Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcoss Structured version   Visualization version   GIF version

Theorem lcoss 47616
Description: A set of vectors of a module is a subset of the set of all linear combinations of the set. (Contributed by AV, 18-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.)
Assertion
Ref Expression
lcoss ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) β†’ 𝑉 βŠ† (𝑀 LinCo 𝑉))

Proof of Theorem lcoss
Dummy variables 𝑓 𝑣 π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elelpwi 4613 . . . . . . 7 ((𝑣 ∈ 𝑉 ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) β†’ 𝑣 ∈ (Baseβ€˜π‘€))
21expcom 412 . . . . . 6 (𝑉 ∈ 𝒫 (Baseβ€˜π‘€) β†’ (𝑣 ∈ 𝑉 β†’ 𝑣 ∈ (Baseβ€˜π‘€)))
32adantl 480 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) β†’ (𝑣 ∈ 𝑉 β†’ 𝑣 ∈ (Baseβ€˜π‘€)))
43imp 405 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝑣 ∈ 𝑉) β†’ 𝑣 ∈ (Baseβ€˜π‘€))
5 eqid 2725 . . . . . . 7 (Baseβ€˜π‘€) = (Baseβ€˜π‘€)
6 eqid 2725 . . . . . . 7 (Scalarβ€˜π‘€) = (Scalarβ€˜π‘€)
7 eqid 2725 . . . . . . 7 (0gβ€˜(Scalarβ€˜π‘€)) = (0gβ€˜(Scalarβ€˜π‘€))
8 eqid 2725 . . . . . . 7 (1rβ€˜(Scalarβ€˜π‘€)) = (1rβ€˜(Scalarβ€˜π‘€))
9 equequ1 2020 . . . . . . . . 9 (π‘₯ = 𝑦 β†’ (π‘₯ = 𝑣 ↔ 𝑦 = 𝑣))
109ifbid 4552 . . . . . . . 8 (π‘₯ = 𝑦 β†’ if(π‘₯ = 𝑣, (1rβ€˜(Scalarβ€˜π‘€)), (0gβ€˜(Scalarβ€˜π‘€))) = if(𝑦 = 𝑣, (1rβ€˜(Scalarβ€˜π‘€)), (0gβ€˜(Scalarβ€˜π‘€))))
1110cbvmptv 5261 . . . . . . 7 (π‘₯ ∈ 𝑉 ↦ if(π‘₯ = 𝑣, (1rβ€˜(Scalarβ€˜π‘€)), (0gβ€˜(Scalarβ€˜π‘€)))) = (𝑦 ∈ 𝑉 ↦ if(𝑦 = 𝑣, (1rβ€˜(Scalarβ€˜π‘€)), (0gβ€˜(Scalarβ€˜π‘€))))
125, 6, 7, 8, 11mptcfsupp 47556 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€) ∧ 𝑣 ∈ 𝑉) β†’ (π‘₯ ∈ 𝑉 ↦ if(π‘₯ = 𝑣, (1rβ€˜(Scalarβ€˜π‘€)), (0gβ€˜(Scalarβ€˜π‘€)))) finSupp (0gβ€˜(Scalarβ€˜π‘€)))
13123expa 1115 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝑣 ∈ 𝑉) β†’ (π‘₯ ∈ 𝑉 ↦ if(π‘₯ = 𝑣, (1rβ€˜(Scalarβ€˜π‘€)), (0gβ€˜(Scalarβ€˜π‘€)))) finSupp (0gβ€˜(Scalarβ€˜π‘€)))
14 eqid 2725 . . . . . . . 8 (π‘₯ ∈ 𝑉 ↦ if(π‘₯ = 𝑣, (1rβ€˜(Scalarβ€˜π‘€)), (0gβ€˜(Scalarβ€˜π‘€)))) = (π‘₯ ∈ 𝑉 ↦ if(π‘₯ = 𝑣, (1rβ€˜(Scalarβ€˜π‘€)), (0gβ€˜(Scalarβ€˜π‘€))))
155, 6, 7, 8, 14linc1 47605 . . . . . . 7 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€) ∧ 𝑣 ∈ 𝑉) β†’ ((π‘₯ ∈ 𝑉 ↦ if(π‘₯ = 𝑣, (1rβ€˜(Scalarβ€˜π‘€)), (0gβ€˜(Scalarβ€˜π‘€))))( linC β€˜π‘€)𝑉) = 𝑣)
