MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgredgrnv Structured version   Visualization version   GIF version

Theorem uhgredgrnv 27403
Description: An edge of a hypergraph contains only vertices. (Contributed by Alexander van der Vekens, 18-Feb-2018.) (Revised by AV, 4-Jun-2021.)
Assertion
Ref Expression
uhgredgrnv ((𝐺 ∈ UHGraph ∧ 𝐸 ∈ (Edg‘𝐺) ∧ 𝑁𝐸) → 𝑁 ∈ (Vtx‘𝐺))

Proof of Theorem uhgredgrnv
StepHypRef Expression
1 edguhgr 27402 . . 3 ((𝐺 ∈ UHGraph ∧ 𝐸 ∈ (Edg‘𝐺)) → 𝐸 ∈ 𝒫 (Vtx‘𝐺))
2 elelpwi 4542 . . . 4 ((𝑁𝐸𝐸 ∈ 𝒫 (Vtx‘𝐺)) → 𝑁 ∈ (Vtx‘𝐺))
32expcom 413 . . 3 (𝐸 ∈ 𝒫 (Vtx‘𝐺) → (𝑁𝐸𝑁 ∈ (Vtx‘𝐺)))
41, 3syl 17 . 2 ((𝐺 ∈ UHGraph ∧ 𝐸 ∈ (Edg‘𝐺)) → (𝑁𝐸𝑁 ∈ (Vtx‘𝐺)))
543impia 1115 1 ((𝐺 ∈ UHGraph ∧ 𝐸 ∈ (Edg‘𝐺) ∧ 𝑁𝐸) → 𝑁 ∈ (Vtx‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085  wcel 2108  𝒫 cpw 4530  cfv 6418  Vtxcvtx 27269  Edgcedg 27320  UHGraphcuhgr 27329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-edg 27321  df-uhgr 27331
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator