MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgredgrnv Structured version   Visualization version   GIF version

Theorem uhgredgrnv 29119
Description: An edge of a hypergraph contains only vertices. (Contributed by Alexander van der Vekens, 18-Feb-2018.) (Revised by AV, 4-Jun-2021.)
Assertion
Ref Expression
uhgredgrnv ((𝐺 ∈ UHGraph ∧ 𝐸 ∈ (Edg‘𝐺) ∧ 𝑁𝐸) → 𝑁 ∈ (Vtx‘𝐺))

Proof of Theorem uhgredgrnv
StepHypRef Expression
1 edguhgr 29118 . . 3 ((𝐺 ∈ UHGraph ∧ 𝐸 ∈ (Edg‘𝐺)) → 𝐸 ∈ 𝒫 (Vtx‘𝐺))
2 elelpwi 4561 . . . 4 ((𝑁𝐸𝐸 ∈ 𝒫 (Vtx‘𝐺)) → 𝑁 ∈ (Vtx‘𝐺))
32expcom 413 . . 3 (𝐸 ∈ 𝒫 (Vtx‘𝐺) → (𝑁𝐸𝑁 ∈ (Vtx‘𝐺)))
41, 3syl 17 . 2 ((𝐺 ∈ UHGraph ∧ 𝐸 ∈ (Edg‘𝐺)) → (𝑁𝐸𝑁 ∈ (Vtx‘𝐺)))
543impia 1117 1 ((𝐺 ∈ UHGraph ∧ 𝐸 ∈ (Edg‘𝐺) ∧ 𝑁𝐸) → 𝑁 ∈ (Vtx‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2113  𝒫 cpw 4551  cfv 6489  Vtxcvtx 28985  Edgcedg 29036  UHGraphcuhgr 29045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-ral 3050  df-rex 3059  df-rab 3398  df-v 3440  df-sbc 3739  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-fv 6497  df-edg 29037  df-uhgr 29047
This theorem is referenced by:  clnbgredg  47954  usgrgrtrirex  48064  grlimedgclnbgr  48109  grlimprclnbgr  48110
  Copyright terms: Public domain W3C validator