Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itscnhlinecirc02p Structured version   Visualization version   GIF version

Theorem itscnhlinecirc02p 48706
Description: Intersection of a nonhorizontal line with a circle: A nonhorizontal line passing through a point within a circle around the origin intersects the circle at exactly two different points. (Contributed by AV, 28-Jan-2023.)
Hypotheses
Ref Expression
itscnhlinecirc02p.i 𝐼 = {1, 2}
itscnhlinecirc02p.e 𝐸 = (ℝ^‘𝐼)
itscnhlinecirc02p.p 𝑃 = (ℝ ↑m 𝐼)
itscnhlinecirc02p.s 𝑆 = (Sphere‘𝐸)
itscnhlinecirc02p.0 0 = (𝐼 × {0})
itscnhlinecirc02p.l 𝐿 = (LineM𝐸)
itscnhlinecirc02p.d 𝐷 = (dist‘𝐸)
itscnhlinecirc02p.z 𝑍 = {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}
Assertion
Ref Expression
itscnhlinecirc02p (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → ∃!𝑠 ∈ 𝒫 ℝ((♯‘𝑠) = 2 ∧ ∀𝑦𝑠 ∃!𝑥 ∈ ℝ (𝑍 ∈ ( 0 𝑆𝑅) ∧ 𝑍 ∈ (𝑋𝐿𝑌))))
Distinct variable groups:   𝐷,𝑠,𝑥,𝑦   𝑃,𝑠,𝑦   𝑅,𝑠,𝑦   𝑋,𝑠,𝑦   𝑌,𝑠,𝑦   0 ,𝑠,𝑦   𝑥,𝑃   𝑥,𝑅   𝑥,𝑋   𝑥, 0   𝑥,𝑌
Allowed substitution hints:   𝑆(𝑥,𝑦,𝑠)   𝐸(𝑥,𝑦,𝑠)   𝐼(𝑥,𝑦,𝑠)   𝐿(𝑥,𝑦,𝑠)   𝑍(𝑥,𝑦,𝑠)

Proof of Theorem itscnhlinecirc02p
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 itscnhlinecirc02p.i . . . 4 𝐼 = {1, 2}
2 itscnhlinecirc02p.e . . . 4 𝐸 = (ℝ^‘𝐼)
3 itscnhlinecirc02p.p . . . 4 𝑃 = (ℝ ↑m 𝐼)
4 itscnhlinecirc02p.s . . . 4 𝑆 = (Sphere‘𝐸)
5 itscnhlinecirc02p.0 . . . 4 0 = (𝐼 × {0})
6 itscnhlinecirc02p.l . . . 4 𝐿 = (LineM𝐸)
7 itscnhlinecirc02p.d . . . 4 𝐷 = (dist‘𝐸)
81, 2, 3, 4, 5, 6, 7itscnhlinecirc02plem3 48705 . . 3 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → 0 < ((-(2 · (((𝑌‘1) − (𝑋‘1)) · (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))))↑2) − (4 · (((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)) · (((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2) − ((((𝑋‘2) − (𝑌‘2))↑2) · (𝑅↑2)))))))
91, 3rrx2pyel 48633 . . . . . . . . 9 (𝑋𝑃 → (𝑋‘2) ∈ ℝ)
1093ad2ant1 1134 . . . . . . . 8 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) → (𝑋‘2) ∈ ℝ)
1110adantr 480 . . . . . . 7 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (𝑋‘2) ∈ ℝ)
121, 3rrx2pyel 48633 . . . . . . . . 9 (𝑌𝑃 → (𝑌‘2) ∈ ℝ)
13123ad2ant2 1135 . . . . . . . 8 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) → (𝑌‘2) ∈ ℝ)
1413adantr 480 . . . . . . 7 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (𝑌‘2) ∈ ℝ)
1511, 14resubcld 11691 . . . . . 6 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → ((𝑋‘2) − (𝑌‘2)) ∈ ℝ)
1615resqcld 14165 . . . . 5 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (((𝑋‘2) − (𝑌‘2))↑2) ∈ ℝ)
171, 3rrx2pxel 48632 . . . . . . . . 9 (𝑌𝑃 → (𝑌‘1) ∈ ℝ)
18173ad2ant2 1135 . . . . . . . 8 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) → (𝑌‘1) ∈ ℝ)
1918adantr 480 . . . . . . 7 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (𝑌‘1) ∈ ℝ)
201, 3rrx2pxel 48632 . . . . . . . . 9 (𝑋𝑃 → (𝑋‘1) ∈ ℝ)
21203ad2ant1 1134 . . . . . . . 8 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) → (𝑋‘1) ∈ ℝ)
2221adantr 480 . . . . . . 7 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (𝑋‘1) ∈ ℝ)
2319, 22resubcld 11691 . . . . . 6 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → ((𝑌‘1) − (𝑋‘1)) ∈ ℝ)
2423resqcld 14165 . . . . 5 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (((𝑌‘1) − (𝑋‘1))↑2) ∈ ℝ)
2516, 24readdcld 11290 . . . 4 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → ((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)) ∈ ℝ)
2610, 13resubcld 11691 . . . . . . . 8 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) → ((𝑋‘2) − (𝑌‘2)) ∈ ℝ)
