Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  linc0scn0 Structured version   Visualization version   GIF version

Theorem linc0scn0 45652
Description: If a set contains the zero element of a module, there is a linear combination being 0 where not all scalars are 0. (Contributed by AV, 13-Apr-2019.)
Hypotheses
Ref Expression
linc0scn0.b 𝐵 = (Base‘𝑀)
linc0scn0.s 𝑆 = (Scalar‘𝑀)
linc0scn0.0 0 = (0g𝑆)
linc0scn0.1 1 = (1r𝑆)
linc0scn0.z 𝑍 = (0g𝑀)
linc0scn0.f 𝐹 = (𝑥𝑉 ↦ if(𝑥 = 𝑍, 1 , 0 ))
Assertion
Ref Expression
linc0scn0 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹( linC ‘𝑀)𝑉) = 𝑍)
Distinct variable groups:   𝑥,𝐵   𝑥,𝑀   𝑥,𝑉   𝑥,𝑍   𝑥, 0   𝑥, 1
Allowed substitution hints:   𝑆(𝑥)   𝐹(𝑥)

Proof of Theorem linc0scn0
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 𝑀 ∈ LMod)
2 linc0scn0.s . . . . . . . . 9 𝑆 = (Scalar‘𝑀)
32lmodring 20046 . . . . . . . 8 (𝑀 ∈ LMod → 𝑆 ∈ Ring)
42eqcomi 2747 . . . . . . . . . . 11 (Scalar‘𝑀) = 𝑆
54fveq2i 6759 . . . . . . . . . 10 (Base‘(Scalar‘𝑀)) = (Base‘𝑆)
6 linc0scn0.1 . . . . . . . . . 10 1 = (1r𝑆)
75, 6ringidcl 19722 . . . . . . . . 9 (𝑆 ∈ Ring → 1 ∈ (Base‘(Scalar‘𝑀)))
8 linc0scn0.0 . . . . . . . . . 10 0 = (0g𝑆)
95, 8ring0cl 19723 . . . . . . . . 9 (𝑆 ∈ Ring → 0 ∈ (Base‘(Scalar‘𝑀)))
107, 9jca 511 . . . . . . . 8 (𝑆 ∈ Ring → ( 1 ∈ (Base‘(Scalar‘𝑀)) ∧ 0 ∈ (Base‘(Scalar‘𝑀))))
113, 10syl 17 . . . . . . 7 (𝑀 ∈ LMod → ( 1 ∈ (Base‘(Scalar‘𝑀)) ∧ 0 ∈ (Base‘(Scalar‘𝑀))))
1211ad2antrr 722 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥𝑉) → ( 1 ∈ (Base‘(Scalar‘𝑀)) ∧ 0 ∈ (Base‘(Scalar‘𝑀))))
13 ifcl 4501 . . . . . 6 (( 1 ∈ (Base‘(Scalar‘𝑀)) ∧ 0 ∈ (Base‘(Scalar‘𝑀))) → if(𝑥 = 𝑍, 1 , 0 ) ∈ (Base‘(Scalar‘𝑀)))
1412, 13syl 17 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥𝑉) → if(𝑥 = 𝑍, 1 , 0 ) ∈ (Base‘(Scalar‘𝑀)))
15 linc0scn0.f . . . . 5 𝐹 = (𝑥𝑉 ↦ if(𝑥 = 𝑍, 1 , 0 ))
1614, 15fmptd 6970 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 𝐹:𝑉⟶(Base‘(Scalar‘𝑀)))
17 fvex 6769 . . . . . 6 (Base‘(Scalar‘𝑀)) ∈ V
1817a1i 11 . . . . 5 (𝑀 ∈ LMod → (Base‘(Scalar‘𝑀)) ∈ V)
19 elmapg 8586 . . . . 5 (((Base‘(Scalar‘𝑀)) ∈ V ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ↔ 𝐹:𝑉⟶(Base‘(Scalar‘𝑀))))
2018, 19sylan 579 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ↔ 𝐹:𝑉⟶(Base‘(Scalar‘𝑀))))
2116, 20mpbird 256 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
22 linc0scn0.b . . . . . . 7 𝐵 = (Base‘𝑀)
2322pweqi 4548 . . . . . 6 𝒫 𝐵 = 𝒫 (Base‘𝑀)
2423eleq2i 2830 . . . . 5 (𝑉 ∈ 𝒫 𝐵𝑉 ∈ 𝒫 (Base‘𝑀))
2524biimpi 215 . . . 4 (𝑉 ∈ 𝒫 𝐵𝑉 ∈ 𝒫 (Base‘𝑀))
2625adantl 481 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 𝑉 ∈ 𝒫 (Base‘𝑀))
27 lincval 45638 . . 3 ((𝑀 ∈ LMod ∧ 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝐹( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣))))
281, 21, 26, 27syl3anc 1369 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣))))
29 simpr 484 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) → 𝑣𝑉)
306fvexi 6770 . . . . . . . 8 1 ∈ V
318fvexi 6770 . . . . . . . 8 0 ∈ V
3230, 31ifex 4506 . . . . . . 7 if(𝑣 = 𝑍, 1 , 0 ) ∈ V
33 eqeq1 2742 . . . . . . . . 9 (𝑥 = 𝑣 → (𝑥 = 𝑍𝑣 = 𝑍))
3433ifbid 4479 . . . . . . . 8 (𝑥 = 𝑣 → if(𝑥 = 𝑍, 1 , 0 ) = if(𝑣 = 𝑍, 1 , 0 ))
3534, 15fvmptg 6855 . . . . . . 7 ((𝑣𝑉 ∧ if(𝑣 = 𝑍, 1 , 0 ) ∈ V) → (𝐹𝑣) = if(𝑣 = 𝑍, 1 , 0 ))
3629, 32, 35sylancl 585 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) → (𝐹𝑣) = if(𝑣 = 𝑍, 1 , 0 ))
3736oveq1d 7270 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) → ((𝐹𝑣)( ·𝑠𝑀)𝑣) = (if(𝑣 = 𝑍, 1 , 0 )( ·𝑠𝑀)𝑣))
38 ovif 7350 . . . . . 6 (if(𝑣 = 𝑍, 1 , 0 )( ·𝑠𝑀)𝑣) = if(𝑣 = 𝑍, ( 1 ( ·𝑠𝑀)𝑣), ( 0 ( ·𝑠𝑀)𝑣))
3938a1i 11 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) → (if(𝑣 = 𝑍, 1 , 0 )( ·𝑠𝑀)𝑣) = if(𝑣 = 𝑍, ( 1 ( ·𝑠𝑀)𝑣), ( 0 ( ·𝑠𝑀)𝑣)))
40 oveq2 7263 . . . . . . . 8 (𝑣 = 𝑍 → ( 1 ( ·𝑠𝑀)𝑣) = ( 1 ( ·𝑠𝑀)𝑍))
4140adantl 481 . . . . . . 7 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) ∧ 𝑣 = 𝑍) → ( 1 ( ·𝑠𝑀)𝑣) = ( 1 ( ·𝑠𝑀)𝑍))
42 eqid 2738 . . . . . . . . . . . 12 (Base‘𝑆) = (Base‘𝑆)
432, 42, 6lmod1cl 20065 . . . . . . . . . . 11 (𝑀 ∈ LMod → 1 ∈ (Base‘𝑆))
4443ancli 548 . . . . . . . . . 10 (𝑀 ∈ LMod → (𝑀 ∈ LMod ∧ 1 ∈ (Base‘𝑆)))
4544adantr 480 . . . . . . . . 9 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑀 ∈ LMod ∧ 1 ∈ (Base‘𝑆)))
4645ad2antrr 722 . . . . . . . 8 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) ∧ 𝑣 = 𝑍) → (𝑀 ∈ LMod ∧ 1 ∈ (Base‘𝑆)))
47 eqid 2738 . . . . . . . . 9 ( ·𝑠𝑀) = ( ·𝑠𝑀)
48 linc0scn0.z . . . . . . . . 9 𝑍 = (0g𝑀)
492, 47, 42, 48lmodvs0 20072 . . . . . . . 8 ((𝑀 ∈ LMod ∧ 1 ∈ (Base‘𝑆)) → ( 1 ( ·𝑠𝑀)𝑍) = 𝑍)
5046, 49syl 17 . . . . . . 7 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) ∧ 𝑣 = 𝑍) → ( 1 ( ·𝑠𝑀)𝑍) = 𝑍)
5141, 50eqtrd 2778 . . . . . 6 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) ∧ 𝑣 = 𝑍) → ( 1 ( ·𝑠𝑀)𝑣) = 𝑍)
521adantr 480 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) → 𝑀 ∈ LMod)
53 elelpwi 4542 . . . . . . . . . . 11 ((𝑣𝑉𝑉 ∈ 𝒫 𝐵) → 𝑣𝐵)
5453expcom 413 . . . . . . . . . 10 (𝑉 ∈ 𝒫 𝐵 → (𝑣𝑉𝑣𝐵))
5554adantl 481 . . . . . . . . 9 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑣𝑉𝑣𝐵))
5655imp 406 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) → 𝑣𝐵)
5722, 2, 47, 8, 48lmod0vs 20071 . . . . . . . 8 ((𝑀 ∈ LMod ∧ 𝑣𝐵) → ( 0 ( ·𝑠𝑀)𝑣) = 𝑍)
5852, 56, 57syl2anc 583 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) → ( 0 ( ·𝑠𝑀)𝑣) = 𝑍)
5958adantr 480 . . . . . 6 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) ∧ ¬ 𝑣 = 𝑍) → ( 0 ( ·𝑠𝑀)𝑣) = 𝑍)
6051, 59ifeqda 4492 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) → if(𝑣 = 𝑍, ( 1 ( ·𝑠𝑀)𝑣), ( 0 ( ·𝑠𝑀)𝑣)) = 𝑍)
6137, 39, 603eqtrd 2782 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) → ((𝐹𝑣)( ·𝑠𝑀)𝑣) = 𝑍)
6261mpteq2dva 5170 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣)) = (𝑣𝑉𝑍))
6362oveq2d 7271 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑀 Σg (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣))) = (𝑀 Σg (𝑣𝑉𝑍)))
64 lmodgrp 20045 . . . 4 (𝑀 ∈ LMod → 𝑀 ∈ Grp)
6564grpmndd 18504 . . 3 (𝑀 ∈ LMod → 𝑀 ∈ Mnd)
6648gsumz 18389 . . 3 ((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑀 Σg (𝑣𝑉𝑍)) = 𝑍)
6765, 66sylan 579 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑀 Σg (𝑣𝑉𝑍)) = 𝑍)
6828, 63, 673eqtrd 2782 1 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹( linC ‘𝑀)𝑉) = 𝑍)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  ifcif 4456  𝒫 cpw 4530  cmpt 5153  wf 6414  cfv 6418  (class class class)co 7255  m cmap 8573  Basecbs 16840  Scalarcsca 16891   ·𝑠 cvsca 16892  0gc0g 17067   Σg cgsu 17068  Mndcmnd 18300  1rcur 19652  Ringcrg 19698  LModclmod 20038   linC clinc 45633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-seq 13650  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-0g 17069  df-gsum 17070  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-mgp 19636  df-ur 19653  df-ring 19700  df-lmod 20040  df-linc 45635
This theorem is referenced by:  el0ldep  45695
  Copyright terms: Public domain W3C validator