Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcoss Structured version   Visualization version   GIF version

Theorem lcoss 47117
Description: A set of vectors of a module is a subset of the set of all linear combinations of the set. (Contributed by AV, 18-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.)
Assertion
Ref Expression
lcoss ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) β†’ 𝑉 βŠ† (𝑀 LinCo 𝑉))

Proof of Theorem lcoss
Dummy variables 𝑓 𝑣 π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elelpwi 4613 . . . . . . 7 ((𝑣 ∈ 𝑉 ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) β†’ 𝑣 ∈ (Baseβ€˜π‘€))
21expcom 415 . . . . . 6 (𝑉 ∈ 𝒫 (Baseβ€˜π‘€) β†’ (𝑣 ∈ 𝑉 β†’ 𝑣 ∈ (Baseβ€˜π‘€)))
32adantl 483 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) β†’ (𝑣 ∈ 𝑉 β†’ 𝑣 ∈ (Baseβ€˜π‘€)))
43imp 408 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝑣 ∈ 𝑉) β†’ 𝑣 ∈ (Baseβ€˜π‘€))
5 eqid 2733 . . . . . . 7 (Baseβ€˜π‘€) = (Baseβ€˜π‘€)
6 eqid 2733 . . . . . . 7 (Scalarβ€˜π‘€) = (Scalarβ€˜π‘€)
7 eqid 2733 . . . . . . 7 (0gβ€˜(Scalarβ€˜π‘€)) = (0gβ€˜(Scalarβ€˜π‘€))
8 eqid 2733 . . . . . . 7 (1rβ€˜(Scalarβ€˜π‘€)) = (1rβ€˜(Scalarβ€˜π‘€))
9 equequ1 2029 . . . . . . . . 9 (π‘₯ = 𝑦 β†’ (π‘₯ = 𝑣 ↔ 𝑦 = 𝑣))
109ifbid 4552 . . . . . . . 8 (π‘₯ = 𝑦 β†’ if(π‘₯ = 𝑣, (1rβ€˜(Scalarβ€˜π‘€)), (0gβ€˜(Scalarβ€˜π‘€))) = if(𝑦 = 𝑣, (1rβ€˜(Scalarβ€˜π‘€)), (0gβ€˜(Scalarβ€˜π‘€))))
1110cbvmptv 5262 . . . . . . 7 (π‘₯ ∈ 𝑉 ↦ if(π‘₯ = 𝑣, (1rβ€˜(Scalarβ€˜π‘€)), (0gβ€˜(Scalarβ€˜π‘€)))) = (𝑦 ∈ 𝑉 ↦ if(𝑦 = 𝑣, (1rβ€˜(Scalarβ€˜π‘€)), (0gβ€˜(Scalarβ€˜π‘€))))
125, 6, 7, 8, 11mptcfsupp 47056 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€) ∧ 𝑣 ∈ 𝑉) β†’ (π‘₯ ∈ 𝑉 ↦ if(π‘₯ = 𝑣, (1rβ€˜(Scalarβ€˜π‘€)), (0gβ€˜(Scalarβ€˜π‘€)))) finSupp (0gβ€˜(Scalarβ€˜π‘€)))
13123expa 1119 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝑣 ∈ 𝑉) β†’ (π‘₯ ∈ 𝑉 ↦ if(π‘₯ = 𝑣, (1rβ€˜(Scalarβ€˜π‘€)), (0gβ€˜(Scalarβ€˜π‘€)))) finSupp (0gβ€˜(Scalarβ€˜π‘€)))
14 eqid 2733 . . . . . . . 8 (π‘₯ ∈ 𝑉 ↦ if(π‘₯ = 𝑣, (1rβ€˜(Scalarβ€˜π‘€)), (0gβ€˜(Scalarβ€˜π‘€)))) = (π‘₯ ∈ 𝑉 ↦ if(π‘₯ = 𝑣, (1rβ€˜(Scalarβ€˜π‘€)), (0gβ€˜(Scalarβ€˜π‘€))))
155, 6, 7, 8, 14linc1 47106 . . . . . . 7 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€) ∧ 𝑣 ∈ 𝑉) β†’ ((π‘₯ ∈ 𝑉 ↦ if(π‘₯ = 𝑣, (1rβ€˜(Scalarβ€˜π‘€)), (0gβ€˜(Scalarβ€˜π‘€))))( linC β€˜π‘€)𝑉) = 𝑣)
16153expa 1119 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝑣 ∈ 𝑉) β†’ ((π‘₯ ∈ 𝑉 ↦ if(π‘₯ = 𝑣, (1rβ€˜(Scalarβ€˜π‘€)), (0gβ€˜(Scalarβ€˜π‘€))))( linC β€˜π‘€)𝑉) = 𝑣)
1716eqcomd 2739 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝑣 ∈ 𝑉) β†’ 𝑣 = ((π‘₯ ∈ 𝑉 ↦ if(π‘₯ = 𝑣, (1rβ€˜(Scalarβ€˜π‘€)), (0gβ€˜(Scalarβ€˜π‘€))))( linC β€˜π‘€)𝑉))
18 eqid 2733 . . . . . . . . . . 11 (Baseβ€˜(Scalarβ€˜π‘€)) = (Baseβ€˜(Scalarβ€˜π‘€))
196, 18, 8lmod1cl 20499 . . . . . . . . . 10 (𝑀 ∈ LMod β†’ (1rβ€˜(Scalarβ€˜π‘€)) ∈ (Baseβ€˜(Scalarβ€˜π‘€)))
206, 18, 7lmod0cl 20498 . . . . . . . . . 10 (𝑀 ∈ LMod β†’ (0gβ€˜(Scalarβ€˜π‘€)) ∈ (Baseβ€˜(Scalarβ€˜π‘€)))
2119, 20ifcld 4575 . . . . . . . . 9 (𝑀 ∈ LMod β†’ if(π‘₯ = 𝑣, (1rβ€˜(Scalarβ€˜π‘€)), (0gβ€˜(Scalarβ€˜π‘€))) ∈ (Baseβ€˜(Scalarβ€˜π‘€)))
2221ad3antrrr 729 . . . . . . . 8 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝑣 ∈ 𝑉) ∧ π‘₯ ∈ 𝑉) β†’ if(π‘₯ = 𝑣, (1rβ€˜(Scalarβ€˜π‘€)), (0gβ€˜(Scalarβ€˜π‘€))) ∈ (Baseβ€˜(Scalarβ€˜π‘€)))
2322fmpttd 7115 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝑣 ∈ 𝑉) β†’ (π‘₯ ∈ 𝑉 ↦ if(π‘₯ = 𝑣, (1rβ€˜(Scalarβ€˜π‘€)), (0gβ€˜(Scalarβ€˜π‘€)))):π‘‰βŸΆ(Baseβ€˜(Scalarβ€˜π‘€)))
24 fvex 6905 . . . . . . . 8 (Baseβ€˜(Scalarβ€˜π‘€)) ∈ V
25 simplr 768 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝑣 ∈ 𝑉) β†’ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€))
26 elmapg 8833 . . . . . . . 8 (((Baseβ€˜(Scalarβ€˜π‘€)) ∈ V ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) β†’ ((π‘₯ ∈ 𝑉 ↦ if(π‘₯ = 𝑣, (1rβ€˜(Scalarβ€˜π‘€)), (0gβ€˜(Scalarβ€˜π‘€)))) ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉) ↔ (π‘₯ ∈ 𝑉 ↦ if(π‘₯ = 𝑣, (1rβ€˜(Scalarβ€˜π‘€)), (0gβ€˜(Scalarβ€˜π‘€)))):π‘‰βŸΆ(Baseβ€˜(Scalarβ€˜π‘€))))
2724, 25, 26sylancr 588 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝑣 ∈ 𝑉) β†’ ((π‘₯ ∈ 𝑉 ↦ if(π‘₯ = 𝑣, (1rβ€˜(Scalarβ€˜π‘€)), (0gβ€˜(Scalarβ€˜π‘€)))) ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉) ↔ (π‘₯ ∈ 𝑉 ↦ if(π‘₯ = 𝑣, (1rβ€˜(Scalarβ€˜π‘€)), (0gβ€˜(Scalarβ€˜π‘€)))):π‘‰βŸΆ(Baseβ€˜(Scalarβ€˜π‘€))))
2823, 27mpbird 257 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝑣 ∈ 𝑉) β†’ (π‘₯ ∈ 𝑉 ↦ if(π‘₯ = 𝑣, (1rβ€˜(Scalarβ€˜π‘€)), (0gβ€˜(Scalarβ€˜π‘€)))) ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉))
29 breq1 5152 . . . . . . . 8 (𝑓 = (π‘₯ ∈ 𝑉 ↦ if(π‘₯ = 𝑣, (1rβ€˜(Scalarβ€˜π‘€)), (0gβ€˜(Scalarβ€˜π‘€)))) β†’ (𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ↔ (π‘₯ ∈ 𝑉 ↦ if(π‘₯ = 𝑣, (1rβ€˜(Scalarβ€˜π‘€)), (0gβ€˜(Scalarβ€˜π‘€)))) finSupp (0gβ€˜(Scalarβ€˜π‘€))))
30 oveq1 7416 . . . . . . . . 9 (𝑓 = (π‘₯ ∈ 𝑉 ↦ if(π‘₯ = 𝑣, (1rβ€˜(Scalarβ€˜π‘€)), (0gβ€˜(Scalarβ€˜π‘€)))) β†’ (𝑓( linC β€˜π‘€)𝑉) = ((π‘₯ ∈ 𝑉 ↦ if(π‘₯ = 𝑣, (1rβ€˜(Scalarβ€˜π‘€)), (0gβ€˜(Scalarβ€˜π‘€))))( linC β€˜π‘€)𝑉))
3130eqeq2d 2744 . . . . . . . 8 (𝑓 = (π‘₯ ∈ 𝑉 ↦ if(π‘₯ = 𝑣, (1rβ€˜(Scalarβ€˜π‘€)), (0gβ€˜(Scalarβ€˜π‘€)))) β†’ (𝑣 = (𝑓( linC β€˜π‘€)𝑉) ↔ 𝑣 = ((π‘₯ ∈ 𝑉 ↦ if(π‘₯ = 𝑣, (1rβ€˜(Scalarβ€˜π‘€)), (0gβ€˜(Scalarβ€˜π‘€))))( linC β€˜π‘€)𝑉)))
3229, 31anbi12d 632 . . . . . . 7 (𝑓 = (π‘₯ ∈ 𝑉 ↦ if(π‘₯ = 𝑣, (1rβ€˜(Scalarβ€˜π‘€)), (0gβ€˜(Scalarβ€˜π‘€)))) β†’ ((𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝑣 = (𝑓( linC β€˜π‘€)𝑉)) ↔ ((π‘₯ ∈ 𝑉 ↦ if(π‘₯ = 𝑣, (1rβ€˜(Scalarβ€˜π‘€)), (0gβ€˜(Scalarβ€˜π‘€)))) finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝑣 = ((π‘₯ ∈ 𝑉 ↦ if(π‘₯ = 𝑣, (1rβ€˜(Scalarβ€˜π‘€)), (0gβ€˜(Scalarβ€˜π‘€))))( linC β€˜π‘€)𝑉))))
3332adantl 483 . . . . . 6 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝑣 ∈ 𝑉) ∧ 𝑓 = (π‘₯ ∈ 𝑉 ↦ if(π‘₯ = 𝑣, (1rβ€˜(Scalarβ€˜π‘€)), (0gβ€˜(Scalarβ€˜π‘€))))) β†’ ((𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝑣 = (𝑓( linC β€˜π‘€)𝑉)) ↔ ((π‘₯ ∈ 𝑉 ↦ if(π‘₯ = 𝑣, (1rβ€˜(Scalarβ€˜π‘€)), (0gβ€˜(Scalarβ€˜π‘€)))) finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝑣 = ((π‘₯ ∈ 𝑉 ↦ if(π‘₯ = 𝑣, (1rβ€˜(Scalarβ€˜π‘€)), (0gβ€˜(Scalarβ€˜π‘€))))( linC β€˜π‘€)𝑉))))
3428, 33rspcedv 3606 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝑣 ∈ 𝑉) β†’ (((π‘₯ ∈ 𝑉 ↦ if(π‘₯ = 𝑣, (1rβ€˜(Scalarβ€˜π‘€)), (0gβ€˜(Scalarβ€˜π‘€)))) finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝑣 = ((π‘₯ ∈ 𝑉 ↦ if(π‘₯ = 𝑣, (1rβ€˜(Scalarβ€˜π‘€)), (0gβ€˜(Scalarβ€˜π‘€))))( linC β€˜π‘€)𝑉)) β†’ βˆƒπ‘“ ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉)(𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝑣 = (𝑓( linC β€˜π‘€)𝑉))))
3513, 17, 34mp2and 698 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝑣 ∈ 𝑉) β†’ βˆƒπ‘“ ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉)(𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝑣 = (𝑓( linC β€˜π‘€)𝑉)))
365, 6, 18lcoval 47093 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) β†’ (𝑣 ∈ (𝑀 LinCo 𝑉) ↔ (𝑣 ∈ (Baseβ€˜π‘€) ∧ βˆƒπ‘“ ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉)(𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝑣 = (𝑓( linC β€˜π‘€)𝑉)))))
3736adantr 482 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝑣 ∈ 𝑉) β†’ (𝑣 ∈ (𝑀 LinCo 𝑉) ↔ (𝑣 ∈ (Baseβ€˜π‘€) ∧ βˆƒπ‘“ ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉)(𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝑣 = (𝑓( linC β€˜π‘€)𝑉)))))
384, 35, 37mpbir2and 712 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝑣 ∈ 𝑉) β†’ 𝑣 ∈ (𝑀 LinCo 𝑉))
3938ex 414 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) β†’ (𝑣 ∈ 𝑉 β†’ 𝑣 ∈ (𝑀 LinCo 𝑉)))
4039ssrdv 3989 1 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) β†’ 𝑉 βŠ† (𝑀 LinCo 𝑉))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   = wceq 1542   ∈ wcel 2107  βˆƒwrex 3071  Vcvv 3475   βŠ† wss 3949  ifcif 4529  π’« cpw 4603   class class class wbr 5149   ↦ cmpt 5232  βŸΆwf 6540  β€˜cfv 6544  (class class class)co 7409   ↑m cmap 8820   finSupp cfsupp 9361  Basecbs 17144  Scalarcsca 17200  0gc0g 17385  1rcur 20004  LModclmod 20471   linC clinc 47085   LinCo clinco 47086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-iin 5001  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-supp 8147  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-er 8703  df-map 8822  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-fsupp 9362  df-oi 9505  df-card 9934  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-2 12275  df-n0 12473  df-z 12559  df-uz 12823  df-fz 13485  df-fzo 13628  df-seq 13967  df-hash 14291  df-sets 17097  df-slot 17115  df-ndx 17127  df-base 17145  df-ress 17174  df-plusg 17210  df-0g 17387  df-gsum 17388  df-mre 17530  df-mrc 17531  df-acs 17533  df-mgm 18561  df-sgrp 18610  df-mnd 18626  df-submnd 18672  df-grp 18822  df-mulg 18951  df-cntz 19181  df-cmn 19650  df-mgp 19988  df-ur 20005  df-ring 20058  df-lmod 20473  df-linc 47087  df-lco 47088
This theorem is referenced by:  lspsslco  47118
  Copyright terms: Public domain W3C validator