . . . . 8 (((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) → (𝑦𝑠 → (∃!𝑥 ∈ ℝ ((𝑍𝑃 ∧ ((𝑥↑2) + (𝑦↑2)) = (𝑅↑2)) ∧ (𝑍𝑃 ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))) ↔ ∃!𝑥 ∈ ℝ (((𝑥↑2) + (𝑦↑2)) = (𝑅↑2) ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))))))
146145imp 398 . . . . . . 7 ((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) → (∃!𝑥 ∈ ℝ ((𝑍𝑃 ∧ ((𝑥↑2) + (𝑦↑2)) = (𝑅↑2)) ∧ (𝑍𝑃 ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))) ↔ ∃!𝑥 ∈ ℝ (((𝑥↑2) + (𝑦↑2)) = (𝑅↑2) ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))))
14726, 33jca 504 . . . . . . . . . . . 12 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) → (((𝑋‘2) − (𝑌‘2)) ∈ ℝ ∧ ((𝑋‘2) − (𝑌‘2)) ≠ 0))
148147adantr 473 . . . . . . . . . . 11 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (((𝑋‘2) − (𝑌‘2)) ∈ ℝ ∧ ((𝑋‘2) − (𝑌‘2)) ≠ 0))
149148ad3antrrr 718 . . . . . . . . . 10 ((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) → (((𝑋‘2) − (𝑌‘2)) ∈ ℝ ∧ ((𝑋‘2) − (𝑌‘2)) ≠ 0))
15019ad3antrrr 718 . . . . . . . . . . 11 ((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) → (𝑌‘1) ∈ ℝ)
15122ad3antrrr 718 . . . . . . . . . . 11 ((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) → (𝑋‘1) ∈ ℝ)
152150, 151resubcld 10867 . . . . . . . . . 10 ((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) → ((𝑌‘1) − (𝑋‘1)) ∈ ℝ)
15311ad3antrrr 718 . . . . . . . . . . . 12 ((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) → (𝑋‘2) ∈ ℝ)
154153, 150remulcld 10468 . . . . . . . . . . 11 ((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) → ((𝑋‘2) · (𝑌‘1)) ∈ ℝ)
15514ad3antrrr 718 . . . . . . . . . . . 12 ((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) → (𝑌‘2) ∈ ℝ)
156151, 155remulcld 10468 . . . . . . . . . . 11 ((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) → ((𝑋‘1) · (𝑌‘2)) ∈ ℝ)
157154, 156resubcld 10867 . . . . . . . . . 10 ((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) → (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))) ∈ ℝ)
158149, 152, 1573jca 1109 . . . . . . . . 9 ((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) → ((((𝑋‘2) − (𝑌‘2)) ∈ ℝ ∧ ((𝑋‘2) − (𝑌‘2)) ≠ 0) ∧ ((𝑌‘1) − (𝑋‘1)) ∈ ℝ ∧ (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))) ∈ ℝ))
159 simplrl 765 . . . . . . . . . . 11 ((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) → 𝑅 ∈ ℝ+)
160159adantr 473 . . . . . . . . . 10 (((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) → 𝑅 ∈ ℝ+)
161160adantr 473 . . . . . . . . 9 ((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) → 𝑅 ∈ ℝ+)
162131expcom 406 . . . . . . . . . . . 12 (𝑠 ∈ 𝒫 ℝ → (𝑦𝑠𝑦 ∈ ℝ))
163162adantl 474 . . . . . . . . . . 11 ((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) → (𝑦𝑠𝑦 ∈ ℝ))
164163adantr 473 . . . . . . . . . 10 (((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) → (𝑦𝑠𝑦 ∈ ℝ))
165164imp 398 . . . . . . . . 9 ((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) → 𝑦 ∈ ℝ)
166158, 161, 1653jca 1109 . . . . . . . 8 ((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) → (((((𝑋‘2) − (𝑌‘2)) ∈ ℝ ∧ ((𝑋‘2) − (𝑌‘2)) ≠ 0) ∧ ((𝑌‘1) − (𝑋‘1)) ∈ ℝ ∧ (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))) ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑦 ∈ ℝ))
167 eqid 2771 . . . . . . . . 9 ((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)) = ((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2))
168 eqid 2771 . . . . . . . . 9 -(2 · (((𝑌‘1) − (𝑋‘1)) · (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))) = -(2 · (((𝑌‘1) − (𝑋‘1)) · (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))))