2726resqcld 14165 . . . . . . 7 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) → (((𝑋‘2) − (𝑌‘2))↑2) ∈ ℝ)
2818, 21resubcld 11691 . . . . . . . 8 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) → ((𝑌‘1) − (𝑋‘1)) ∈ ℝ)
2928resqcld 14165 . . . . . . 7 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) → (((𝑌‘1) − (𝑋‘1))↑2) ∈ ℝ)
3010recnd 11289 . . . . . . . . 9 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) → (𝑋‘2) ∈ ℂ)
3113recnd 11289 . . . . . . . . 9 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) → (𝑌‘2) ∈ ℂ)
32 simp3 1139 . . . . . . . . 9 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) → (𝑋‘2) ≠ (𝑌‘2))
3330, 31, 32subne0d 11629 . . . . . . . 8 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) → ((𝑋‘2) − (𝑌‘2)) ≠ 0)
3426, 33sqgt0d 14289 . . . . . . 7 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) → 0 < (((𝑋‘2) − (𝑌‘2))↑2))
3528sqge0d 14177 . . . . . . 7 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) → 0 ≤ (((𝑌‘1) − (𝑋‘1))↑2))
3627, 29, 34, 35addgtge0d 11837 . . . . . 6 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) → 0 < ((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)))
3736gt0ne0d 11827 . . . . 5 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) → ((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)) ≠ 0)
3837adantr 480 . . . 4 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → ((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)) ≠ 0)
39 2re 12340 . . . . . . 7 2 ∈ ℝ
4039a1i 11 . . . . . 6 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → 2 ∈ ℝ)
4111, 19remulcld 11291 . . . . . . . 8 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → ((𝑋‘2) · (𝑌‘1)) ∈ ℝ)
4222, 14remulcld 11291 . . . . . . . 8 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → ((𝑋‘1) · (𝑌‘2)) ∈ ℝ)
4341, 42resubcld 11691 . . . . . . 7 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))) ∈ ℝ)
4423, 43remulcld 11291 . . . . . 6 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (((𝑌‘1) − (𝑋‘1)) · (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))) ∈ ℝ)
4540, 44remulcld 11291 . . . . 5 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (2 · (((𝑌‘1) − (𝑋‘1)) · (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))) ∈ ℝ)
4645renegcld 11690 . . . 4 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → -(2 · (((𝑌‘1) − (𝑋‘1)) · (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))) ∈ ℝ)
4743resqcld 14165 . . . . 5 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → ((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2) ∈ ℝ)
48 rpre 13043 . . . . . . . . 9 (𝑅 ∈ ℝ+𝑅 ∈ ℝ)
4948adantr 480 . . . . . . . 8 ((𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅) → 𝑅 ∈ ℝ)
5049adantl 481 . . . . . . 7 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → 𝑅 ∈ ℝ)
5150resqcld 14165 . . . . . 6 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (𝑅↑2) ∈ ℝ)
5216, 51remulcld 11291 . . . . 5 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → ((((𝑋‘2) − (𝑌‘2))↑2) · (𝑅↑2)) ∈ ℝ)
5347, 52resubcld 11691 . . . 4 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2) − ((((𝑋‘2) − (𝑌‘2))↑2) · (𝑅↑2))) ∈ ℝ)
54 eqidd 2738 . . . 4 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → ((-(2 · (((𝑌‘1) − (𝑋‘1)) · (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))))↑2) − (4 · (((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)) · (((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2) − ((((𝑋‘2) − (𝑌‘2))↑2) · (𝑅↑2)))))) = ((-(2 · (((𝑌‘1) − (𝑋‘1)) · (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))))↑2) − (4 · (((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)) · (((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2) − ((((𝑋‘2) − (𝑌‘2))↑2) · (𝑅↑2)))))))
5525, 38, 46, 53, 54requad2 47610 . . 3 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (∃!𝑠 ∈ 𝒫 ℝ((♯‘𝑠) = 2 ∧ ∀𝑦𝑠 ((((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)) · (𝑦↑2)) + ((-(2 · (((𝑌‘1) − (𝑋‘1)) · (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))) · 𝑦) + (((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2) − ((((𝑋‘2) − (𝑌‘2))↑2) · (𝑅↑2))))) = 0) ↔ 0 < ((-(2 · (((𝑌‘1) − (𝑋‘1)) · (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))))↑2) − (4 · (((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)) · (((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2) − ((((𝑋‘2) − (𝑌‘2))↑2) · (𝑅↑2))))))))
568, 55mpbird 257 . 2 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → ∃!𝑠 ∈ 𝒫 ℝ((♯‘𝑠) = 2 ∧ ∀𝑦𝑠 ((((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)) · (𝑦↑2)) + ((-(2 · (((𝑌‘1) − (𝑋‘1)) · (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))) · 𝑦) + (((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2) − ((((𝑋‘2) − (𝑌‘2))↑2) · (𝑅↑2))))) = 0))
57 0xr 11308 . . . . . . . . . . . . . . . . . . 19 0 ∈ ℝ*
5857a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ ℝ+ → 0 ∈ ℝ*)
59 pnfxr 11315 . . . . . . . . . . . . . . . . . . 19 +∞ ∈ ℝ*
6059a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ ℝ+ → +∞ ∈ ℝ*)
61 rpxr 13044 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ ℝ+𝑅 ∈ ℝ*)
62 rpge0 13048 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ ℝ+ → 0 ≤ 𝑅)
63 ltpnf 13162 . . . . . . . . . . . . . . . . . . 19 (𝑅 ∈ ℝ → 𝑅 < +∞)
6448, 63syl 17 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ ℝ+𝑅 < +∞)
6558, 60, 61, 62, 64elicod 13437 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ ℝ+𝑅 ∈ (0[,)+∞))
66 eqid 2737 . . . . . . . . . . . . . . . . . 18 {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)} = {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)}
671, 2, 3, 4, 5, 662sphere0 48671 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ (0[,)+∞) → ( 0 𝑆𝑅) = {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)})
6865, 67syl 17 . . . . . . . . . . . . . . . 16 (𝑅 ∈ ℝ+ → ( 0 𝑆𝑅) = {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)})
6968adantr 480 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅) → ( 0 𝑆𝑅) = {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)})
7069adantl 481 . . . . . . . . . . . . . 14 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → ( 0 𝑆𝑅) = {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)})
7170adantr 480 . . . . . . . . . . . . 13 ((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) → ( 0 𝑆𝑅) = {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)})
7271adantr 480 . . . . . . . . . . . 12 (((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) → ( 0 𝑆𝑅) = {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)})
7372adantr 480 . . . . . . . . . . 11 ((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) → ( 0 𝑆𝑅) = {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)})
7473adantr 480 . . . . . . . . . 10 (((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) ∧ 𝑥 ∈ ℝ) → ( 0 𝑆𝑅) = {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)})
7574eleq2d 2827 . . . . . . . . 9 (((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) ∧ 𝑥 ∈ ℝ) → (𝑍 ∈ ( 0 𝑆𝑅) ↔ 𝑍 ∈ {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)}))
