Step | Hyp | Ref
| Expression |
1 | | simpl 482 |
. . 3
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 𝑀 ∈ LMod) |
2 | | lincvalsc0.s |
. . . . . . . 8
⊢ 𝑆 = (Scalar‘𝑀) |
3 | 2 | eqcomi 2747 |
. . . . . . . . 9
⊢
(Scalar‘𝑀) =
𝑆 |
4 | 3 | fveq2i 6759 |
. . . . . . . 8
⊢
(Base‘(Scalar‘𝑀)) = (Base‘𝑆) |
5 | | lincvalsc0.0 |
. . . . . . . 8
⊢ 0 =
(0g‘𝑆) |
6 | 2, 4, 5 | lmod0cl 20064 |
. . . . . . 7
⊢ (𝑀 ∈ LMod → 0 ∈
(Base‘(Scalar‘𝑀))) |
7 | 6 | adantr 480 |
. . . . . 6
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 0 ∈
(Base‘(Scalar‘𝑀))) |
8 | 7 | adantr 480 |
. . . . 5
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ 𝑉) → 0 ∈
(Base‘(Scalar‘𝑀))) |
9 | | lincvalsc0.f |
. . . . 5
⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ 0 ) |
10 | 8, 9 | fmptd 6970 |
. . . 4
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 𝐹:𝑉⟶(Base‘(Scalar‘𝑀))) |
11 | | fvexd 6771 |
. . . . 5
⊢ (𝑀 ∈ LMod →
(Base‘(Scalar‘𝑀)) ∈ V) |
12 | | elmapg 8586 |
. . . . 5
⊢
(((Base‘(Scalar‘𝑀)) ∈ V ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ↔ 𝐹:𝑉⟶(Base‘(Scalar‘𝑀)))) |
13 | 11, 12 | sylan 579 |
. . . 4
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ↔ 𝐹:𝑉⟶(Base‘(Scalar‘𝑀)))) |
14 | 10, 13 | mpbird 256 |
. . 3
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)) |
15 | | lincvalsc0.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝑀) |
16 | 15 | pweqi 4548 |
. . . . . 6
⊢ 𝒫
𝐵 = 𝒫
(Base‘𝑀) |
17 | 16 | eleq2i 2830 |
. . . . 5
⊢ (𝑉 ∈ 𝒫 𝐵 ↔ 𝑉 ∈ 𝒫 (Base‘𝑀)) |
18 | 17 | biimpi 215 |
. . . 4
⊢ (𝑉 ∈ 𝒫 𝐵 → 𝑉 ∈ 𝒫 (Base‘𝑀)) |
19 | 18 | adantl 481 |
. . 3
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 𝑉 ∈ 𝒫 (Base‘𝑀)) |
20 | | lincval 45638 |
. . 3
⊢ ((𝑀 ∈ LMod ∧ 𝐹 ∈
((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝐹( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑣 ∈ 𝑉 ↦ ((𝐹‘𝑣)( ·𝑠
‘𝑀)𝑣)))) |
21 | 1, 14, 19, 20 | syl3anc 1369 |
. 2
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑣 ∈ 𝑉 ↦ ((𝐹‘𝑣)( ·𝑠
‘𝑀)𝑣)))) |
22 | | simpr 484 |
. . . . . . 7
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣 ∈ 𝑉) → 𝑣 ∈ 𝑉) |
23 | 5 | fvexi 6770 |
. . . . . . 7
⊢ 0 ∈
V |
24 | | eqidd 2739 |
. . . . . . . 8
⊢ (𝑥 = 𝑣 → 0 = 0 ) |
25 | 24, 9 | fvmptg 6855 |
. . . . . . 7
⊢ ((𝑣 ∈ 𝑉 ∧ 0 ∈ V) → (𝐹‘𝑣) = 0 ) |
26 | 22, 23, 25 | sylancl 585 |
. . . . . 6
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣 ∈ 𝑉) → (𝐹‘𝑣) = 0 ) |
27 | 26 | oveq1d 7270 |
. . . . 5
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣 ∈ 𝑉) → ((𝐹‘𝑣)( ·𝑠
‘𝑀)𝑣) = ( 0 (
·𝑠 ‘𝑀)𝑣)) |
28 | 1 | adantr 480 |
. . . . . 6
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣 ∈ 𝑉) → 𝑀 ∈ LMod) |
29 | | elelpwi 4542 |
. . . . . . . . 9
⊢ ((𝑣 ∈ 𝑉 ∧ 𝑉 ∈ 𝒫 𝐵) → 𝑣 ∈ 𝐵) |
30 | 29 | expcom 413 |
. . . . . . . 8
⊢ (𝑉 ∈ 𝒫 𝐵 → (𝑣 ∈ 𝑉 → 𝑣 ∈ 𝐵)) |
31 | 30 | adantl 481 |
. . . . . . 7
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑣 ∈ 𝑉 → 𝑣 ∈ 𝐵)) |
32 | 31 | imp 406 |
. . . . . 6
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣 ∈ 𝑉) → 𝑣 ∈ 𝐵) |
33 | | eqid 2738 |
. . . . . . 7
⊢ (
·𝑠 ‘𝑀) = ( ·𝑠
‘𝑀) |
34 | | lincvalsc0.z |
. . . . . . 7
⊢ 𝑍 = (0g‘𝑀) |
35 | 15, 2, 33, 5, 34 | lmod0vs 20071 |
. . . . . 6
⊢ ((𝑀 ∈ LMod ∧ 𝑣 ∈ 𝐵) → ( 0 (
·𝑠 ‘𝑀)𝑣) = 𝑍) |
36 | 28, 32, 35 | syl2anc 583 |
. . . . 5
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣 ∈ 𝑉) → ( 0 (
·𝑠 ‘𝑀)𝑣) = 𝑍) |
37 | 27, 36 | eqtrd 2778 |
. . . 4
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣 ∈ 𝑉) → ((𝐹‘𝑣)( ·𝑠
‘𝑀)𝑣) = 𝑍) |
38 | 37 | mpteq2dva 5170 |
. . 3
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑣 ∈ 𝑉 ↦ ((𝐹‘𝑣)( ·𝑠
‘𝑀)𝑣)) = (𝑣 ∈ 𝑉 ↦ 𝑍)) |
39 | 38 | oveq2d 7271 |
. 2
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑀 Σg (𝑣 ∈ 𝑉 ↦ ((𝐹‘𝑣)( ·𝑠
‘𝑀)𝑣))) = (𝑀 Σg (𝑣 ∈ 𝑉 ↦ 𝑍))) |
40 | | lmodgrp 20045 |
. . . 4
⊢ (𝑀 ∈ LMod → 𝑀 ∈ Grp) |
41 | 40 | grpmndd 18504 |
. . 3
⊢ (𝑀 ∈ LMod → 𝑀 ∈ Mnd) |
42 | 34 | gsumz 18389 |
. . 3
⊢ ((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑀 Σg (𝑣 ∈ 𝑉 ↦ 𝑍)) = 𝑍) |
43 | 41, 42 | sylan 579 |
. 2
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑀 Σg (𝑣 ∈ 𝑉 ↦ 𝑍)) = 𝑍) |
44 | 21, 39, 43 | 3eqtrd 2782 |
1
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹( linC ‘𝑀)𝑉) = 𝑍) |