Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincvalsc0 Structured version   Visualization version   GIF version

Theorem lincvalsc0 44830
Description: The linear combination where all scalars are 0. (Contributed by AV, 12-Apr-2019.)
Hypotheses
Ref Expression
lincvalsc0.b 𝐵 = (Base‘𝑀)
lincvalsc0.s 𝑆 = (Scalar‘𝑀)
lincvalsc0.0 0 = (0g𝑆)
lincvalsc0.z 𝑍 = (0g𝑀)
lincvalsc0.f 𝐹 = (𝑥𝑉0 )
Assertion
Ref Expression
lincvalsc0 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹( linC ‘𝑀)𝑉) = 𝑍)
Distinct variable groups:   𝑥,𝐵   𝑥,𝑀   𝑥,𝑉   𝑥, 0
Allowed substitution hints:   𝑆(𝑥)   𝐹(𝑥)   𝑍(𝑥)

Proof of Theorem lincvalsc0
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 simpl 486 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 𝑀 ∈ LMod)
2 lincvalsc0.s . . . . . . . 8 𝑆 = (Scalar‘𝑀)
32eqcomi 2807 . . . . . . . . 9 (Scalar‘𝑀) = 𝑆
43fveq2i 6648 . . . . . . . 8 (Base‘(Scalar‘𝑀)) = (Base‘𝑆)
5 lincvalsc0.0 . . . . . . . 8 0 = (0g𝑆)
62, 4, 5lmod0cl 19653 . . . . . . 7 (𝑀 ∈ LMod → 0 ∈ (Base‘(Scalar‘𝑀)))
76adantr 484 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 0 ∈ (Base‘(Scalar‘𝑀)))
87adantr 484 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥𝑉) → 0 ∈ (Base‘(Scalar‘𝑀)))
9 lincvalsc0.f . . . . 5 𝐹 = (𝑥𝑉0 )
108, 9fmptd 6855 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 𝐹:𝑉⟶(Base‘(Scalar‘𝑀)))
11 fvexd 6660 . . . . 5 (𝑀 ∈ LMod → (Base‘(Scalar‘𝑀)) ∈ V)
12 elmapg 8402 . . . . 5 (((Base‘(Scalar‘𝑀)) ∈ V ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ↔ 𝐹:𝑉⟶(Base‘(Scalar‘𝑀))))
1311, 12sylan 583 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ↔ 𝐹:𝑉⟶(Base‘(Scalar‘𝑀))))
1410, 13mpbird 260 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
15 lincvalsc0.b . . . . . . 7 𝐵 = (Base‘𝑀)
1615pweqi 4515 . . . . . 6 𝒫 𝐵 = 𝒫 (Base‘𝑀)
1716eleq2i 2881 . . . . 5 (𝑉 ∈ 𝒫 𝐵𝑉 ∈ 𝒫 (Base‘𝑀))
1817biimpi 219 . . . 4 (𝑉 ∈ 𝒫 𝐵𝑉 ∈ 𝒫 (Base‘𝑀))
1918adantl 485 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 𝑉 ∈ 𝒫 (Base‘𝑀))
20 lincval 44818 . . 3 ((𝑀 ∈ LMod ∧ 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝐹( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣))))
211, 14, 19, 20syl3anc 1368 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣))))
22 simpr 488 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) → 𝑣𝑉)
235fvexi 6659 . . . . . . 7 0 ∈ V
24 eqidd 2799 . . . . . . . 8 (𝑥 = 𝑣0 = 0 )
2524, 9fvmptg 6743 . . . . . . 7 ((𝑣𝑉0 ∈ V) → (𝐹𝑣) = 0 )
2622, 23, 25sylancl 589 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) → (𝐹𝑣) = 0 )
2726oveq1d 7150 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) → ((𝐹𝑣)( ·𝑠𝑀)𝑣) = ( 0 ( ·𝑠𝑀)𝑣))
281adantr 484 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) → 𝑀 ∈ LMod)
29 elelpwi 4509 . . . . . . . . 9 ((𝑣𝑉𝑉 ∈ 𝒫 𝐵) → 𝑣𝐵)
3029expcom 417 . . . . . . . 8 (𝑉 ∈ 𝒫 𝐵 → (𝑣𝑉𝑣𝐵))
3130adantl 485 . . . . . . 7 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑣𝑉𝑣𝐵))
3231imp 410 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) → 𝑣𝐵)
33 eqid 2798 . . . . . . 7 ( ·𝑠𝑀) = ( ·𝑠𝑀)
34 lincvalsc0.z . . . . . . 7 𝑍 = (0g𝑀)
3515, 2, 33, 5, 34lmod0vs 19660 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑣𝐵) → ( 0 ( ·𝑠𝑀)𝑣) = 𝑍)
3628, 32, 35syl2anc 587 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) → ( 0 ( ·𝑠𝑀)𝑣) = 𝑍)
3727, 36eqtrd 2833 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) → ((𝐹𝑣)( ·𝑠𝑀)𝑣) = 𝑍)
3837mpteq2dva 5125 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣)) = (𝑣𝑉𝑍))
3938oveq2d 7151 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑀 Σg (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣))) = (𝑀 Σg (𝑣𝑉𝑍)))
40 lmodgrp 19634 . . . 4 (𝑀 ∈ LMod → 𝑀 ∈ Grp)
41 grpmnd 18102 . . . 4 (𝑀 ∈ Grp → 𝑀 ∈ Mnd)
4240, 41syl 17 . . 3 (𝑀 ∈ LMod → 𝑀 ∈ Mnd)
4334gsumz 17992 . . 3 ((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑀 Σg (𝑣𝑉𝑍)) = 𝑍)
4442, 43sylan 583 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑀 Σg (𝑣𝑉𝑍)) = 𝑍)
4521, 39, 443eqtrd 2837 1 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹( linC ‘𝑀)𝑉) = 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  Vcvv 3441  𝒫 cpw 4497  cmpt 5110  wf 6320  cfv 6324  (class class class)co 7135  m cmap 8389  Basecbs 16475  Scalarcsca 16560   ·𝑠 cvsca 16561  0gc0g 16705   Σg cgsu 16706  Mndcmnd 17903  Grpcgrp 18095  LModclmod 19627   linC clinc 44813
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-map 8391  df-seq 13365  df-0g 16707  df-gsum 16708  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-ring 19292  df-lmod 19629  df-linc 44815
This theorem is referenced by:  lcoc0  44831
  Copyright terms: Public domain W3C validator