| Step | Hyp | Ref
| Expression |
| 1 | | simpl 482 |
. . 3
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 𝑀 ∈ LMod) |
| 2 | | lincvalsc0.s |
. . . . . . . 8
⊢ 𝑆 = (Scalar‘𝑀) |
| 3 | 2 | eqcomi 2745 |
. . . . . . . . 9
⊢
(Scalar‘𝑀) =
𝑆 |
| 4 | 3 | fveq2i 6884 |
. . . . . . . 8
⊢
(Base‘(Scalar‘𝑀)) = (Base‘𝑆) |
| 5 | | lincvalsc0.0 |
. . . . . . . 8
⊢ 0 =
(0g‘𝑆) |
| 6 | 2, 4, 5 | lmod0cl 20850 |
. . . . . . 7
⊢ (𝑀 ∈ LMod → 0 ∈
(Base‘(Scalar‘𝑀))) |
| 7 | 6 | adantr 480 |
. . . . . 6
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 0 ∈
(Base‘(Scalar‘𝑀))) |
| 8 | 7 | adantr 480 |
. . . . 5
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ 𝑉) → 0 ∈
(Base‘(Scalar‘𝑀))) |
| 9 | | lincvalsc0.f |
. . . . 5
⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ 0 ) |
| 10 | 8, 9 | fmptd 7109 |
. . . 4
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 𝐹:𝑉⟶(Base‘(Scalar‘𝑀))) |
| 11 | | fvexd 6896 |
. . . . 5
⊢ (𝑀 ∈ LMod →
(Base‘(Scalar‘𝑀)) ∈ V) |
| 12 | | elmapg 8858 |
. . . . 5
⊢
(((Base‘(Scalar‘𝑀)) ∈ V ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ↔ 𝐹:𝑉⟶(Base‘(Scalar‘𝑀)))) |
| 13 | 11, 12 | sylan 580 |
. . . 4
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ↔ 𝐹:𝑉⟶(Base‘(Scalar‘𝑀)))) |
| 14 | 10, 13 | mpbird 257 |
. . 3
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)) |
| 15 | | lincvalsc0.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝑀) |
| 16 | 15 | pweqi 4596 |
. . . . . 6
⊢ 𝒫
𝐵 = 𝒫
(Base‘𝑀) |
| 17 | 16 | eleq2i 2827 |
. . . . 5
⊢ (𝑉 ∈ 𝒫 𝐵 ↔ 𝑉 ∈ 𝒫 (Base‘𝑀)) |
| 18 | 17 | biimpi 216 |
. . . 4
⊢ (𝑉 ∈ 𝒫 𝐵 → 𝑉 ∈ 𝒫 (Base‘𝑀)) |
| 19 | 18 | adantl 481 |
. . 3
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 𝑉 ∈ 𝒫 (Base‘𝑀)) |
| 20 | | lincval 48352 |
. . 3
⊢ ((𝑀 ∈ LMod ∧ 𝐹 ∈
((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝐹( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑣 ∈ 𝑉 ↦ ((𝐹‘𝑣)( ·𝑠
‘𝑀)𝑣)))) |
| 21 | 1, 14, 19, 20 | syl3anc 1373 |
. 2
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑣 ∈ 𝑉 ↦ ((𝐹‘𝑣)( ·𝑠
‘𝑀)𝑣)))) |
| 22 | | simpr 484 |
. . . . . . 7
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣 ∈ 𝑉) → 𝑣 ∈ 𝑉) |
| 23 | 5 | fvexi 6895 |
. . . . . . 7
⊢ 0 ∈
V |
| 24 | | eqidd 2737 |
. . . . . . . 8
⊢ (𝑥 = 𝑣 → 0 = 0 ) |
| 25 | 24, 9 | fvmptg 6989 |
. . . . . . 7
⊢ ((𝑣 ∈ 𝑉 ∧ 0 ∈ V) → (𝐹‘𝑣) = 0 ) |
| 26 | 22, 23, 25 | sylancl 586 |
. . . . . 6
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣 ∈ 𝑉) → (𝐹‘𝑣) = 0 ) |
| 27 | 26 | oveq1d 7425 |
. . . . 5
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣 ∈ 𝑉) → ((𝐹‘𝑣)( ·𝑠
‘𝑀)𝑣) = ( 0 (
·𝑠 ‘𝑀)𝑣)) |
| 28 | 1 | adantr 480 |
. . . . . 6
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣 ∈ 𝑉) → 𝑀 ∈ LMod) |
| 29 | | elelpwi 4590 |
. . . . . . . . 9
⊢ ((𝑣 ∈ 𝑉 ∧ 𝑉 ∈ 𝒫 𝐵) → 𝑣 ∈ 𝐵) |
| 30 | 29 | expcom 413 |
. . . . . . . 8
⊢ (𝑉 ∈ 𝒫 𝐵 → (𝑣 ∈ 𝑉 → 𝑣 ∈ 𝐵)) |
| 31 | 30 | adantl 481 |
. . . . . . 7
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑣 ∈ 𝑉 → 𝑣 ∈ 𝐵)) |
| 32 | 31 | imp 406 |
. . . . . 6
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣 ∈ 𝑉) → 𝑣 ∈ 𝐵) |
| 33 | | eqid 2736 |
. . . . . . 7
⊢ (
·𝑠 ‘𝑀) = ( ·𝑠
‘𝑀) |
| 34 | | lincvalsc0.z |
. . . . . . 7
⊢ 𝑍 = (0g‘𝑀) |
| 35 | 15, 2, 33, 5, 34 | lmod0vs 20857 |
. . . . . 6
⊢ ((𝑀 ∈ LMod ∧ 𝑣 ∈ 𝐵) → ( 0 (
·𝑠 ‘𝑀)𝑣) = 𝑍) |
| 36 | 28, 32, 35 | syl2anc 584 |
. . . . 5
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣 ∈ 𝑉) → ( 0 (
·𝑠 ‘𝑀)𝑣) = 𝑍) |
| 37 | 27, 36 | eqtrd 2771 |
. . . 4
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣 ∈ 𝑉) → ((𝐹‘𝑣)( ·𝑠
‘𝑀)𝑣) = 𝑍) |
| 38 | 37 | mpteq2dva 5219 |
. . 3
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑣 ∈ 𝑉 ↦ ((𝐹‘𝑣)( ·𝑠
‘𝑀)𝑣)) = (𝑣 ∈ 𝑉 ↦ 𝑍)) |
| 39 | 38 | oveq2d 7426 |
. 2
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑀 Σg (𝑣 ∈ 𝑉 ↦ ((𝐹‘𝑣)( ·𝑠
‘𝑀)𝑣))) = (𝑀 Σg (𝑣 ∈ 𝑉 ↦ 𝑍))) |
| 40 | | lmodgrp 20829 |
. . . 4
⊢ (𝑀 ∈ LMod → 𝑀 ∈ Grp) |
| 41 | 40 | grpmndd 18934 |
. . 3
⊢ (𝑀 ∈ LMod → 𝑀 ∈ Mnd) |
| 42 | 34 | gsumz 18819 |
. . 3
⊢ ((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑀 Σg (𝑣 ∈ 𝑉 ↦ 𝑍)) = 𝑍) |
| 43 | 41, 42 | sylan 580 |
. 2
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑀 Σg (𝑣 ∈ 𝑉 ↦ 𝑍)) = 𝑍) |
| 44 | 21, 39, 43 | 3eqtrd 2775 |
1
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹( linC ‘𝑀)𝑉) = 𝑍) |