Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcoss Structured version   Visualization version   GIF version

Theorem lcoss 48418
Description: A set of vectors of a module is a subset of the set of all linear combinations of the set. (Contributed by AV, 18-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.)
Assertion
Ref Expression
lcoss ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → 𝑉 ⊆ (𝑀 LinCo 𝑉))

Proof of Theorem lcoss
Dummy variables 𝑓 𝑣 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elelpwi 4569 . . . . . . 7 ((𝑣𝑉𝑉 ∈ 𝒫 (Base‘𝑀)) → 𝑣 ∈ (Base‘𝑀))
21expcom 413 . . . . . 6 (𝑉 ∈ 𝒫 (Base‘𝑀) → (𝑣𝑉𝑣 ∈ (Base‘𝑀)))
32adantl 481 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝑣𝑉𝑣 ∈ (Base‘𝑀)))
43imp 406 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝑣𝑉) → 𝑣 ∈ (Base‘𝑀))
5 eqid 2729 . . . . . . 7 (Base‘𝑀) = (Base‘𝑀)
6 eqid 2729 . . . . . . 7 (Scalar‘𝑀) = (Scalar‘𝑀)
7 eqid 2729 . . . . . . 7 (0g‘(Scalar‘𝑀)) = (0g‘(Scalar‘𝑀))
8 eqid 2729 . . . . . . 7 (1r‘(Scalar‘𝑀)) = (1r‘(Scalar‘𝑀))
9 equequ1 2025 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥 = 𝑣𝑦 = 𝑣))
109ifbid 4508 . . . . . . . 8 (𝑥 = 𝑦 → if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))) = if(𝑦 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))
1110cbvmptv 5206 . . . . . . 7 (𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) = (𝑦𝑉 ↦ if(𝑦 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))
125, 6, 7, 8, 11mptcfsupp 48358 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝑣𝑉) → (𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) finSupp (0g‘(Scalar‘𝑀)))
13123expa 1118 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝑣𝑉) → (𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) finSupp (0g‘(Scalar‘𝑀)))
14 eqid 2729 . . . . . . . 8 (𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) = (𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))
155, 6, 7, 8, 14linc1 48407 . . . . . . 7 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝑣𝑉) → ((𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))( linC ‘𝑀)𝑉) = 𝑣)
16153expa 1118 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝑣𝑉) → ((𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))( linC ‘𝑀)𝑉) = 𝑣)
1716eqcomd 2735 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝑣𝑉) → 𝑣 = ((𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))( linC ‘𝑀)𝑉))
18 eqid 2729 . . . . . . . . . . 11 (Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀))
196, 18, 8lmod1cl 20827 . . . . . . . . . 10 (𝑀 ∈ LMod → (1r‘(Scalar‘𝑀)) ∈ (Base‘(Scalar‘𝑀)))
206, 18, 7lmod0cl 20826 . . . . . . . . . 10 (𝑀 ∈ LMod → (0g‘(Scalar‘𝑀)) ∈ (Base‘(Scalar‘𝑀)))
2119, 20ifcld 4531 . . . . . . . . 9 (𝑀 ∈ LMod → if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))) ∈ (Base‘(Scalar‘𝑀)))
2221ad3antrrr 730 . . . . . . . 8 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝑣𝑉) ∧ 𝑥𝑉) → if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))) ∈ (Base‘(Scalar‘𝑀)))
2322fmpttd 7069 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝑣𝑉) → (𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))):𝑉⟶(Base‘(Scalar‘𝑀)))
24 fvex 6853 . . . . . . . 8 (Base‘(Scalar‘𝑀)) ∈ V
25 simplr 768 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝑣𝑉) → 𝑉 ∈ 𝒫 (Base‘𝑀))
26 elmapg 8789 . . . . . . . 8 (((Base‘(Scalar‘𝑀)) ∈ V ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → ((𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ↔ (𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))):𝑉⟶(Base‘(Scalar‘𝑀))))
2724, 25, 26sylancr 587 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝑣𝑉) → ((𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ↔ (𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))):𝑉⟶(Base‘(Scalar‘𝑀))))
2823, 27mpbird 257 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝑣𝑉) → (𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
29 breq1 5105 . . . . . . . 8 (𝑓 = (𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) → (𝑓 finSupp (0g‘(Scalar‘𝑀)) ↔ (𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) finSupp (0g‘(Scalar‘𝑀))))
30 oveq1 7376 . . . . . . . . 9 (𝑓 = (𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) → (𝑓( linC ‘𝑀)𝑉) = ((𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))( linC ‘𝑀)𝑉))
3130eqeq2d 2740 . . . . . . . 8 (𝑓 = (𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) → (𝑣 = (𝑓( linC ‘𝑀)𝑉) ↔ 𝑣 = ((𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))( linC ‘𝑀)𝑉)))
3229, 31anbi12d 632 . . . . . . 7 (𝑓 = (𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) → ((𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑣 = (𝑓( linC ‘𝑀)𝑉)) ↔ ((𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑣 = ((𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))( linC ‘𝑀)𝑉))))
3332adantl 481 . . . . . 6 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝑣𝑉) ∧ 𝑓 = (𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))) → ((𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑣 = (𝑓( linC ‘𝑀)𝑉)) ↔ ((𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑣 = ((𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))( linC ‘𝑀)𝑉))))
3428, 33rspcedv 3578 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝑣𝑉) → (((𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑣 = ((𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))( linC ‘𝑀)𝑉)) → ∃𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑣 = (𝑓( linC ‘𝑀)𝑉))))
3513, 17, 34mp2and 699 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝑣𝑉) → ∃𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑣 = (𝑓( linC ‘𝑀)𝑉)))
365, 6, 18lcoval 48394 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝑣 ∈ (𝑀 LinCo 𝑉) ↔ (𝑣 ∈ (Base‘𝑀) ∧ ∃𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑣 = (𝑓( linC ‘𝑀)𝑉)))))
3736adantr 480 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝑣𝑉) → (𝑣 ∈ (𝑀 LinCo 𝑉) ↔ (𝑣 ∈ (Base‘𝑀) ∧ ∃𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑣 = (𝑓( linC ‘𝑀)𝑉)))))
384, 35, 37mpbir2and 713 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝑣𝑉) → 𝑣 ∈ (𝑀 LinCo 𝑉))
3938ex 412 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝑣𝑉𝑣 ∈ (𝑀 LinCo 𝑉)))
4039ssrdv 3949 1 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → 𝑉 ⊆ (𝑀 LinCo 𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3053  Vcvv 3444  wss 3911  ifcif 4484  𝒫 cpw 4559   class class class wbr 5102  cmpt 5183  wf 6495  cfv 6499  (class class class)co 7369  m cmap 8776   finSupp cfsupp 9288  Basecbs 17155  Scalarcsca 17199  0gc0g 17378  1rcur 20101  LModclmod 20798   linC clinc 48386   LinCo clinco 48387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-fzo 13592  df-seq 13943  df-hash 14272  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-0g 17380  df-gsum 17381  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-submnd 18693  df-grp 18850  df-mulg 18982  df-cntz 19231  df-cmn 19696  df-mgp 20061  df-ur 20102  df-ring 20155  df-lmod 20800  df-linc 48388  df-lco 48389
This theorem is referenced by:  lspsslco  48419
  Copyright terms: Public domain W3C validator