Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincvalsc0 Structured version   Visualization version   GIF version

Theorem lincvalsc0 47189
Description: The linear combination where all scalars are 0. (Contributed by AV, 12-Apr-2019.)
Hypotheses
Ref Expression
lincvalsc0.b 𝐡 = (Baseβ€˜π‘€)
lincvalsc0.s 𝑆 = (Scalarβ€˜π‘€)
lincvalsc0.0 0 = (0gβ€˜π‘†)
lincvalsc0.z 𝑍 = (0gβ€˜π‘€)
lincvalsc0.f 𝐹 = (π‘₯ ∈ 𝑉 ↦ 0 )
Assertion
Ref Expression
lincvalsc0 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐡) β†’ (𝐹( linC β€˜π‘€)𝑉) = 𝑍)
Distinct variable groups:   π‘₯,𝐡   π‘₯,𝑀   π‘₯,𝑉   π‘₯, 0
Allowed substitution hints:   𝑆(π‘₯)   𝐹(π‘₯)   𝑍(π‘₯)

Proof of Theorem lincvalsc0
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 simpl 481 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐡) β†’ 𝑀 ∈ LMod)
2 lincvalsc0.s . . . . . . . 8 𝑆 = (Scalarβ€˜π‘€)
32eqcomi 2739 . . . . . . . . 9 (Scalarβ€˜π‘€) = 𝑆
43fveq2i 6893 . . . . . . . 8 (Baseβ€˜(Scalarβ€˜π‘€)) = (Baseβ€˜π‘†)
5 lincvalsc0.0 . . . . . . . 8 0 = (0gβ€˜π‘†)
62, 4, 5lmod0cl 20642 . . . . . . 7 (𝑀 ∈ LMod β†’ 0 ∈ (Baseβ€˜(Scalarβ€˜π‘€)))
76adantr 479 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐡) β†’ 0 ∈ (Baseβ€˜(Scalarβ€˜π‘€)))
87adantr 479 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐡) ∧ π‘₯ ∈ 𝑉) β†’ 0 ∈ (Baseβ€˜(Scalarβ€˜π‘€)))
9 lincvalsc0.f . . . . 5 𝐹 = (π‘₯ ∈ 𝑉 ↦ 0 )
108, 9fmptd 7114 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐡) β†’ 𝐹:π‘‰βŸΆ(Baseβ€˜(Scalarβ€˜π‘€)))
11 fvexd 6905 . . . . 5 (𝑀 ∈ LMod β†’ (Baseβ€˜(Scalarβ€˜π‘€)) ∈ V)
12 elmapg 8835 . . . . 5 (((Baseβ€˜(Scalarβ€˜π‘€)) ∈ V ∧ 𝑉 ∈ 𝒫 𝐡) β†’ (𝐹 ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉) ↔ 𝐹:π‘‰βŸΆ(Baseβ€˜(Scalarβ€˜π‘€))))
1311, 12sylan 578 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐡) β†’ (𝐹 ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉) ↔ 𝐹:π‘‰βŸΆ(Baseβ€˜(Scalarβ€˜π‘€))))
1410, 13mpbird 256 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐡) β†’ 𝐹 ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉))
15 lincvalsc0.b . . . . . . 7 𝐡 = (Baseβ€˜π‘€)
1615pweqi 4617 . . . . . 6 𝒫 𝐡 = 𝒫 (Baseβ€˜π‘€)
1716eleq2i 2823 . . . . 5 (𝑉 ∈ 𝒫 𝐡 ↔ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€))
1817biimpi 215 . . . 4 (𝑉 ∈ 𝒫 𝐡 β†’ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€))
1918adantl 480 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐡) β†’ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€))
20 lincval 47177 . . 3 ((𝑀 ∈ LMod ∧ 𝐹 ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) β†’ (𝐹( linC β€˜π‘€)𝑉) = (𝑀 Ξ£g (𝑣 ∈ 𝑉 ↦ ((πΉβ€˜π‘£)( ·𝑠 β€˜π‘€)𝑣))))
211, 14, 19, 20syl3anc 1369 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐡) β†’ (𝐹( linC β€˜π‘€)𝑉) = (𝑀 Ξ£g (𝑣 ∈ 𝑉 ↦ ((πΉβ€˜π‘£)( ·𝑠 β€˜π‘€)𝑣))))
22 simpr 483 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐡) ∧ 𝑣 ∈ 𝑉) β†’ 𝑣 ∈ 𝑉)
235fvexi 6904 . . . . . . 7 0 ∈ V
24 eqidd 2731 . . . . . . . 8 (π‘₯ = 𝑣 β†’ 0 = 0 )
2524, 9fvmptg 6995 . . . . . . 7 ((𝑣 ∈ 𝑉 ∧ 0 ∈ V) β†’ (πΉβ€˜π‘£) = 0 )
2622, 23, 25sylancl 584 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐡) ∧ 𝑣 ∈ 𝑉) β†’ (πΉβ€˜π‘£) = 0 )
2726oveq1d 7426 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐡) ∧ 𝑣 ∈ 𝑉) β†’ ((πΉβ€˜π‘£)( ·𝑠 β€˜π‘€)𝑣) = ( 0 ( ·𝑠 β€˜π‘€)𝑣))
281adantr 479 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐡) ∧ 𝑣 ∈ 𝑉) β†’ 𝑀 ∈ LMod)
29 elelpwi 4611 . . . . . . . . 9 ((𝑣 ∈ 𝑉 ∧ 𝑉 ∈ 𝒫 𝐡) β†’ 𝑣 ∈ 𝐡)
3029expcom 412 . . . . . . . 8 (𝑉 ∈ 𝒫 𝐡 β†’ (𝑣 ∈ 𝑉 β†’ 𝑣 ∈ 𝐡))
3130adantl 480 . . . . . . 7 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐡) β†’ (𝑣 ∈ 𝑉 β†’ 𝑣 ∈ 𝐡))
3231imp 405 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐡) ∧ 𝑣 ∈ 𝑉) β†’ 𝑣 ∈ 𝐡)
33 eqid 2730 . . . . . . 7 ( ·𝑠 β€˜π‘€) = ( ·𝑠 β€˜π‘€)
34 lincvalsc0.z . . . . . . 7 𝑍 = (0gβ€˜π‘€)
3515, 2, 33, 5, 34lmod0vs 20649 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑣 ∈ 𝐡) β†’ ( 0 ( ·𝑠 β€˜π‘€)𝑣) = 𝑍)
3628, 32, 35syl2anc 582 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐡) ∧ 𝑣 ∈ 𝑉) β†’ ( 0 ( ·𝑠 β€˜π‘€)𝑣) = 𝑍)
3727, 36eqtrd 2770 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐡) ∧ 𝑣 ∈ 𝑉) β†’ ((πΉβ€˜π‘£)( ·𝑠 β€˜π‘€)𝑣) = 𝑍)
3837mpteq2dva 5247 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐡) β†’ (𝑣 ∈ 𝑉 ↦ ((πΉβ€˜π‘£)( ·𝑠 β€˜π‘€)𝑣)) = (𝑣 ∈ 𝑉 ↦ 𝑍))
3938oveq2d 7427 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐡) β†’ (𝑀 Ξ£g (𝑣 ∈ 𝑉 ↦ ((πΉβ€˜π‘£)( ·𝑠 β€˜π‘€)𝑣))) = (𝑀 Ξ£g (𝑣 ∈ 𝑉 ↦ 𝑍)))
40 lmodgrp 20621 . . . 4 (𝑀 ∈ LMod β†’ 𝑀 ∈ Grp)
4140grpmndd 18868 . . 3 (𝑀 ∈ LMod β†’ 𝑀 ∈ Mnd)
4234gsumz 18753 . . 3 ((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝒫 𝐡) β†’ (𝑀 Ξ£g (𝑣 ∈ 𝑉 ↦ 𝑍)) = 𝑍)
4341, 42sylan 578 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐡) β†’ (𝑀 Ξ£g (𝑣 ∈ 𝑉 ↦ 𝑍)) = 𝑍)
4421, 39, 433eqtrd 2774 1 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐡) β†’ (𝐹( linC β€˜π‘€)𝑉) = 𝑍)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   = wceq 1539   ∈ wcel 2104  Vcvv 3472  π’« cpw 4601   ↦ cmpt 5230  βŸΆwf 6538  β€˜cfv 6542  (class class class)co 7411   ↑m cmap 8822  Basecbs 17148  Scalarcsca 17204   ·𝑠 cvsca 17205  0gc0g 17389   Ξ£g cgsu 17390  Mndcmnd 18659  LModclmod 20614   linC clinc 47172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-map 8824  df-seq 13971  df-0g 17391  df-gsum 17392  df-mgm 18565  df-sgrp 18644  df-mnd 18660  df-grp 18858  df-ring 20129  df-lmod 20616  df-linc 47174
This theorem is referenced by:  lcoc0  47190
  Copyright terms: Public domain W3C validator