76 fveq1 6905 . . . . . . . . . . . . . . 15 (𝑝 = 𝑍 → (𝑝‘1) = (𝑍‘1))
77 itscnhlinecirc02p.z . . . . . . . . . . . . . . . . . 18 𝑍 = {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}
7877fveq1i 6907 . . . . . . . . . . . . . . . . 17 (𝑍‘1) = ({⟨1, 𝑥⟩, ⟨2, 𝑦⟩}‘1)
79 1ne2 12474 . . . . . . . . . . . . . . . . . 18 1 ≠ 2
80 1ex 11257 . . . . . . . . . . . . . . . . . . 19 1 ∈ V
81 vex 3484 . . . . . . . . . . . . . . . . . . 19 𝑥 ∈ V
8280, 81fvpr1 7212 . . . . . . . . . . . . . . . . . 18 (1 ≠ 2 → ({⟨1, 𝑥⟩, ⟨2, 𝑦⟩}‘1) = 𝑥)
8379, 82ax-mp 5 . . . . . . . . . . . . . . . . 17 ({⟨1, 𝑥⟩, ⟨2, 𝑦⟩}‘1) = 𝑥
8478, 83eqtri 2765 . . . . . . . . . . . . . . . 16 (𝑍‘1) = 𝑥
8584a1i 11 . . . . . . . . . . . . . . 15 (𝑝 = 𝑍 → (𝑍‘1) = 𝑥)
8676, 85eqtrd 2777 . . . . . . . . . . . . . 14 (𝑝 = 𝑍 → (𝑝‘1) = 𝑥)
8786oveq1d 7446 . . . . . . . . . . . . 13 (𝑝 = 𝑍 → ((𝑝‘1)↑2) = (𝑥↑2))
88 fveq1 6905 . . . . . . . . . . . . . . 15 (𝑝 = 𝑍 → (𝑝‘2) = (𝑍‘2))
8977fveq1i 6907 . . . . . . . . . . . . . . . . 17 (𝑍‘2) = ({⟨1, 𝑥⟩, ⟨2, 𝑦⟩}‘2)
90 2ex 12343 . . . . . . . . . . . . . . . . . . 19 2 ∈ V
91 vex 3484 . . . . . . . . . . . . . . . . . . 19 𝑦 ∈ V
9290, 91fvpr2 7213 . . . . . . . . . . . . . . . . . 18 (1 ≠ 2 → ({⟨1, 𝑥⟩, ⟨2, 𝑦⟩}‘2) = 𝑦)
9379, 92ax-mp 5 . . . . . . . . . . . . . . . . 17 ({⟨1, 𝑥⟩, ⟨2, 𝑦⟩}‘2) = 𝑦
9489, 93eqtri 2765 . . . . . . . . . . . . . . . 16 (𝑍‘2) = 𝑦
9594a1i 11 . . . . . . . . . . . . . . 15 (𝑝 = 𝑍 → (𝑍‘2) = 𝑦)
9688, 95eqtrd 2777 . . . . . . . . . . . . . 14 (𝑝 = 𝑍 → (𝑝‘2) = 𝑦)
9796oveq1d 7446 . . . . . . . . . . . . 13 (𝑝 = 𝑍 → ((𝑝‘2)↑2) = (𝑦↑2))
9887, 97oveq12d 7449 . . . . . . . . . . . 12 (𝑝 = 𝑍 → (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = ((𝑥↑2) + (𝑦↑2)))
9998eqeq1d 2739 . . . . . . . . . . 11 (𝑝 = 𝑍 → ((((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2) ↔ ((𝑥↑2) + (𝑦↑2)) = (𝑅↑2)))
10099elrab 3692 . . . . . . . . . 10 (𝑍 ∈ {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)} ↔ (𝑍𝑃 ∧ ((𝑥↑2) + (𝑦↑2)) = (𝑅↑2)))
101100a1i 11 . . . . . . . . 9 (((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) ∧ 𝑥 ∈ ℝ) → (𝑍 ∈ {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)} ↔ (𝑍𝑃 ∧ ((𝑥↑2) + (𝑦↑2)) = (𝑅↑2))))
10275, 101bitrd 279 . . . . . . . 8 (((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) ∧ 𝑥 ∈ ℝ) → (𝑍 ∈ ( 0 𝑆𝑅) ↔ (𝑍𝑃 ∧ ((𝑥↑2) + (𝑦↑2)) = (𝑅↑2))))
103 simp1 1137 . . . . . . . . . . . . . . . . 17 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) → 𝑋𝑃)
104 simp2 1138 . . . . . . . . . . . . . . . . 17 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) → 𝑌𝑃)
105 fveq1 6905 . . . . . . . . . . . . . . . . . . . . 21 (𝑋 = 𝑌 → (𝑋‘2) = (𝑌‘2))
106105a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝑋𝑃𝑌𝑃) → (𝑋 = 𝑌 → (𝑋‘2) = (𝑌‘2)))
107106necon3d 2961 . . . . . . . . . . . . . . . . . . 19 ((𝑋𝑃𝑌𝑃) → ((𝑋‘2) ≠ (𝑌‘2) → 𝑋𝑌))
108107ex 412 . . . . . . . . . . . . . . . . . 18 (𝑋𝑃 → (𝑌𝑃 → ((𝑋‘2) ≠ (𝑌‘2) → 𝑋𝑌)))
1091083imp 1111 . . . . . . . . . . . . . . . . 17 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) → 𝑋𝑌)
110103, 104, 1093jca 1129 . . . . . . . . . . . . . . . 16 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) → (𝑋𝑃𝑌𝑃𝑋𝑌))
111110adantr 480 . . . . . . . . . . . . . . 15 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (𝑋𝑃𝑌𝑃𝑋𝑌))
112111adantr 480 . . . . . . . . . . . . . 14 ((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) → (𝑋𝑃𝑌𝑃𝑋𝑌))
113112adantr 480 . . . . . . . . . . . . 13 (((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) → (𝑋𝑃𝑌𝑃𝑋𝑌))
114113adantr 480 . . . . . . . . . . . 12 ((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) → (𝑋𝑃𝑌𝑃𝑋𝑌))
