Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcoss Structured version   Visualization version   GIF version

Theorem lcoss 44325
 Description: A set of vectors of a module is a subset of the set of all linear combinations of the set. (Contributed by AV, 18-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.)
Assertion
Ref Expression
lcoss ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → 𝑉 ⊆ (𝑀 LinCo 𝑉))

Proof of Theorem lcoss
Dummy variables 𝑓 𝑣 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elelpwi 4556 . . . . . . 7 ((𝑣𝑉𝑉 ∈ 𝒫 (Base‘𝑀)) → 𝑣 ∈ (Base‘𝑀))
21expcom 414 . . . . . 6 (𝑉 ∈ 𝒫 (Base‘𝑀) → (𝑣𝑉𝑣 ∈ (Base‘𝑀)))
32adantl 482 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝑣𝑉𝑣 ∈ (Base‘𝑀)))
43imp 407 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝑣𝑉) → 𝑣 ∈ (Base‘𝑀))
5 eqid 2825 . . . . . . 7 (Base‘𝑀) = (Base‘𝑀)
6 eqid 2825 . . . . . . 7 (Scalar‘𝑀) = (Scalar‘𝑀)
7 eqid 2825 . . . . . . 7 (0g‘(Scalar‘𝑀)) = (0g‘(Scalar‘𝑀))
8 eqid 2825 . . . . . . 7 (1r‘(Scalar‘𝑀)) = (1r‘(Scalar‘𝑀))
9 equequ1 2025 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥 = 𝑣𝑦 = 𝑣))
109ifbid 4491 . . . . . . . 8 (𝑥 = 𝑦 → if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))) = if(𝑦 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))
1110cbvmptv 5165 . . . . . . 7 (𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) = (𝑦𝑉 ↦ if(𝑦 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))
125, 6, 7, 8, 11mptcfsupp 44262 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝑣𝑉) → (𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) finSupp (0g‘(Scalar‘𝑀)))
13123expa 1112 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝑣𝑉) → (𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) finSupp (0g‘(Scalar‘𝑀)))
14 eqid 2825 . . . . . . . 8 (𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) = (𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))
155, 6, 7, 8, 14linc1 44314 . . . . . . 7 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝑣𝑉) → ((𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))( linC ‘𝑀)𝑉) = 𝑣)
16153expa 1112 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝑣𝑉) → ((𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))( linC ‘𝑀)𝑉) = 𝑣)
1716eqcomd 2831 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝑣𝑉) → 𝑣 = ((𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))( linC ‘𝑀)𝑉))
18 eqid 2825 . . . . . . . . . . 11 (Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀))
196, 18, 8lmod1cl 19583 . . . . . . . . . 10 (𝑀 ∈ LMod → (1r‘(Scalar‘𝑀)) ∈ (Base‘(Scalar‘𝑀)))
206, 18, 7lmod0cl 19582 . . . . . . . . . 10 (𝑀 ∈ LMod → (0g‘(Scalar‘𝑀)) ∈ (Base‘(Scalar‘𝑀)))
2119, 20ifcld 4514 . . . . . . . . 9 (𝑀 ∈ LMod → if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))) ∈ (Base‘(Scalar‘𝑀)))
2221ad3antrrr 726 . . . . . . . 8 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝑣𝑉) ∧ 𝑥𝑉) → if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))) ∈ (Base‘(Scalar‘𝑀)))
2322fmpttd 6874 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝑣𝑉) → (𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))):𝑉⟶(Base‘(Scalar‘𝑀)))
24 fvex 6679 . . . . . . . 8 (Base‘(Scalar‘𝑀)) ∈ V
25 simplr 765 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝑣𝑉) → 𝑉 ∈ 𝒫 (Base‘𝑀))
26 elmapg 8412 . . . . . . . 8 (((Base‘(Scalar‘𝑀)) ∈ V ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → ((𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ↔ (𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))):𝑉⟶(Base‘(Scalar‘𝑀))))
2724, 25, 26sylancr 587 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝑣𝑉) → ((𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ↔ (𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))):𝑉⟶(Base‘(Scalar‘𝑀))))
2823, 27mpbird 258 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝑣𝑉) → (𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
29 breq1 5065 . . . . . . . 8 (𝑓 = (𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) → (𝑓 finSupp (0g‘(Scalar‘𝑀)) ↔ (𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) finSupp (0g‘(Scalar‘𝑀))))
30 oveq1 7158 . . . . . . . . 9 (𝑓 = (𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) → (𝑓( linC ‘𝑀)𝑉) = ((𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))( linC ‘𝑀)𝑉))
3130eqeq2d 2836 . . . . . . . 8 (𝑓 = (𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) → (𝑣 = (𝑓( linC ‘𝑀)𝑉) ↔ 𝑣 = ((𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))( linC ‘𝑀)𝑉)))
3229, 31anbi12d 630 . . . . . . 7 (𝑓 = (𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) → ((𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑣 = (𝑓( linC ‘𝑀)𝑉)) ↔ ((𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑣 = ((𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))( linC ‘𝑀)𝑉))))
3332adantl 482 . . . . . 6 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝑣𝑉) ∧ 𝑓 = (𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))) → ((𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑣 = (𝑓( linC ‘𝑀)𝑉)) ↔ ((𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑣 = ((𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))( linC ‘𝑀)𝑉))))
3428, 33rspcedv 3619 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝑣𝑉) → (((𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑣 = ((𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))( linC ‘𝑀)𝑉)) → ∃𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑣 = (𝑓( linC ‘𝑀)𝑉))))
3513, 17, 34mp2and 695 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝑣𝑉) → ∃𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑣 = (𝑓( linC ‘𝑀)𝑉)))
365, 6, 18lcoval 44301 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝑣 ∈ (𝑀 LinCo 𝑉) ↔ (𝑣 ∈ (Base‘𝑀) ∧ ∃𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑣 = (𝑓( linC ‘𝑀)𝑉)))))
3736adantr 481 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝑣𝑉) → (𝑣 ∈ (𝑀 LinCo 𝑉) ↔ (𝑣 ∈ (Base‘𝑀) ∧ ∃𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑣 = (𝑓( linC ‘𝑀)𝑉)))))
384, 35, 37mpbir2and 709 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝑣𝑉) → 𝑣 ∈ (𝑀 LinCo 𝑉))
3938ex 413 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝑣𝑉𝑣 ∈ (𝑀 LinCo 𝑉)))
4039ssrdv 3976 1 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → 𝑉 ⊆ (𝑀 LinCo 𝑉))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 207   ∧ wa 396   = wceq 1530   ∈ wcel 2107  ∃wrex 3143  Vcvv 3499   ⊆ wss 3939  ifcif 4469  𝒫 cpw 4541   class class class wbr 5062   ↦ cmpt 5142  ⟶wf 6347  ‘cfv 6351  (class class class)co 7151   ↑m cmap 8399   finSupp cfsupp 8825  Basecbs 16475  Scalarcsca 16560  0gc0g 16705  1rcur 19173  LModclmod 19556   linC clinc 44293   LinCo clinco 44294 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-13 2385  ax-ext 2797  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-int 4874  df-iun 4918  df-iin 4919  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-se 5513  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-isom 6360  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7572  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8282  df-map 8401  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-fsupp 8826  df-oi 8966  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12886  df-fzo 13027  df-seq 13363  df-hash 13684  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-0g 16707  df-gsum 16708  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17892  df-mnd 17903  df-submnd 17947  df-grp 18038  df-mulg 18157  df-cntz 18379  df-cmn 18830  df-mgp 19162  df-ur 19174  df-ring 19221  df-lmod 19558  df-linc 44295  df-lco 44296 This theorem is referenced by:  lspsslco  44326
 Copyright terms: Public domain W3C validator