16153expa 1115 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝑣 ∈ 𝑉) β†’ ((π‘₯ ∈ 𝑉 ↦ if(π‘₯ = 𝑣, (1rβ€˜(Scalarβ€˜π‘€)), (0gβ€˜(Scalarβ€˜π‘€))))( linC β€˜π‘€)𝑉) = 𝑣)
1716eqcomd 2731 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝑣 ∈ 𝑉) β†’ 𝑣 = ((π‘₯ ∈ 𝑉 ↦ if(π‘₯ = 𝑣, (1rβ€˜(Scalarβ€˜π‘€)), (0gβ€˜(Scalarβ€˜π‘€))))( linC β€˜π‘€)𝑉))
18 eqid 2725 . . . . . . . . . . 11 (Baseβ€˜(Scalarβ€˜π‘€)) = (Baseβ€˜(Scalarβ€˜π‘€))
196, 18, 8lmod1cl 20776 . . . . . . . . . 10 (𝑀 ∈ LMod β†’ (1rβ€˜(Scalarβ€˜π‘€)) ∈ (Baseβ€˜(Scalarβ€˜π‘€)))
206, 18, 7lmod0cl 20775 . . . . . . . . . 10 (𝑀 ∈ LMod β†’ (0gβ€˜(Scalarβ€˜π‘€)) ∈ (Baseβ€˜(Scalarβ€˜π‘€)))
2119, 20ifcld 4575 . . . . . . . . 9 (𝑀 ∈ LMod β†’ if(π‘₯ = 𝑣, (1rβ€˜(Scalarβ€˜π‘€)), (0gβ€˜(Scalarβ€˜π‘€))) ∈ (Baseβ€˜(Scalarβ€˜π‘€)))
2221ad3antrrr 728 . . . . . . . 8 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝑣 ∈ 𝑉) ∧ π‘₯ ∈ 𝑉) β†’ if(π‘₯ = 𝑣, (1rβ€˜(Scalarβ€˜π‘€)), (0gβ€˜(Scalarβ€˜π‘€))) ∈ (Baseβ€˜(Scalarβ€˜π‘€)))
2322fmpttd 7122 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝑣 ∈ 𝑉) β†’ (π‘₯ ∈ 𝑉 ↦ if(π‘₯ = 𝑣, (1rβ€˜(Scalarβ€˜π‘€)), (0gβ€˜(Scalarβ€˜π‘€)))):π‘‰βŸΆ(Baseβ€˜(Scalarβ€˜π‘€)))
24 fvex 6907 . . . . . . . 8 (Baseβ€˜(Scalarβ€˜π‘€)) ∈ V
25 simplr 767 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝑣 ∈ 𝑉) β†’ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€))
26 elmapg 8856 . . . . . . . 8 (((Baseβ€˜(Scalarβ€˜π‘€)) ∈ V ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) β†’ ((π‘₯ ∈ 𝑉 ↦ if(π‘₯ = 𝑣, (1rβ€˜(Scalarβ€˜π‘€)), (0gβ€˜(Scalarβ€˜π‘€)))) ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉) ↔ (π‘₯ ∈ 𝑉 ↦ if(π‘₯ = 𝑣, (1rβ€˜(Scalarβ€˜π‘€)), (0gβ€˜(Scalarβ€˜π‘€)))):π‘‰βŸΆ(Baseβ€˜(Scalarβ€˜π‘€))))
2724, 25, 26sylancr 585 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝑣 ∈ 𝑉) β†’ ((π‘₯ ∈ 𝑉 ↦ if(π‘₯ = 𝑣, (1rβ€˜(Scalarβ€˜π‘€)), (0gβ€˜(Scalarβ€˜π‘€)))) ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉) ↔ (π‘₯ ∈ 𝑉 ↦ if(π‘₯ = 𝑣, (1rβ€˜(Scalarβ€˜π‘€)), (0gβ€˜(Scalarβ€˜π‘€)))):π‘‰βŸΆ(Baseβ€˜(Scalarβ€˜π‘€))))
2823, 27mpbird 256 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝑣 ∈ 𝑉) β†’ (π‘₯ ∈ 𝑉 ↦ if(π‘₯ = 𝑣, (1rβ€˜(Scalarβ€˜π‘€)), (0gβ€˜(Scalarβ€˜π‘€)))) ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉))
29 breq1 5151 . . . . . . . 8 (𝑓 = (π‘₯ ∈ 𝑉 ↦ if(π‘₯ = 𝑣, (1rβ€˜(Scalarβ€˜π‘€)), (0gβ€˜(Scalarβ€˜π‘€)))) β†’ (𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ↔ (π‘₯ ∈ 𝑉 ↦ if(π‘₯ = 𝑣, (1rβ€˜(Scalarβ€˜π‘€)), (0gβ€˜(Scalarβ€˜π‘€)))) finSupp (0gβ€˜(Scalarβ€˜π‘€))))
30 oveq1 7424 . . . . . . . . 9 (𝑓 = (π‘₯ ∈ 𝑉 ↦ if(π‘₯ = 𝑣, (1rβ€˜(Scalarβ€˜π‘€)), (0gβ€˜(Scalarβ€˜π‘€)))) β†’ (𝑓( linC β€˜π‘€)𝑉) = ((π‘₯ ∈ 𝑉 ↦ if(π‘₯ = 𝑣, (1rβ€˜(Scalarβ€˜π‘€)), (0gβ€˜(Scalarβ€˜π‘€))))( linC β€˜π‘€)𝑉))
3130eqeq2d 2736 . . . . . . . 8 (𝑓 = (π‘₯ ∈ 𝑉 ↦ if(π‘₯ = 𝑣, (1rβ€˜(Scalarβ€˜π‘€)), (0gβ€˜(Scalarβ€˜π‘€)))) β†’ (𝑣 = (𝑓( linC β€˜π‘€)𝑉) ↔ 𝑣 = ((π‘₯ ∈ 𝑉 ↦ if(π‘₯ = 𝑣, (1rβ€˜(Scalarβ€˜π‘€)), (0gβ€˜(Scalarβ€˜π‘€))))( linC β€˜π‘€)𝑉)))
3229, 31anbi12d 630 . . . . . . 7 (𝑓 = (π‘₯ ∈ 𝑉 ↦ if(π‘₯ = 𝑣, (1rβ€˜(Scalarβ€˜π‘€)), (0gβ€˜(Scalarβ€˜π‘€)))) β†’ ((𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝑣 = (𝑓( linC β€˜π‘€)𝑉)) ↔ ((π‘₯ ∈ 𝑉 ↦ if(π‘₯ = 𝑣, (1rβ€˜(Scalarβ€˜π‘€)), (0gβ€˜(Scalarβ€˜π‘€)))) finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝑣 = ((π‘₯ ∈ 𝑉 ↦ if(π‘₯ = 𝑣, (1rβ€˜(Scalarβ€˜π‘€)), (0gβ€˜(Scalarβ€˜π‘€))))( linC β€˜π‘€)𝑉))))
3332adantl 480 . . . . . 6 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝑣 ∈ 𝑉) ∧ 𝑓 = (π‘₯ ∈ 𝑉 ↦ if(π‘₯ = 𝑣, (1rβ€˜(Scalarβ€˜π‘€)), (0gβ€˜(Scalarβ€˜π‘€))))) β†’ ((𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝑣 = (𝑓( linC β€˜π‘€)𝑉)) ↔ ((π‘₯ ∈ 𝑉 ↦ if(π‘₯ = 𝑣, (1rβ€˜(Scalarβ€˜π‘€)), (0gβ€˜(Scalarβ€˜π‘€)))) finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝑣 = ((π‘₯ ∈ 𝑉 ↦ if(π‘₯ = 𝑣, (1rβ€˜(Scalarβ€˜π‘€)), (0gβ€˜(Scalarβ€˜π‘€))))( linC β€˜π‘€)𝑉))))
3428, 33rspcedv 3600 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝑣 ∈ 𝑉) β†’ (((π‘₯ ∈ 𝑉 ↦ if(π‘₯ = 𝑣, (1rβ€˜(Scalarβ€˜π‘€)), (0gβ€˜(Scalarβ€˜π‘€)))) finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝑣 = ((π‘₯ ∈ 𝑉 ↦ if(π‘₯ = 𝑣, (1rβ€˜(Scalarβ€˜π‘€)), (0gβ€˜(Scalarβ€˜π‘€))))( linC β€˜π‘€)𝑉)) β†’ βˆƒπ‘“ ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉)(𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝑣 = (𝑓( linC β€˜π‘€)𝑉))))
3513, 17, 34mp2and 697 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝑣 ∈ 𝑉) β†’ βˆƒπ‘“ ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉)(𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝑣 = (𝑓( linC β€˜π‘€)𝑉)))
365, 6, 18lcoval 47592 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) β†’ (𝑣 ∈ (𝑀 LinCo 𝑉) ↔ (𝑣 ∈ (Baseβ€˜π‘€) ∧ βˆƒπ‘“ ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉)(𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝑣 = (𝑓( linC β€˜π‘€)𝑉)))))
3736adantr 479 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝑣 ∈ 𝑉) β†’ (𝑣 ∈ (𝑀 LinCo 𝑉) ↔ (𝑣 ∈ (Baseβ€˜π‘€) ∧ βˆƒπ‘“ ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉)(𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝑣 = (𝑓( linC β€˜π‘€)𝑉)))))
384, 35, 37mpbir2and 711 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝑣 ∈ 𝑉) β†’ 𝑣 ∈ (𝑀 LinCo 𝑉))
3938ex 411 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) β†’ (𝑣 ∈ 𝑉 β†’ 𝑣 ∈ (𝑀 LinCo 𝑉)))
4039ssrdv 3983 1 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) β†’ 𝑉 βŠ† (𝑀 LinCo 𝑉))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   = wceq 1533   ∈ wcel 2098  βˆƒwrex 3060  Vcvv 3463   βŠ† wss 3945  ifcif 4529  π’« cpw 4603   class class class wbr 5148   ↦ cmpt 5231  βŸΆwf 6543  β€˜cfv 6547  (class class class)co 7417   ↑m cmap 8843   finSupp cfsupp 9385  Basecbs 17179  Scalarcsca 17235  0gc0g 17420  1rcur 20125  LModclmod 20747   linC clinc 47584   LinCo clinco 47585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5364  ax-pr 5428  ax-un 7739  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3965  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6499  df-fun 6549  df-fn 6550  df-f 6551  df-f1 6552  df-fo 6553  df-f1o 6554  df-fv 6555  df-isom 6556  df-riota 7373  df-ov 7420  df-oprab 7421  df-mpo 7422  df-om 7870  df-1st 7992  df-2nd 7993  df-supp 8164  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8723  df-map 8845  df-en 8963  df-dom 8964  df-sdom 8965  df-fin 8966  df-fsupp 9386  df-oi 9533  df-card 9962  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-nn 12243  df-2 12305  df-n0 12503  df-z 12589  df-uz 12853  df-fz 13517  df-fzo 13660  df-seq 13999  df-hash 14322  df-sets 17132  df-slot 17150  df-ndx 17162  df-base 17180  df-ress 17209  df-plusg 17245  df-0g 17422  df-gsum 17423  df-mre 17565  df-mrc 17566  df-acs 17568  df-mgm 18599  df-sgrp 18678  df-mnd 18694  df-submnd 18740  df-grp 18897  df-mulg 19028  df-cntz 19272  df-cmn 19741  df-mgp 20079  df-ur 20126  df-ring 20179  df-lmod 20749  df-linc 47586  df-lco 47587
This theorem is referenced by:  lspsslco  47617
  Copyright terms: Public domain W3C validator