115114adantr 480 . . . . . . . . . . 11 (((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) ∧ 𝑥 ∈ ℝ) → (𝑋𝑃𝑌𝑃𝑋𝑌))
116 eqid 2737 . . . . . . . . . . . 12 ((𝑋‘2) − (𝑌‘2)) = ((𝑋‘2) − (𝑌‘2))
117 eqid 2737 . . . . . . . . . . . 12 ((𝑌‘1) − (𝑋‘1)) = ((𝑌‘1) − (𝑋‘1))
118 eqid 2737 . . . . . . . . . . . 12 (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))
1191, 2, 3, 6, 116, 117, 118rrx2linest2 48665 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ ((((𝑋‘2) − (𝑌‘2)) · (𝑝‘1)) + (((𝑌‘1) − (𝑋‘1)) · (𝑝‘2))) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))})
120115, 119syl 17 . . . . . . . . . 10 (((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) ∧ 𝑥 ∈ ℝ) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ ((((𝑋‘2) − (𝑌‘2)) · (𝑝‘1)) + (((𝑌‘1) − (𝑋‘1)) · (𝑝‘2))) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))})
121120eleq2d 2827 . . . . . . . . 9 (((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) ∧ 𝑥 ∈ ℝ) → (𝑍 ∈ (𝑋𝐿𝑌) ↔ 𝑍 ∈ {𝑝𝑃 ∣ ((((𝑋‘2) − (𝑌‘2)) · (𝑝‘1)) + (((𝑌‘1) − (𝑋‘1)) · (𝑝‘2))) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))}))
12286oveq2d 7447 . . . . . . . . . . . . 13 (𝑝 = 𝑍 → (((𝑋‘2) − (𝑌‘2)) · (𝑝‘1)) = (((𝑋‘2) − (𝑌‘2)) · 𝑥))
12396oveq2d 7447 . . . . . . . . . . . . 13 (𝑝 = 𝑍 → (((𝑌‘1) − (𝑋‘1)) · (𝑝‘2)) = (((𝑌‘1) − (𝑋‘1)) · 𝑦))
124122, 123oveq12d 7449 . . . . . . . . . . . 12 (𝑝 = 𝑍 → ((((𝑋‘2) − (𝑌‘2)) · (𝑝‘1)) + (((𝑌‘1) − (𝑋‘1)) · (𝑝‘2))) = ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)))
125124eqeq1d 2739 . . . . . . . . . . 11 (𝑝 = 𝑍 → (((((𝑋‘2) − (𝑌‘2)) · (𝑝‘1)) + (((𝑌‘1) − (𝑋‘1)) · (𝑝‘2))) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))) ↔ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))))
126125elrab 3692 . . . . . . . . . 10 (𝑍 ∈ {𝑝𝑃 ∣ ((((𝑋‘2) − (𝑌‘2)) · (𝑝‘1)) + (((𝑌‘1) − (𝑋‘1)) · (𝑝‘2))) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))} ↔ (𝑍𝑃 ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))))
127126a1i 11 . . . . . . . . 9 (((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) ∧ 𝑥 ∈ ℝ) → (𝑍 ∈ {𝑝𝑃 ∣ ((((𝑋‘2) − (𝑌‘2)) · (𝑝‘1)) + (((𝑌‘1) − (𝑋‘1)) · (𝑝‘2))) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))} ↔ (𝑍𝑃 ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))))
128121, 127bitrd 279 . . . . . . . 8 (((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) ∧ 𝑥 ∈ ℝ) → (𝑍 ∈ (𝑋𝐿𝑌) ↔ (𝑍𝑃 ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))))
129102, 128anbi12d 632 . . . . . . 7 (((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) ∧ 𝑥 ∈ ℝ) → ((𝑍 ∈ ( 0 𝑆𝑅) ∧ 𝑍 ∈ (𝑋𝐿𝑌)) ↔ ((𝑍𝑃 ∧ ((𝑥↑2) + (𝑦↑2)) = (𝑅↑2)) ∧ (𝑍𝑃 ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))))))
130129reubidva 3396 . . . . . 6 ((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) → (∃!𝑥 ∈ ℝ (𝑍 ∈ ( 0 𝑆𝑅) ∧ 𝑍 ∈ (𝑋𝐿𝑌)) ↔ ∃!𝑥 ∈ ℝ ((𝑍𝑃 ∧ ((𝑥↑2) + (𝑦↑2)) = (𝑅↑2)) ∧ (𝑍𝑃 ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))))))
131 elelpwi 4610 . . . . . . . . . . . 12 ((𝑦𝑠𝑠 ∈ 𝒫 ℝ) → 𝑦 ∈ ℝ)
1321, 3prelrrx2 48634 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → {⟨1, 𝑥⟩, ⟨2, 𝑦⟩} ∈ 𝑃)
133132ancoms 458 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → {⟨1, 𝑥⟩, ⟨2, 𝑦⟩} ∈ 𝑃)
13477eleq1i 2832 . . . . . . . . . . . . . . . . 17 (𝑍𝑃 ↔ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩} ∈ 𝑃)
135133, 134sylibr 234 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → 𝑍𝑃)
136135biantrurd 532 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (((𝑥↑2) + (𝑦↑2)) = (𝑅↑2) ↔ (𝑍𝑃 ∧ ((𝑥↑2) + (𝑦↑2)) = (𝑅↑2))))
137136bicomd 223 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑍𝑃 ∧ ((𝑥↑2) + (𝑦↑2)) = (𝑅↑2)) ↔ ((𝑥↑2) + (𝑦↑2)) = (𝑅↑2)))
138135biantrurd 532 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))) ↔ (𝑍𝑃 ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))))
139138bicomd 223 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑍𝑃 ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))) ↔ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))))
140137, 139anbi12d 632 . . . . . . . . . . . . 13 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (((𝑍𝑃 ∧ ((𝑥↑2) + (𝑦↑2)) = (𝑅↑2)) ∧ (𝑍𝑃 ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))) ↔ (((𝑥↑2) + (𝑦↑2)) = (𝑅↑2) ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))))
141140reubidva 3396 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → (∃!𝑥 ∈ ℝ ((𝑍𝑃 ∧ ((𝑥↑2) + (𝑦↑2)) = (𝑅↑2)) ∧ (𝑍𝑃 ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))) ↔ ∃!𝑥 ∈ ℝ (((𝑥↑2) + (𝑦↑2)) = (𝑅↑2) ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))))
142131, 141syl 17 . . . . . . . . . . 11 ((𝑦𝑠𝑠 ∈ 𝒫 ℝ) → (∃!𝑥 ∈ ℝ ((𝑍𝑃 ∧ ((𝑥↑2) + (𝑦↑2)) = (𝑅↑2)) ∧ (𝑍𝑃 ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))) ↔ ∃!𝑥 ∈ ℝ (((𝑥↑2) + (𝑦↑2)) = (𝑅↑2) ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))))
143142expcom 413 . . . . . . . . . 10 (𝑠 ∈ 𝒫 ℝ → (𝑦𝑠 → (∃!𝑥 ∈ ℝ ((𝑍𝑃 ∧ ((𝑥↑2) + (𝑦↑2)) = (𝑅↑2)) ∧ (𝑍𝑃 ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))) ↔ ∃!𝑥 ∈ ℝ (((𝑥↑2) + (𝑦↑2)) = (𝑅↑2) ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))))))
144143adantl 481 . . . . . . . . 9 ((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) → (𝑦𝑠 → (∃!𝑥 ∈ ℝ ((𝑍𝑃 ∧ ((𝑥↑2) + (𝑦↑2)) = (𝑅↑2)) ∧ (𝑍𝑃 ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))) ↔ ∃!𝑥 ∈ ℝ (((𝑥↑2) + (𝑦↑2)) = (𝑅↑2) ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))))))
145144adantr 480 . . . . . . . 8 (((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) → (𝑦𝑠 → (∃!𝑥 ∈ ℝ ((𝑍𝑃 ∧ ((𝑥↑2) + (𝑦↑2)) = (𝑅↑2)) ∧ (𝑍𝑃 ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))) ↔ ∃!𝑥 ∈ ℝ (((𝑥↑2) + (𝑦↑2)) = (𝑅↑2) ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))))))
146145imp 406 . . . . . . 7 ((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) → (∃!𝑥 ∈ ℝ ((𝑍𝑃 ∧ ((𝑥↑2) + (𝑦↑2)) = (𝑅↑2)) ∧ (𝑍𝑃 ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))) ↔ ∃!𝑥 ∈ ℝ (((𝑥↑2) + (𝑦↑2)) = (𝑅↑2) ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))))
14726, 33jca 511 . . . . . . . . . . . 12 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) → (((𝑋‘2) − (𝑌‘2)) ∈ ℝ ∧ ((𝑋‘2) − (𝑌‘2)) ≠ 0))
148147adantr 480 . . . . . . . . . . 11 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (((𝑋‘2) − (𝑌‘2)) ∈ ℝ ∧ ((𝑋‘2) − (𝑌‘2)) ≠ 0))
149148ad3antrrr 730 . . . . . . . . . 10 ((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) → (((𝑋‘2) − (𝑌‘2)) ∈ ℝ ∧ ((𝑋‘2) − (𝑌‘2)) ≠ 0))
15019ad3antrrr 730 . . . . . . . . . . 11 ((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) → (𝑌‘1) ∈ ℝ)
15122ad3antrrr 730 . . . . . . . . . . 11 ((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) → (𝑋‘1) ∈ ℝ)
152150, 151resubcld 11691 . . . . . . . . . 10 ((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) → ((𝑌‘1) − (𝑋‘1)) ∈ ℝ)
15311ad3antrrr 730 . . . . . . . . . . . 12 ((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) → (𝑋‘2) ∈ ℝ)
154153, 150remulcld 11291 . . . . . . . . . . 11 ((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) → ((𝑋‘2) · (𝑌‘1)) ∈ ℝ)
15514ad3antrrr 730 . . . . . . . . . . . 12 ((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) → (𝑌‘2) ∈ ℝ)
156151, 155remulcld 11291 . . . . . . . . . . 11 ((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) → ((𝑋‘1) · (𝑌‘2)) ∈ ℝ)
157154, 156resubcld 11691 . . . . . . . . . 10 ((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) → (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))) ∈ ℝ)
158149, 152, 1573jca 1129 . . . . . . . . 9 ((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) → ((((𝑋‘2) − (𝑌‘2)) ∈ ℝ ∧ ((𝑋‘2) − (𝑌‘2)) ≠ 0) ∧ ((𝑌‘1) − (𝑋‘1)) ∈ ℝ ∧ (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))) ∈ ℝ))
159 simplrl 777 . . . . . . . . . . 11 ((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) → 𝑅 ∈ ℝ+)
160159adantr 480 . . . . . . . . . 10 (((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) → 𝑅 ∈ ℝ+)
161160adantr 480 . . . . . . . . 9 ((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) → 𝑅 ∈ ℝ+)
162131expcom 413 . . . . . . . . . . . 12 (𝑠 ∈ 𝒫 ℝ → (𝑦𝑠𝑦 ∈ ℝ))
163162adantl 481 . . . . . . . . . . 11 ((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) → (𝑦𝑠𝑦 ∈ ℝ))
164163adantr 480 . . . . . . . . . 10 (((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) → (𝑦𝑠𝑦 ∈ ℝ))
165164imp 406 . . . . . . . . 9 ((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) → 𝑦 ∈ ℝ)
166158, 161, 1653jca 1129 . . . . . . . 8 ((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) → (((((𝑋‘2) − (𝑌‘2)) ∈ ℝ ∧ ((𝑋‘2) − (𝑌‘2)) ≠ 0) ∧ ((𝑌‘1) − (𝑋‘1)) ∈ ℝ ∧ (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))) ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑦 ∈ ℝ))
167 eqid 2737 . . . . . . . . 9 ((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)) = ((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2))
168 eqid 2737 . . . . . . . . 9 -(2 · (((𝑌‘1) − (𝑋‘1)) · (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))) = -(2 · (((𝑌‘1) − (𝑋‘1)) · (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))))
169 eqid 2737 . . . . . . . . 9 (((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2) − ((((𝑋‘2) − (𝑌‘2))↑2) · (𝑅↑2))) = (((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2) − ((((𝑋‘2) − (𝑌‘2))↑2) · (𝑅↑2)))
170167, 168, 169itsclquadeu 48698 . . . . . . . 8 ((((((𝑋‘2) − (𝑌‘2)) ∈ ℝ ∧ ((𝑋‘2) − (𝑌‘2)) ≠ 0) ∧ ((𝑌‘1) − (𝑋‘1)) ∈ ℝ ∧ (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))) ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑦 ∈ ℝ) → (∃!𝑥 ∈ ℝ (((𝑥↑2) + (𝑦↑2)) = (𝑅↑2) ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))) ↔ ((((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)) · (𝑦↑2)) + ((-(2 · (((𝑌‘1) − (𝑋‘1)) · (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))) · 𝑦) + (((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2) − ((((𝑋‘2) − (𝑌‘2))↑2) · (𝑅↑2))))) = 0))
171166, 170syl 17 . . . . . . 7 ((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) → (∃!𝑥 ∈ ℝ (((𝑥↑2) + (𝑦↑2)) = (𝑅↑2) ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))) ↔ ((((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)) · (𝑦↑2)) + ((-(2 · (((𝑌‘1) − (𝑋‘1)) · (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))) · 𝑦) + (((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2) − ((((𝑋‘2) − (𝑌‘2))↑2) · (𝑅↑2))))) = 0))
172146, 171bitrd 279 . . . . . 6 ((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) → (∃!𝑥 ∈ ℝ ((𝑍𝑃 ∧ ((𝑥↑2) + (𝑦↑2)) = (𝑅↑2)) ∧ (𝑍𝑃 ∧ ((((𝑋‘2) − (𝑌‘2)) · 𝑥) + (((𝑌‘1) − (𝑋‘1)) · 𝑦)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))) ↔ ((((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)) · (𝑦↑2)) + ((-(2 · (((𝑌‘1) − (𝑋‘1)) · (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))) · 𝑦) + (((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2) − ((((𝑋‘2) − (𝑌‘2))↑2) · (𝑅↑2))))) = 0))
173130, 172bitrd 279 . . . . 5 ((((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) ∧ 𝑦𝑠) → (∃!𝑥 ∈ ℝ (𝑍 ∈ ( 0 𝑆𝑅) ∧ 𝑍 ∈ (𝑋𝐿𝑌)) ↔ ((((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)) · (𝑦↑2)) + ((-(2 · (((𝑌‘1) − (𝑋‘1)) · (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))) · 𝑦) + (((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2) − ((((𝑋‘2) − (𝑌‘2))↑2) · (𝑅↑2))))) = 0))
174173ralbidva 3176 . . . 4 (((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) ∧ (♯‘𝑠) = 2) → (∀𝑦𝑠 ∃!𝑥 ∈ ℝ (𝑍 ∈ ( 0 𝑆𝑅) ∧ 𝑍 ∈ (𝑋𝐿𝑌)) ↔ ∀𝑦𝑠 ((((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)) · (𝑦↑2)) + ((-(2 · (((𝑌‘1) − (𝑋‘1)) · (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))) · 𝑦) + (((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2) − ((((𝑋‘2) − (𝑌‘2))↑2) · (𝑅↑2))))) = 0))
175174pm5.32da 579 . . 3 ((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) ∧ 𝑠 ∈ 𝒫 ℝ) → (((♯‘𝑠) = 2 ∧ ∀𝑦𝑠 ∃!𝑥 ∈ ℝ (𝑍 ∈ ( 0 𝑆𝑅) ∧ 𝑍 ∈ (𝑋𝐿𝑌))) ↔ ((♯‘𝑠) = 2 ∧ ∀𝑦𝑠 ((((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)) · (𝑦↑2)) + ((-(2 · (((𝑌‘1) − (𝑋‘1)) · (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))) · 𝑦) + (((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2) − ((((𝑋‘2) − (𝑌‘2))↑2) · (𝑅↑2))))) = 0)))
176175reubidva 3396 . 2 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (∃!𝑠 ∈ 𝒫 ℝ((♯‘𝑠) = 2 ∧ ∀𝑦𝑠 ∃!𝑥 ∈ ℝ (𝑍 ∈ ( 0 𝑆𝑅) ∧ 𝑍 ∈ (𝑋𝐿𝑌))) ↔ ∃!𝑠 ∈ 𝒫 ℝ((♯‘𝑠) = 2 ∧ ∀𝑦𝑠 ((((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)) · (𝑦↑2)) + ((-(2 · (((𝑌‘1) − (𝑋‘1)) · (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))) · 𝑦) + (((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2) − ((((𝑋‘2) − (𝑌‘2))↑2) · (𝑅↑2))))) = 0)))
17756, 176mpbird 257 1 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → ∃!𝑠 ∈ 𝒫 ℝ((♯‘𝑠) = 2 ∧ ∀𝑦𝑠 ∃!𝑥 ∈ ℝ (𝑍 ∈ ( 0 𝑆𝑅) ∧ 𝑍 ∈ (𝑋𝐿𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940  wral 3061  ∃!wreu 3378  {crab 3436  𝒫 cpw 4600  {csn 4626  {cpr 4628  cop 4632   class class class wbr 5143   × cxp 5683  cfv 6561  (class class class)co 7431  m cmap 8866  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160  +∞cpnf 11292  *cxr 11294   < clt 11295  cmin 11492  -cneg 11493  2c2 12321  4c4 12323  +crp 13034  [,)cico 13389  cexp 14102  chash 14369  distcds 17306  ℝ^crrx 25417  LineMcline 48648  Spherecsph 48649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234  ax-mulf 11235
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-tpos 8251  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-er 8745  df-map 8868  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-sup 9482  df-oi 9550  df-dju 9941  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-sum 15723  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-0g 17486  df-gsum 17487  df-prds 17492  df-pws 17494  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mhm 18796  df-grp 18954  df-minusg 18955  df-sbg 18956  df-subg 19141  df-ghm 19231  df-cntz 19335  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-cring 20233  df-oppr 20334  df-dvdsr 20357  df-unit 20358  df-invr 20388  df-dvr 20401  df-rhm 20472  df-subrng 20546  df-subrg 20570  df-drng 20731  df-field 20732  df-staf 20840  df-srng 20841  df-lmod 20860  df-lss 20930  df-sra 21172  df-rgmod 21173  df-xmet 21357  df-met 21358  df-cnfld 21365  df-refld 21623  df-dsmm 21752  df-frlm 21767  df-nm 24595  df-tng 24597  df-tcph 25203  df-rrx 25419  df-ehl 25420  df-line 48650  df-sph 48651
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator