Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincvalsc0 Structured version   Visualization version   GIF version

Theorem lincvalsc0 48453
Description: The linear combination where all scalars are 0. (Contributed by AV, 12-Apr-2019.)
Hypotheses
Ref Expression
lincvalsc0.b 𝐵 = (Base‘𝑀)
lincvalsc0.s 𝑆 = (Scalar‘𝑀)
lincvalsc0.0 0 = (0g𝑆)
lincvalsc0.z 𝑍 = (0g𝑀)
lincvalsc0.f 𝐹 = (𝑥𝑉0 )
Assertion
Ref Expression
lincvalsc0 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹( linC ‘𝑀)𝑉) = 𝑍)
Distinct variable groups:   𝑥,𝐵   𝑥,𝑀   𝑥,𝑉   𝑥, 0
Allowed substitution hints:   𝑆(𝑥)   𝐹(𝑥)   𝑍(𝑥)

Proof of Theorem lincvalsc0
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 𝑀 ∈ LMod)
2 lincvalsc0.s . . . . . . . 8 𝑆 = (Scalar‘𝑀)
32eqcomi 2740 . . . . . . . . 9 (Scalar‘𝑀) = 𝑆
43fveq2i 6820 . . . . . . . 8 (Base‘(Scalar‘𝑀)) = (Base‘𝑆)
5 lincvalsc0.0 . . . . . . . 8 0 = (0g𝑆)
62, 4, 5lmod0cl 20816 . . . . . . 7 (𝑀 ∈ LMod → 0 ∈ (Base‘(Scalar‘𝑀)))
76adantr 480 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 0 ∈ (Base‘(Scalar‘𝑀)))
87adantr 480 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥𝑉) → 0 ∈ (Base‘(Scalar‘𝑀)))
9 lincvalsc0.f . . . . 5 𝐹 = (𝑥𝑉0 )
108, 9fmptd 7042 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 𝐹:𝑉⟶(Base‘(Scalar‘𝑀)))
11 fvexd 6832 . . . . 5 (𝑀 ∈ LMod → (Base‘(Scalar‘𝑀)) ∈ V)
12 elmapg 8758 . . . . 5 (((Base‘(Scalar‘𝑀)) ∈ V ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ↔ 𝐹:𝑉⟶(Base‘(Scalar‘𝑀))))
1311, 12sylan 580 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ↔ 𝐹:𝑉⟶(Base‘(Scalar‘𝑀))))
1410, 13mpbird 257 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
15 lincvalsc0.b . . . . . . 7 𝐵 = (Base‘𝑀)
1615pweqi 4561 . . . . . 6 𝒫 𝐵 = 𝒫 (Base‘𝑀)
1716eleq2i 2823 . . . . 5 (𝑉 ∈ 𝒫 𝐵𝑉 ∈ 𝒫 (Base‘𝑀))
1817biimpi 216 . . . 4 (𝑉 ∈ 𝒫 𝐵𝑉 ∈ 𝒫 (Base‘𝑀))
1918adantl 481 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 𝑉 ∈ 𝒫 (Base‘𝑀))
20 lincval 48441 . . 3 ((𝑀 ∈ LMod ∧ 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝐹( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣))))
211, 14, 19, 20syl3anc 1373 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣))))
22 simpr 484 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) → 𝑣𝑉)
235fvexi 6831 . . . . . . 7 0 ∈ V
24 eqidd 2732 . . . . . . . 8 (𝑥 = 𝑣0 = 0 )
2524, 9fvmptg 6922 . . . . . . 7 ((𝑣𝑉0 ∈ V) → (𝐹𝑣) = 0 )
2622, 23, 25sylancl 586 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) → (𝐹𝑣) = 0 )
2726oveq1d 7356 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) → ((𝐹𝑣)( ·𝑠𝑀)𝑣) = ( 0 ( ·𝑠𝑀)𝑣))
281adantr 480 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) → 𝑀 ∈ LMod)
29 elelpwi 4555 . . . . . . . . 9 ((𝑣𝑉𝑉 ∈ 𝒫 𝐵) → 𝑣𝐵)
3029expcom 413 . . . . . . . 8 (𝑉 ∈ 𝒫 𝐵 → (𝑣𝑉𝑣𝐵))
3130adantl 481 . . . . . . 7 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑣𝑉𝑣𝐵))
3231imp 406 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) → 𝑣𝐵)
33 eqid 2731 . . . . . . 7 ( ·𝑠𝑀) = ( ·𝑠𝑀)
34 lincvalsc0.z . . . . . . 7 𝑍 = (0g𝑀)
3515, 2, 33, 5, 34lmod0vs 20823 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑣𝐵) → ( 0 ( ·𝑠𝑀)𝑣) = 𝑍)
3628, 32, 35syl2anc 584 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) → ( 0 ( ·𝑠𝑀)𝑣) = 𝑍)
3727, 36eqtrd 2766 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) → ((𝐹𝑣)( ·𝑠𝑀)𝑣) = 𝑍)
3837mpteq2dva 5179 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣)) = (𝑣𝑉𝑍))
3938oveq2d 7357 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑀 Σg (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣))) = (𝑀 Σg (𝑣𝑉𝑍)))
40 lmodgrp 20795 . . . 4 (𝑀 ∈ LMod → 𝑀 ∈ Grp)
4140grpmndd 18854 . . 3 (𝑀 ∈ LMod → 𝑀 ∈ Mnd)
4234gsumz 18739 . . 3 ((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑀 Σg (𝑣𝑉𝑍)) = 𝑍)
4341, 42sylan 580 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑀 Σg (𝑣𝑉𝑍)) = 𝑍)
4421, 39, 433eqtrd 2770 1 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹( linC ‘𝑀)𝑉) = 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  𝒫 cpw 4545  cmpt 5167  wf 6472  cfv 6476  (class class class)co 7341  m cmap 8745  Basecbs 17115  Scalarcsca 17159   ·𝑠 cvsca 17160  0gc0g 17338   Σg cgsu 17339  Mndcmnd 18637  LModclmod 20788   linC clinc 48436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-map 8747  df-seq 13904  df-0g 17340  df-gsum 17341  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-grp 18844  df-ring 20148  df-lmod 20790  df-linc 48438
This theorem is referenced by:  lcoc0  48454
  Copyright terms: Public domain W3C validator