Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itscnhlinecirc02p Structured version   Visualization version   GIF version

Theorem itscnhlinecirc02p 48778
Description: Intersection of a nonhorizontal line with a circle: A nonhorizontal line passing through a point within a circle around the origin intersects the circle at exactly two different points. (Contributed by AV, 28-Jan-2023.)
Hypotheses
Ref Expression
itscnhlinecirc02p.i 𝐼 = {1, 2}
itscnhlinecirc02p.e 𝐸 = (ℝ^‘𝐼)
itscnhlinecirc02p.p 𝑃 = (ℝ ↑m 𝐼)
itscnhlinecirc02p.s 𝑆 = (Sphere‘𝐸)
itscnhlinecirc02p.0 0 = (𝐼 × {0})
itscnhlinecirc02p.l 𝐿 = (LineM𝐸)
itscnhlinecirc02p.d 𝐷 = (dist‘𝐸)
itscnhlinecirc02p.z 𝑍 = {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}
Assertion
Ref Expression
itscnhlinecirc02p (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → ∃!𝑠 ∈ 𝒫 ℝ((♯‘𝑠) = 2 ∧ ∀𝑦𝑠 ∃!𝑥 ∈ ℝ (𝑍 ∈ ( 0 𝑆𝑅) ∧ 𝑍 ∈ (𝑋𝐿𝑌))))
Distinct variable groups:   𝐷,𝑠,𝑥,𝑦   𝑃,𝑠,𝑦   𝑅,𝑠,𝑦   𝑋,𝑠,𝑦   𝑌,𝑠,𝑦   0 ,𝑠,𝑦   𝑥,𝑃   𝑥,𝑅   𝑥,𝑋   𝑥, 0   𝑥,𝑌
Allowed substitution hints:   𝑆(𝑥,𝑦,𝑠)   𝐸(𝑥,𝑦,𝑠)   𝐼(𝑥,𝑦,𝑠)   𝐿(𝑥,𝑦,𝑠)   𝑍(𝑥,𝑦,𝑠)

Proof of Theorem itscnhlinecirc02p
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 itscnhlinecirc02p.i . . . 4 𝐼 = {1, 2}
2 itscnhlinecirc02p.e . . . 4 𝐸 = (ℝ^‘𝐼)
3 itscnhlinecirc02p.p . . . 4 𝑃 = (ℝ ↑m 𝐼)
4 itscnhlinecirc02p.s . . . 4 𝑆 = (Sphere‘𝐸)
5 itscnhlinecirc02p.0 . . . 4 0 = (𝐼 × {0})
6 itscnhlinecirc02p.l . . . 4 𝐿 = (LineM𝐸)
7 itscnhlinecirc02p.d . . . 4 𝐷 = (dist‘𝐸)
81, 2, 3, 4, 5, 6, 7itscnhlinecirc02plem3 48777 . . 3 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → 0 < ((-(2 · (((𝑌‘1) − (𝑋‘1)) · (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))))↑2) − (4 · (((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)) · (((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2) − ((((𝑋‘2) − (𝑌‘2))↑2) · (𝑅↑2)))))))
91, 3rrx2pyel 48705 . . . . . . . . 9 (𝑋𝑃 → (𝑋‘2) ∈ ℝ)
1093ad2ant1 1133 . . . . . . . 8 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) → (𝑋‘2) ∈ ℝ)
1110adantr 480 . . . . . . 7 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (𝑋‘2) ∈ ℝ)
121, 3rrx2pyel 48705 . . . . . . . . 9 (𝑌𝑃 → (𝑌‘2) ∈ ℝ)
13123ad2ant2 1134 . . . . . . . 8 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) → (𝑌‘2) ∈ ℝ)
1413adantr 480 . . . . . . 7 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (𝑌‘2) ∈ ℝ)
1511, 14resubcld 11613 . . . . . 6 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → ((𝑋‘2) − (𝑌‘2)) ∈ ℝ)
1615resqcld 14097 . . . . 5 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (((𝑋‘2) − (𝑌‘2))↑2) ∈ ℝ)
171, 3rrx2pxel 48704 . . . . . . . . 9 (𝑌𝑃 → (𝑌‘1) ∈ ℝ)
18173ad2ant2 1134 . . . . . . . 8 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) → (𝑌‘1) ∈ ℝ)
1918adantr 480 . . . . . . 7 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (𝑌‘1) ∈ ℝ)
201, 3rrx2pxel 48704 . . . . . . . . 9 (𝑋𝑃 → (𝑋‘1) ∈ ℝ)
21203ad2ant1 1133 . . . . . . . 8 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) → (𝑋‘1) ∈ ℝ)
2221adantr 480 . . . . . . 7 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (𝑋‘1) ∈ ℝ)
2319, 22resubcld 11613 . . . . . 6 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → ((𝑌‘1) − (𝑋‘1)) ∈ ℝ)
2423resqcld 14097 . . . . 5 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (((𝑌‘1) − (𝑋‘1))↑2) ∈ ℝ)
2516, 24readdcld 11210 . . . 4 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → ((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)) ∈ ℝ)
2610, 13resubcld 11613 . . . . . . . 8 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) → ((𝑋‘2) − (𝑌‘2)) ∈ ℝ)
2726resqcld 14097 . . . . . . 7 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) → (((𝑋‘2) − (𝑌‘2))↑2) ∈ ℝ)
2818, 21resubcld 11613 . . . . . . . 8 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) → ((𝑌‘1) − (𝑋‘1)) ∈ ℝ)
2928resqcld 14097 . . . . . . 7 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) → (((𝑌‘1) − (𝑋‘1))↑2) ∈ ℝ)
3010recnd 11209 . . . . . . . . 9 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) → (𝑋‘2) ∈ ℂ)
3113recnd 11209 . . . . . . . . 9 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) → (𝑌‘2) ∈ ℂ)
32 simp3 1138 . . . . . . . . 9 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) → (𝑋‘2) ≠ (𝑌‘2))
3330, 31, 32subne0d 11549 . . . . . . . 8 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) → ((𝑋‘2) − (𝑌‘2)) ≠ 0)
3426, 33sqgt0d 14222 . . . . . . 7 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) → 0 < (((𝑋‘2) − (𝑌‘2))↑2))
3528sqge0d 14109 . . . . . . 7 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) → 0 ≤ (((𝑌‘1) − (𝑋‘1))↑2))
3627, 29, 34, 35addgtge0d 11759 . . . . . 6 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) → 0 < ((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)))
3736gt0ne0d 11749 . . . . 5 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) → ((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)) ≠ 0)
3837adantr 480 . . . 4 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → ((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)) ≠ 0)
39 2re 12267 . . . . . . 7 2 ∈ ℝ
4039a1i 11 . . . . . 6 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → 2 ∈ ℝ)
4111, 19remulcld 11211 . . . . . . . 8 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → ((𝑋‘2) · (𝑌‘1)) ∈ ℝ)
4222, 14remulcld 11211 . . . . . . . 8 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → ((𝑋‘1) · (𝑌‘2)) ∈ ℝ)
4341, 42resubcld 11613 . . . . . . 7 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))) ∈ ℝ)
4423, 43remulcld 11211 . . . . . 6 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (((𝑌‘1) − (𝑋‘1)) · (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))) ∈ ℝ)
4540, 44remulcld 11211 . . . . 5 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (2 · (((𝑌‘1) − (𝑋‘1)) · (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))) ∈ ℝ)
4645renegcld 11612 . . . 4 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → -(2 · (((𝑌‘1) − (𝑋‘1)) · (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))) ∈ ℝ)
4743resqcld 14097 . . . . 5 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → ((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2) ∈ ℝ)
48 rpre 12967 . . . . . . . . 9 (𝑅 ∈ ℝ+𝑅 ∈ ℝ)
4948adantr 480 . . . . . . . 8 ((𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅) → 𝑅 ∈ ℝ)
5049adantl 481 . . . . . . 7 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → 𝑅 ∈ ℝ)
5150resqcld 14097 . . . . . 6 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (𝑅↑2) ∈ ℝ)
5216, 51remulcld 11211 . . . . 5 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → ((((𝑋‘2) − (𝑌‘2))↑2) · (𝑅↑2)) ∈ ℝ)
5347, 52resubcld 11613 . . . 4 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2) − ((((𝑋‘2) − (𝑌‘2))↑2) · (𝑅↑2))) ∈ ℝ)
54 eqidd 2731 . . . 4 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → ((-(2 · (((𝑌‘1) − (𝑋‘1)) · (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))))↑2) − (4 · (((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)) · (((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2) − ((((𝑋‘2) − (𝑌‘2))↑2) · (𝑅↑2)))))) = ((-(2 · (((𝑌‘1) − (𝑋‘1)) · (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))))↑2) − (4 · (((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)) · (((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2) − ((((𝑋‘2) − (𝑌‘2))↑2) · (𝑅↑2)))))))
5525, 38, 46, 53, 54requad2 47628 . . 3 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (∃!𝑠 ∈ 𝒫 ℝ((♯‘𝑠) = 2 ∧ ∀𝑦𝑠 ((((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)) · (𝑦↑2)) + ((-(2 · (((𝑌‘1) − (𝑋‘1)) · (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))) · 𝑦) + (((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2) − ((((𝑋‘2) − (𝑌‘2))↑2) · (𝑅↑2))))) = 0) ↔ 0 < ((-(2 · (((𝑌‘1) − (𝑋‘1)) · (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))))↑2) − (4 · (((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)) · (((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2) − ((((𝑋‘2) − (𝑌‘2))↑2) · (𝑅↑2))))))))
568, 55mpbird 257 . 2 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → ∃!𝑠 ∈ 𝒫 ℝ((♯‘𝑠) = 2 ∧ ∀𝑦𝑠 ((((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)) · (𝑦↑2)) + ((-(2 · (((𝑌‘1) − (𝑋‘1)) · (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))) · 𝑦) + (((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2) − ((((𝑋‘2) − (𝑌‘2))↑2) · (𝑅↑2))))) = 0))
57 0xr 11228 . . . . . . . . . . . . . . . . . . 19 0 ∈ ℝ*
5857a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ ℝ+ → 0 ∈ ℝ*)
59 pnfxr 11235 . . . . . . . . . . . . . . . . . . 19 +∞ ∈ ℝ*
6059a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ ℝ+ → +∞ ∈ ℝ*)
61 rpxr 12968 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ ℝ+𝑅 ∈ ℝ*)
62 rpge0 12972 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ ℝ+ → 0 ≤ 𝑅)
63 ltpnf 13087 . . . . . . . . . . . . . . . . . . 19 (𝑅 ∈ ℝ → 𝑅 < +∞)
6448, 63syl 17 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ ℝ+𝑅 < +∞)
6558, 60, 61, 62, 64elicod 13363 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ ℝ+𝑅 ∈ (0[,)+∞))
66 eqid 2730 . . . . . . . . . . . . . . . . . 18 {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)} = {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)}
671, 2, 3, 4, 5, 662sphere0 48743 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ (0[,)+∞) → ( 0 𝑆𝑅) = {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)})
6865, 67syl 17 . . . . . . . . . . . . . . . 16 (𝑅 ∈ ℝ+ → ( 0 𝑆𝑅) = {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)})
6968adantr 480 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅) → ( 0 𝑆𝑅) = {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)})
7069adantl 481 . . . . . . . . . . . . . 14 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → ( 0 𝑆𝑅) = {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)})
7170adantr 480 . . . . . . . . . . . . 13 ((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) → ( 0 𝑆𝑅) = {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)})
7271adantr 480 . . . . . . . . . . . 12 (((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) → ( 0 𝑆𝑅) = {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)})
7372adantr 480 . . . . . . . . . . 11 ((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) → ( 0 𝑆𝑅) = {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)})
7473adantr 480 . . . . . . . . . 10 (((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) ∧ 𝑥 ∈ ℝ) → ( 0 𝑆𝑅) = {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)})
7574eleq2d 2815 . . . . . . . . 9 (((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) ∧ 𝑥 ∈ ℝ) → (𝑍 ∈ ( 0 𝑆𝑅) ↔ 𝑍 ∈ {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)}))
76 fveq1 6860 . . . . . . . . . . . . . . 15 (𝑝 = 𝑍 → (𝑝‘1) = (𝑍‘1))
77 itscnhlinecirc02p.z . . . . . . . . . . . . . . . . . 18 𝑍 = {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}
7877fveq1i 6862 . . . . . . . . . . . . . . . . 17 (𝑍‘1) = ({⟨1, 𝑥⟩, ⟨2, 𝑦⟩}‘1)
79 1ne2 12396 . . . . . . . . . . . . . . . . . 18 1 ≠ 2
80 1ex 11177 . . . . . . . . . . . . . . . . . . 19 1 ∈ V
81 vex 3454 . . . . . . . . . . . . . . . . . . 19 𝑥 ∈ V
8280, 81fvpr1 7169 . . . . . . . . . . . . . . . . . 18 (1 ≠ 2 → ({⟨1, 𝑥⟩, ⟨2, 𝑦⟩}‘1) = 𝑥)
8379, 82ax-mp 5 . . . . . . . . . . . . . . . . 17 ({⟨1, 𝑥⟩, ⟨2, 𝑦⟩}‘1) = 𝑥
8478, 83eqtri 2753 . . . . . . . . . . . . . . . 16 (𝑍‘1) = 𝑥
8584a1i 11 . . . . . . . . . . . . . . 15 (𝑝 = 𝑍 → (𝑍‘1) = 𝑥)
8676, 85eqtrd 2765 . . . . . . . . . . . . . 14 (𝑝 = 𝑍 → (𝑝‘1) = 𝑥)
8786oveq1d 7405 . . . . . . . . . . . . 13 (𝑝 = 𝑍 → ((𝑝‘1)↑2) = (𝑥↑2))
88 fveq1 6860 . . . . . . . . . . . . . . 15 (𝑝 = 𝑍 → (𝑝‘2) = (𝑍‘2))
8977fveq1i 6862 . . . . . . . . . . . . . . . . 17 (𝑍‘2) = ({⟨1, 𝑥⟩, ⟨2, 𝑦⟩}‘2)
90 2ex 12270 . . . . . . . . . . . . . . . . . . 19 2 ∈ V
91 vex 3454 . . . . . . . . . . . . . . . . . . 19 𝑦 ∈ V
9290, 91fvpr2 7170 . . . . . . . . . . . . . . . . . 18 (1 ≠ 2 → ({⟨1, 𝑥⟩, ⟨2, 𝑦⟩}‘2) = 𝑦)
9379, 92ax-mp 5 . . . . . . . . . . . . . . . . 17 ({⟨1, 𝑥⟩, ⟨2, 𝑦⟩}‘2) = 𝑦
9489, 93eqtri 2753 . . . . . . . . . . . . . . . 16 (𝑍‘2) = 𝑦
9594a1i 11 . . . . . . . . . . . . . . 15 (𝑝 = 𝑍 → (𝑍‘2) = 𝑦)
9688, 95eqtrd 2765 . . . . . . . . . . . . . 14 (𝑝 = 𝑍 → (𝑝‘2) = 𝑦)
9796oveq1d 7405 . . . . . . . . . . . . 13 (𝑝 = 𝑍 → ((𝑝‘2)↑2) = (𝑦↑2))
9887, 97oveq12d 7408 . . . . . . . . . . . 12 (𝑝 = 𝑍 → (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = ((𝑥↑2) + (𝑦↑2)))
9998eqeq1d 2732 . . . . . . . . . . 11 (𝑝 = 𝑍 → ((((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2) ↔ ((𝑥↑2) + (𝑦↑2)) = (𝑅↑2)))
10099elrab 3662 . . . . . . . . . 10 (𝑍 ∈ {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)} ↔ (𝑍𝑃 ∧ ((𝑥↑2) + (𝑦↑2)) = (𝑅↑2)))
101100a1i 11 . . . . . . . . 9 (((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) ∧ 𝑥 ∈ ℝ) → (𝑍 ∈ {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)} ↔ (𝑍𝑃 ∧ ((𝑥↑2) + (𝑦↑2)) = (𝑅↑2))))
10275, 101bitrd 279 . . . . . . . 8 (((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) ∧ 𝑥 ∈ ℝ) → (𝑍 ∈ ( 0 𝑆𝑅) ↔ (𝑍𝑃 ∧ ((𝑥↑2) + (𝑦↑2)) = (𝑅↑2))))
103 simp1 1136 . . . . . . . . . . . . . . . . 17 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) → 𝑋𝑃)
104 simp2 1137 . . . . . . . . . . . . . . . . 17 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) → 𝑌𝑃)
105 fveq1 6860 . . . . . . . . . . . . . . . . . . . . 21 (𝑋 = 𝑌 → (𝑋‘2) = (𝑌‘2))
106105a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝑋𝑃𝑌𝑃) → (𝑋 = 𝑌 → (𝑋‘2) = (𝑌‘2)))
107106necon3d 2947 . . . . . . . . . . . . . . . . . . 19 ((𝑋𝑃𝑌𝑃) → ((𝑋‘2) ≠ (𝑌‘2) → 𝑋𝑌))
108107ex 412 . . . . . . . . . . . . . . . . . 18 (𝑋𝑃 → (𝑌𝑃 → ((𝑋‘2) ≠ (𝑌‘2) → 𝑋𝑌)))
1091083imp 1110 . . . . . . . . . . . . . . . . 17 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) → 𝑋𝑌)
110103, 104, 1093jca 1128 . . . . . . . . . . . . . . . 16 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) → (𝑋𝑃𝑌𝑃𝑋𝑌))
111110adantr 480 . . . . . . . . . . . . . . 15 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (𝑋𝑃𝑌𝑃𝑋𝑌))
112111adantr 480 . . . . . . . . . . . . . 14 ((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) → (𝑋𝑃𝑌𝑃𝑋𝑌))
113112adantr 480 . . . . . . . . . . . . 13 (((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) → (𝑋𝑃𝑌𝑃𝑋𝑌))
114113adantr 480 . . . . . . . . . . . 12 ((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) → (𝑋𝑃𝑌𝑃𝑋𝑌))
115114adantr 480 . . . . . . . . . . 11 (((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) ∧ 𝑥 ∈ ℝ) → (𝑋𝑃𝑌𝑃𝑋𝑌))
116 eqid 2730 . . . . . . . . . . . 12 ((𝑋‘2) − (𝑌‘2)) = ((𝑋‘2) − (𝑌‘2))
117 eqid 2730 . . . . . . . . . . . 12 ((𝑌‘1) − (𝑋‘1)) = ((𝑌‘1) − (𝑋‘1))
118 eqid 2730 . . . . . . . . . . . 12 (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))
1191, 2, 3, 6, 116, 117, 118rrx2linest2 48737 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ ((((𝑋‘2) − (𝑌‘2)) · (𝑝‘1)) + (((𝑌‘1) − (𝑋‘1)) · (𝑝‘2))) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))})
120115, 119syl 17 . . . . . . . . . 10 (((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) ∧ 𝑥 ∈ ℝ) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ ((((𝑋‘2) − (𝑌‘2)) · (𝑝‘1)) + (((𝑌‘1) − (𝑋‘1)) · (𝑝‘2))) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))})
121120eleq2d 2815 . . . . . . . . 9 (((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) ∧ 𝑥 ∈ ℝ) → (𝑍 ∈ (𝑋𝐿𝑌) ↔ 𝑍 ∈ {𝑝𝑃 ∣ ((((𝑋‘2) − (𝑌‘2)) · (𝑝‘1)) + (((𝑌‘1) − (𝑋‘1)) · (𝑝‘2))) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))}))
12286oveq2d 7406 . . . . . . . . . . . . 13 (𝑝 = 𝑍 → (((𝑋‘2) − (𝑌‘2)) · (𝑝‘1)) = (((𝑋‘2) − (𝑌‘2)) · 𝑥))
12396oveq2d 7406 . . . . . . . . . . . . 13 (𝑝 = 𝑍 → (((𝑌‘1) − (𝑋‘1)) · (𝑝‘2)) = (((𝑌‘1) − (𝑋‘1)) · 𝑦))
124122, 123oveq12d 7408 . . . . . . . . . . . 12 (𝑝 = 𝑍 → ((((𝑋‘2) − (𝑌‘2)) · (𝑝‘1)) + (((𝑌‘1) − (𝑋‘1)) · (𝑝‘2))) = ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)))
125124eqeq1d 2732 . . . . . . . . . . 11 (𝑝 = 𝑍 → (((((𝑋‘2) − (𝑌‘2)) · (𝑝‘1)) + (((𝑌‘1) − (𝑋‘1)) · (𝑝‘2))) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))) ↔ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))))
126125elrab 3662 . . . . . . . . . 10 (𝑍 ∈ {𝑝𝑃 ∣ ((((𝑋‘2) − (𝑌‘2)) · (𝑝‘1)) + (((𝑌‘1) − (𝑋‘1)) · (𝑝‘2))) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))} ↔ (𝑍𝑃 ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))))
127126a1i 11 . . . . . . . . 9 (((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) ∧ 𝑥 ∈ ℝ) → (𝑍 ∈ {𝑝𝑃 ∣ ((((𝑋‘2) − (𝑌‘2)) · (𝑝‘1)) + (((𝑌‘1) − (𝑋‘1)) · (𝑝‘2))) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))} ↔ (𝑍𝑃 ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))))
128121, 127bitrd 279 . . . . . . . 8 (((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) ∧ 𝑥 ∈ ℝ) → (𝑍 ∈ (𝑋𝐿𝑌) ↔ (𝑍𝑃 ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))))
129102, 128anbi12d 632 . . . . . . 7 (((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) ∧ 𝑥 ∈ ℝ) → ((𝑍 ∈ ( 0 𝑆𝑅) ∧ 𝑍 ∈ (𝑋𝐿𝑌)) ↔ ((𝑍𝑃 ∧ ((𝑥↑2) + (𝑦↑2)) = (𝑅↑2)) ∧ (𝑍𝑃 ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))))))
130129reubidva 3372 . . . . . 6 ((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) → (∃!𝑥 ∈ ℝ (𝑍 ∈ ( 0 𝑆𝑅) ∧ 𝑍 ∈ (𝑋𝐿𝑌)) ↔ ∃!𝑥 ∈ ℝ ((𝑍𝑃 ∧ ((𝑥↑2) + (𝑦↑2)) = (𝑅↑2)) ∧ (𝑍𝑃 ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))))))
131 elelpwi 4576 . . . . . . . . . . . 12 ((𝑦𝑠𝑠 ∈ 𝒫 ℝ) → 𝑦 ∈ ℝ)
1321, 3prelrrx2 48706 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → {⟨1, 𝑥⟩, ⟨2, 𝑦⟩} ∈ 𝑃)
133132ancoms 458 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → {⟨1, 𝑥⟩, ⟨2, 𝑦⟩} ∈ 𝑃)
13477eleq1i 2820 . . . . . . . . . . . . . . . . 17 (𝑍𝑃 ↔ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩} ∈ 𝑃)
135133, 134sylibr 234 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → 𝑍𝑃)
136135biantrurd 532 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (((𝑥↑2) + (𝑦↑2)) = (𝑅↑2) ↔ (𝑍𝑃 ∧ ((𝑥↑2) + (𝑦↑2)) = (𝑅↑2))))
137136bicomd 223 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑍𝑃 ∧ ((𝑥↑2) + (𝑦↑2)) = (𝑅↑2)) ↔ ((𝑥↑2) + (𝑦↑2)) = (𝑅↑2)))
138135biantrurd 532 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))) ↔ (𝑍𝑃 ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))))
139138bicomd 223 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑍𝑃 ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))) ↔ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))))
140137, 139anbi12d 632 . . . . . . . . . . . . 13 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (((𝑍𝑃 ∧ ((𝑥↑2) + (𝑦↑2)) = (𝑅↑2)) ∧ (𝑍𝑃 ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))) ↔ (((𝑥↑2) + (𝑦↑2)) = (𝑅↑2) ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))))
141140reubidva 3372 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → (∃!𝑥 ∈ ℝ ((𝑍𝑃 ∧ ((𝑥↑2) + (𝑦↑2)) = (𝑅↑2)) ∧ (𝑍𝑃 ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))) ↔ ∃!𝑥 ∈ ℝ (((𝑥↑2) + (𝑦↑2)) = (𝑅↑2) ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))))
142131, 141syl 17 . . . . . . . . . . 11 ((𝑦𝑠𝑠 ∈ 𝒫 ℝ) → (∃!𝑥 ∈ ℝ ((𝑍𝑃 ∧ ((𝑥↑2) + (𝑦↑2)) = (𝑅↑2)) ∧ (𝑍𝑃 ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))) ↔ ∃!𝑥 ∈ ℝ (((𝑥↑2) + (𝑦↑2)) = (𝑅↑2) ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))))
143142expcom 413 . . . . . . . . . 10 (𝑠 ∈ 𝒫 ℝ → (𝑦𝑠 → (∃!𝑥 ∈ ℝ ((𝑍𝑃 ∧ ((𝑥↑2) + (𝑦↑2)) = (𝑅↑2)) ∧ (𝑍𝑃 ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))) ↔ ∃!𝑥 ∈ ℝ (((𝑥↑2) + (𝑦↑2)) = (𝑅↑2) ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))))))
144143adantl 481 . . . . . . . . 9 ((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) → (𝑦𝑠 → (∃!𝑥 ∈ ℝ ((𝑍𝑃 ∧ ((𝑥↑2) + (𝑦↑2)) = (𝑅↑2)) ∧ (𝑍𝑃 ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))) ↔ ∃!𝑥 ∈ ℝ (((𝑥↑2) + (𝑦↑2)) = (𝑅↑2) ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))))))
145144adantr 480 . . . . . . . 8 (((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) → (𝑦𝑠 → (∃!𝑥 ∈ ℝ ((𝑍𝑃 ∧ ((𝑥↑2) + (𝑦↑2)) = (𝑅↑2)) ∧ (𝑍𝑃 ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))) ↔ ∃!𝑥 ∈ ℝ (((𝑥↑2) + (𝑦↑2)) = (𝑅↑2) ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))))))
146145imp 406 . . . . . . 7 ((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) → (∃!𝑥 ∈ ℝ ((𝑍𝑃 ∧ ((𝑥↑2) + (𝑦↑2)) = (𝑅↑2)) ∧ (𝑍𝑃 ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))) ↔ ∃!𝑥 ∈ ℝ (((𝑥↑2) + (𝑦↑2)) = (𝑅↑2) ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))))
14726, 33jca 511 . . . . . . . . . . . 12 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) → (((𝑋‘2) − (𝑌‘2)) ∈ ℝ ∧ ((𝑋‘2) − (𝑌‘2)) ≠ 0))
148147adantr 480 . . . . . . . . . . 11 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (((𝑋‘2) − (𝑌‘2)) ∈ ℝ ∧ ((𝑋‘2) − (𝑌‘2)) ≠ 0))
149148ad3antrrr 730 . . . . . . . . . 10 ((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) → (((𝑋‘2) − (𝑌‘2)) ∈ ℝ ∧ ((𝑋‘2) − (𝑌‘2)) ≠ 0))
15019ad3antrrr 730 . . . . . . . . . . 11 ((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) → (𝑌‘1) ∈ ℝ)
15122ad3antrrr 730 . . . . . . . . . . 11 ((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) → (𝑋‘1) ∈ ℝ)
152150, 151resubcld 11613 . . . . . . . . . 10 ((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) → ((𝑌‘1) − (𝑋‘1)) ∈ ℝ)
15311ad3antrrr 730 . . . . . . . . . . . 12 ((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) → (𝑋‘2) ∈ ℝ)
154153, 150remulcld 11211 . . . . . . . . . . 11 ((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) → ((𝑋‘2) · (𝑌‘1)) ∈ ℝ)
15514ad3antrrr 730 . . . . . . . . . . . 12 ((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) → (𝑌‘2) ∈ ℝ)
156151, 155remulcld 11211 . . . . . . . . . . 11 ((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) → ((𝑋‘1) · (𝑌‘2)) ∈ ℝ)
157154, 156resubcld 11613 . . . . . . . . . 10 ((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) → (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))) ∈ ℝ)
158149, 152, 1573jca 1128 . . . . . . . . 9 ((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) → ((((𝑋‘2) − (𝑌‘2)) ∈ ℝ ∧ ((𝑋‘2) − (𝑌‘2)) ≠ 0) ∧ ((𝑌‘1) − (𝑋‘1)) ∈ ℝ ∧ (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))) ∈ ℝ))
159 simplrl 776 . . . . . . . . . . 11 ((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) → 𝑅 ∈ ℝ+)
160159adantr 480 . . . . . . . . . 10 (((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) → 𝑅 ∈ ℝ+)
161160adantr 480 . . . . . . . . 9 ((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) → 𝑅 ∈ ℝ+)
162131expcom 413 . . . . . . . . . . . 12 (𝑠 ∈ 𝒫 ℝ → (𝑦𝑠𝑦 ∈ ℝ))
163162adantl 481 . . . . . . . . . . 11 ((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) → (𝑦𝑠𝑦 ∈ ℝ))
164163adantr 480 . . . . . . . . . 10 (((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) → (𝑦𝑠𝑦 ∈ ℝ))
165164imp 406 . . . . . . . . 9 ((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) → 𝑦 ∈ ℝ)
166158, 161, 1653jca 1128 . . . . . . . 8 ((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) → (((((𝑋‘2) − (𝑌‘2)) ∈ ℝ ∧ ((𝑋‘2) − (𝑌‘2)) ≠ 0) ∧ ((𝑌‘1) − (𝑋‘1)) ∈ ℝ ∧ (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))) ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑦 ∈ ℝ))
167 eqid 2730 . . . . . . . . 9 ((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)) = ((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2))
168 eqid 2730 . . . . . . . . 9 -(2 · (((𝑌‘1) − (𝑋‘1)) · (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))) = -(2 · (((𝑌‘1) − (𝑋‘1)) · (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))))
169 eqid 2730 . . . . . . . . 9 (((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2) − ((((𝑋‘2) − (𝑌‘2))↑2) · (𝑅↑2))) = (((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2) − ((((𝑋‘2) − (𝑌‘2))↑2) · (𝑅↑2)))
170167, 168, 169itsclquadeu 48770 . . . . . . . 8 ((((((𝑋‘2) − (𝑌‘2)) ∈ ℝ ∧ ((𝑋‘2) − (𝑌‘2)) ≠ 0) ∧ ((𝑌‘1) − (𝑋‘1)) ∈ ℝ ∧ (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))) ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑦 ∈ ℝ) → (∃!𝑥 ∈ ℝ (((𝑥↑2) + (𝑦↑2)) = (𝑅↑2) ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))) ↔ ((((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)) · (𝑦↑2)) + ((-(2 · (((𝑌‘1) − (𝑋‘1)) · (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))) · 𝑦) + (((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2) − ((((𝑋‘2) − (𝑌‘2))↑2) · (𝑅↑2))))) = 0))
171166, 170syl 17 . . . . . . 7 ((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) → (∃!𝑥 ∈ ℝ (((𝑥↑2) + (𝑦↑2)) = (𝑅↑2) ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))) ↔ ((((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)) · (𝑦↑2)) + ((-(2 · (((𝑌‘1) − (𝑋‘1)) · (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))) · 𝑦) + (((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2) − ((((𝑋‘2) − (𝑌‘2))↑2) · (𝑅↑2))))) = 0))
172146, 171bitrd 279 . . . . . 6 ((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) → (∃!𝑥 ∈ ℝ ((𝑍𝑃 ∧ ((𝑥↑2) + (𝑦↑2)) = (𝑅↑2)) ∧ (𝑍𝑃 ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))) ↔ ((((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)) · (𝑦↑2)) + ((-(2 · (((𝑌‘1) − (𝑋‘1)) · (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))) · 𝑦) + (((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2) − ((((𝑋‘2) − (𝑌‘2))↑2) · (𝑅↑2))))) = 0))
173130, 172bitrd 279 . . . . 5 ((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) → (∃!𝑥 ∈ ℝ (𝑍 ∈ ( 0 𝑆𝑅) ∧ 𝑍 ∈ (𝑋𝐿𝑌)) ↔ ((((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)) · (𝑦↑2)) + ((-(2 · (((𝑌‘1) − (𝑋‘1)) · (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))) · 𝑦) + (((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2) − ((((𝑋‘2) − (𝑌‘2))↑2) · (𝑅↑2))))) = 0))
174173ralbidva 3155 . . . 4 (((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) → (∀𝑦𝑠 ∃!𝑥 ∈ ℝ (𝑍 ∈ ( 0 𝑆𝑅) ∧ 𝑍 ∈ (𝑋𝐿𝑌)) ↔ ∀𝑦𝑠 ((((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)) · (𝑦↑2)) + ((-(2 · (((𝑌‘1) − (𝑋‘1)) · (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))) · 𝑦) + (((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2) − ((((𝑋‘2) − (𝑌‘2))↑2) · (𝑅↑2))))) = 0))
175174pm5.32da 579 . . 3 ((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) → (((♯‘𝑠) = 2 ∧ ∀𝑦𝑠 ∃!𝑥 ∈ ℝ (𝑍 ∈ ( 0 𝑆𝑅) ∧ 𝑍 ∈ (𝑋𝐿𝑌))) ↔ ((♯‘𝑠) = 2 ∧ ∀𝑦𝑠 ((((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)) · (𝑦↑2)) + ((-(2 · (((𝑌‘1) − (𝑋‘1)) · (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))) · 𝑦) + (((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2) − ((((𝑋‘2) − (𝑌‘2))↑2) · (𝑅↑2))))) = 0)))
176175reubidva 3372 . 2 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (∃!𝑠 ∈ 𝒫 ℝ((♯‘𝑠) = 2 ∧ ∀𝑦𝑠 ∃!𝑥 ∈ ℝ (𝑍 ∈ ( 0 𝑆𝑅) ∧ 𝑍 ∈ (𝑋𝐿𝑌))) ↔ ∃!𝑠 ∈ 𝒫 ℝ((♯‘𝑠) = 2 ∧ ∀𝑦𝑠 ((((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)) · (𝑦↑2)) + ((-(2 · (((𝑌‘1) − (𝑋‘1)) · (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))) · 𝑦) + (((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2) − ((((𝑋‘2) − (𝑌‘2))↑2) · (𝑅↑2))))) = 0)))
17756, 176mpbird 257 1 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → ∃!𝑠 ∈ 𝒫 ℝ((♯‘𝑠) = 2 ∧ ∀𝑦𝑠 ∃!𝑥 ∈ ℝ (𝑍 ∈ ( 0 𝑆𝑅) ∧ 𝑍 ∈ (𝑋𝐿𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  ∃!wreu 3354  {crab 3408  𝒫 cpw 4566  {csn 4592  {cpr 4594  cop 4598   class class class wbr 5110   × cxp 5639  cfv 6514  (class class class)co 7390  m cmap 8802  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080  +∞cpnf 11212  *cxr 11214   < clt 11215  cmin 11412  -cneg 11413  2c2 12248  4c4 12250  +crp 12958  [,)cico 13315  cexp 14033  chash 14302  distcds 17236  ℝ^crrx 25290  LineMcline 48720  Spherecsph 48721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154  ax-mulf 11155
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-er 8674  df-map 8804  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-sup 9400  df-oi 9470  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-sum 15660  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-0g 17411  df-gsum 17412  df-prds 17417  df-pws 17419  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-grp 18875  df-minusg 18876  df-sbg 18877  df-subg 19062  df-ghm 19152  df-cntz 19256  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-dvr 20317  df-rhm 20388  df-subrng 20462  df-subrg 20486  df-drng 20647  df-field 20648  df-staf 20755  df-srng 20756  df-lmod 20775  df-lss 20845  df-sra 21087  df-rgmod 21088  df-xmet 21264  df-met 21265  df-cnfld 21272  df-refld 21521  df-dsmm 21648  df-frlm 21663  df-nm 24477  df-tng 24479  df-tcph 25076  df-rrx 25292  df-ehl 25293  df-line 48722  df-sph 48723
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator