| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uhgredgrnv | Structured version Visualization version GIF version | ||
| Description: An edge of a hypergraph contains only vertices. (Contributed by Alexander van der Vekens, 18-Feb-2018.) (Revised by AV, 4-Jun-2021.) |
| Ref | Expression |
|---|---|
| uhgredgrnv | ⊢ ((𝐺 ∈ UHGraph ∧ 𝐸 ∈ (Edg‘𝐺) ∧ 𝑁 ∈ 𝐸) → 𝑁 ∈ (Vtx‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | edguhgr 29100 | . . 3 ⊢ ((𝐺 ∈ UHGraph ∧ 𝐸 ∈ (Edg‘𝐺)) → 𝐸 ∈ 𝒫 (Vtx‘𝐺)) | |
| 2 | elelpwi 4558 | . . . 4 ⊢ ((𝑁 ∈ 𝐸 ∧ 𝐸 ∈ 𝒫 (Vtx‘𝐺)) → 𝑁 ∈ (Vtx‘𝐺)) | |
| 3 | 2 | expcom 413 | . . 3 ⊢ (𝐸 ∈ 𝒫 (Vtx‘𝐺) → (𝑁 ∈ 𝐸 → 𝑁 ∈ (Vtx‘𝐺))) |
| 4 | 1, 3 | syl 17 | . 2 ⊢ ((𝐺 ∈ UHGraph ∧ 𝐸 ∈ (Edg‘𝐺)) → (𝑁 ∈ 𝐸 → 𝑁 ∈ (Vtx‘𝐺))) |
| 5 | 4 | 3impia 1117 | 1 ⊢ ((𝐺 ∈ UHGraph ∧ 𝐸 ∈ (Edg‘𝐺) ∧ 𝑁 ∈ 𝐸) → 𝑁 ∈ (Vtx‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2110 𝒫 cpw 4548 ‘cfv 6477 Vtxcvtx 28967 Edgcedg 29018 UHGraphcuhgr 29027 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-sbc 3740 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-fv 6485 df-edg 29019 df-uhgr 29029 |
| This theorem is referenced by: clnbgredg 47850 usgrgrtrirex 47960 grlimedgclnbgr 48005 grlimprclnbgr 48006 |
| Copyright terms: Public domain | W3C validator |