169 eqid 2771 . . . . . . . . 9 (((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2) − ((((𝑋‘2) − (𝑌‘2))↑2) · (𝑅↑2))) = (((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2) − ((((𝑋‘2) − (𝑌‘2))↑2) · (𝑅↑2)))
170167, 168, 169itsclquadeu 44166 . . . . . . . 8 ((((((𝑋‘2) − (𝑌‘2)) ∈ ℝ ∧ ((𝑋‘2) − (𝑌‘2)) ≠ 0) ∧ ((𝑌‘1) − (𝑋‘1)) ∈ ℝ ∧ (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))) ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑦 ∈ ℝ) → (∃!𝑥 ∈ ℝ (((𝑥↑2) + (𝑦↑2)) = (𝑅↑2) ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))) ↔ ((((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)) · (𝑦↑2)) + ((-(2 · (((𝑌‘1) − (𝑋‘1)) · (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))) · 𝑦) + (((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2) − ((((𝑋‘2) − (𝑌‘2))↑2) · (𝑅↑2))))) = 0))
171166, 170syl 17 . . . . . . 7 ((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) → (∃!𝑥 ∈ ℝ (((𝑥↑2) + (𝑦↑2)) = (𝑅↑2) ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))) ↔ ((((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)) · (𝑦↑2)) + ((-(2 · (((𝑌‘1) − (𝑋‘1)) · (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))) · 𝑦) + (((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2) − ((((𝑋‘2) − (𝑌‘2))↑2) · (𝑅↑2))))) = 0))
172146, 171bitrd 271 . . . . . 6 ((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) → (∃!𝑥 ∈ ℝ ((𝑍𝑃 ∧ ((𝑥↑2) + (𝑦↑2)) = (𝑅↑2)) ∧ (𝑍𝑃 ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))) ↔ ((((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)) · (𝑦↑2)) + ((-(2 · (((𝑌‘1) − (𝑋‘1)) · (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))) · 𝑦) + (((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2) − ((((𝑋‘2) − (𝑌‘2))↑2) · (𝑅↑2))))) = 0))
173130, 172bitrd 271 . . . . 5 ((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) → (∃!𝑥 ∈ ℝ (𝑍 ∈ ( 0 𝑆𝑅) ∧ 𝑍 ∈ (𝑋𝐿𝑌)) ↔ ((((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)) · (𝑦↑2)) + ((-(2 · (((𝑌‘1) − (𝑋‘1)) · (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))) · 𝑦) + (((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2) − ((((𝑋‘2) − (𝑌‘2))↑2) · (𝑅↑2))))) = 0))
174173ralbidva 3139 . . . 4 (((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) → (∀𝑦𝑠 ∃!𝑥 ∈ ℝ (𝑍 ∈ ( 0 𝑆𝑅) ∧ 𝑍 ∈ (𝑋𝐿𝑌)) ↔ ∀𝑦𝑠 ((((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)) · (𝑦↑2)) + ((-(2 · (((𝑌‘1) − (𝑋‘1)) · (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))) · 𝑦) + (((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2) − ((((𝑋‘2) − (𝑌‘2))↑2) · (𝑅↑2))))) = 0))
175174pm5.32da 571 . . 3 ((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) → (((♯‘𝑠) = 2 ∧ ∀𝑦𝑠 ∃!𝑥 ∈ ℝ (𝑍 ∈ ( 0 𝑆𝑅) ∧ 𝑍 ∈ (𝑋𝐿𝑌))) ↔ ((♯‘𝑠) = 2 ∧ ∀𝑦𝑠 ((((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)) · (𝑦↑2)) + ((-(2 · (((𝑌‘1) − (𝑋‘1)) · (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))) · 𝑦) + (((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2) − ((((𝑋‘2) − (𝑌‘2))↑2) · (𝑅↑2))))) = 0)))
176175reubidva 3320 . 2 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (∃!𝑠 ∈ 𝒫 ℝ((♯‘𝑠) = 2 ∧ ∀𝑦𝑠 ∃!𝑥 ∈ ℝ (𝑍 ∈ ( 0 𝑆𝑅) ∧ 𝑍 ∈ (𝑋𝐿𝑌))) ↔ ∃!𝑠 ∈ 𝒫 ℝ((♯‘𝑠) = 2 ∧ ∀𝑦𝑠 ((((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)) · (𝑦↑2)) + ((-(2 · (((𝑌‘1) − (𝑋‘1)) · (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))) · 𝑦) + (((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2) − ((((𝑋‘2) − (𝑌‘2))↑2) · (𝑅↑2))))) = 0)))
17756, 176mpbird 249 1 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → ∃!𝑠 ∈ 𝒫 ℝ((♯‘𝑠) = 2 ∧ ∀𝑦𝑠 ∃!𝑥 ∈ ℝ (𝑍 ∈ ( 0 𝑆𝑅) ∧ 𝑍 ∈ (𝑋𝐿𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  w3a 1069   = wceq 1508  wcel 2051  wne 2960  wral 3081  ∃!wreu 3083  {crab 3085  𝒫 cpw 4416  {csn 4435  {cpr 4437  cop 4441   class class class wbr 4925   × cxp 5401  cfv 6185  (class class class)co 6974  𝑚 cmap 8204  cr 10332  0cc0 10333  1c1 10334   + caddc 10336   · cmul 10338  +∞cpnf 10469  *cxr 10471   < clt 10472  cmin 10668  -cneg 10669  2c2 11493  4c4 11495  +crp 12202  [,)cico 12554  cexp 13242  chash 13503  distcds 16428  ℝ^crrx 23704  LineMcline 44116  Spherecsph 44117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2743  ax-rep 5045  ax-sep 5056  ax-nul 5063  ax-pow 5115  ax-pr 5182  ax-un 7277  ax-inf2 8896  ax-cnex 10389  ax-resscn 10390  ax-1cn 10391  ax-icn 10392  ax-addcl 10393  ax-addrcl 10394  ax-mulcl 10395  ax-mulrcl 10396  ax-mulcom 10397  ax-addass 10398  ax-mulass 10399  ax-distr 10400  ax-i2m1 10401  ax-1ne0 10402  ax-1rid 10403  ax-rnegex 10404  ax-rrecex 10405  ax-cnre 10406  ax-pre-lttri 10407  ax-pre-lttrn 10408  ax-pre-ltadd 10409  ax-pre-mulgt0 10410  ax-pre-sup 10411  ax-addf 10412  ax-mulf 10413
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-fal 1521  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2752  df-cleq 2764  df-clel 2839  df-nfc 2911  df-ne 2961  df-nel 3067  df-ral 3086  df-rex 3087  df-reu 3088  df-rmo 3089  df-rab 3090  df-v 3410  df-sbc 3675  df-csb 3780  df-dif 3825  df-un 3827  df-in 3829  df-ss 3836  df-pss 3838  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4709  df-int 4746  df-iun 4790  df-br 4926  df-opab 4988  df-mpt 5005  df-tr 5027  df-id 5308  df-eprel 5313  df-po 5322  df-so 5323  df-fr 5362  df-se 5363  df-we 5364  df-xp 5409  df-rel 5410  df-cnv 5411  df-co 5412  df-dm 5413  df-rn 5414  df-res 5415  df-ima 5416  df-pred 5983  df-ord 6029  df-on 6030  df-lim 6031  df-suc 6032  df-iota 6149  df-fun 6187  df-fn 6188  df-f 6189  df-f1 6190  df-fo 6191  df-f1o 6192  df-fv 6193  df-isom 6194  df-riota 6935  df-ov 6977  df-oprab 6978  df-mpo 6979  df-of 7225  df-om 7395  df-1st 7499  df-2nd 7500  df-supp 7632  df-tpos 7693  df-wrecs 7748  df-recs 7810  df-rdg 7848  df-1o 7903  df-2o 7904  df-oadd 7907  df-er 8087  df-map 8206  df-ixp 8258  df-en 8305  df-dom 8306  df-sdom 8307  df-fin 8308  df-fsupp 8627  df-sup 8699  df-oi 8767  df-dju 9122  df-card 9160  df-pnf 10474  df-mnf 10475  df-xr 10476  df-ltxr 10477  df-le 10478  df-sub 10670  df-neg 10671  df-div 11097  df-nn 11438  df-2 11501  df-3 11502  df-4 11503  df-5 11504  df-6 11505  df-7 11506  df-8 11507  df-9 11508  df-n0 11706  df-z 11792  df-dec 11910  df-uz 12057  df-rp 12203  df-xneg 12322  df-xadd 12323  df-xmul 12324  df-ico 12558  df-icc 12559  df-fz 12707  df-fzo 12848  df-seq 13183  df-exp 13243  df-hash 13504  df-cj 14317  df-re 14318  df-im 14319  df-sqrt 14453  df-abs 14454  df-clim 14704  df-sum 14902  df-struct 16339  df-ndx 16340  df-slot 16341  df-base 16343  df-sets 16344  df-ress 16345  df-plusg 16432  df-mulr 16433  df-starv 16434  df-sca 16435  df-vsca 16436  df-ip 16437  df-tset 16438  df-ple 16439  df-ds 16441  df-unif 16442  df-hom 16443  df-cco 16444  df-0g 16569  df-gsum 16570  df-prds 16575  df-pws 16577  df-mgm 17722  df-sgrp 17764  df-mnd 17775  df-mhm 17815  df-grp 17906  df-minusg 17907  df-sbg 17908  df-subg 18072  df-ghm 18139  df-cntz 18230  df-cmn 18680  df-abl 18681  df-mgp 18975  df-ur 18987  df-ring 19034  df-cring 19035  df-oppr 19108  df-dvdsr 19126  df-unit 19127  df-invr 19157  df-dvr 19168  df-rnghom 19202  df-drng 19239  df-field 19240  df-subrg 19268  df-staf 19350  df-srng 19351  df-lmod 19370  df-lss 19438  df-sra 19678  df-rgmod 19679  df-xmet 20255  df-met 20256  df-cnfld 20263  df-refld 20466  df-dsmm 20593  df-frlm 20608  df-nm 22910  df-tng 22912  df-tcph 23491  df-rrx 23706  df-ehl 23707  df-line 44118  df-sph 44119
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator