Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  linc0scn0 Structured version   Visualization version   GIF version

Theorem linc0scn0 48152
Description: If a set contains the zero element of a module, there is a linear combination being 0 where not all scalars are 0. (Contributed by AV, 13-Apr-2019.)
Hypotheses
Ref Expression
linc0scn0.b 𝐵 = (Base‘𝑀)
linc0scn0.s 𝑆 = (Scalar‘𝑀)
linc0scn0.0 0 = (0g𝑆)
linc0scn0.1 1 = (1r𝑆)
linc0scn0.z 𝑍 = (0g𝑀)
linc0scn0.f 𝐹 = (𝑥𝑉 ↦ if(𝑥 = 𝑍, 1 , 0 ))
Assertion
Ref Expression
linc0scn0 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹( linC ‘𝑀)𝑉) = 𝑍)
Distinct variable groups:   𝑥,𝐵   𝑥,𝑀   𝑥,𝑉   𝑥,𝑍   𝑥, 0   𝑥, 1
Allowed substitution hints:   𝑆(𝑥)   𝐹(𝑥)

Proof of Theorem linc0scn0
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 𝑀 ∈ LMod)
2 linc0scn0.s . . . . . . . . 9 𝑆 = (Scalar‘𝑀)
32lmodring 20888 . . . . . . . 8 (𝑀 ∈ LMod → 𝑆 ∈ Ring)
42eqcomi 2749 . . . . . . . . . . 11 (Scalar‘𝑀) = 𝑆
54fveq2i 6923 . . . . . . . . . 10 (Base‘(Scalar‘𝑀)) = (Base‘𝑆)
6 linc0scn0.1 . . . . . . . . . 10 1 = (1r𝑆)
75, 6ringidcl 20289 . . . . . . . . 9 (𝑆 ∈ Ring → 1 ∈ (Base‘(Scalar‘𝑀)))
8 linc0scn0.0 . . . . . . . . . 10 0 = (0g𝑆)
95, 8ring0cl 20290 . . . . . . . . 9 (𝑆 ∈ Ring → 0 ∈ (Base‘(Scalar‘𝑀)))
107, 9jca 511 . . . . . . . 8 (𝑆 ∈ Ring → ( 1 ∈ (Base‘(Scalar‘𝑀)) ∧ 0 ∈ (Base‘(Scalar‘𝑀))))
113, 10syl 17 . . . . . . 7 (𝑀 ∈ LMod → ( 1 ∈ (Base‘(Scalar‘𝑀)) ∧ 0 ∈ (Base‘(Scalar‘𝑀))))
1211ad2antrr 725 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥𝑉) → ( 1 ∈ (Base‘(Scalar‘𝑀)) ∧ 0 ∈ (Base‘(Scalar‘𝑀))))
13 ifcl 4593 . . . . . 6 (( 1 ∈ (Base‘(Scalar‘𝑀)) ∧ 0 ∈ (Base‘(Scalar‘𝑀))) → if(𝑥 = 𝑍, 1 , 0 ) ∈ (Base‘(Scalar‘𝑀)))
1412, 13syl 17 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥𝑉) → if(𝑥 = 𝑍, 1 , 0 ) ∈ (Base‘(Scalar‘𝑀)))
15 linc0scn0.f . . . . 5 𝐹 = (𝑥𝑉 ↦ if(𝑥 = 𝑍, 1 , 0 ))
1614, 15fmptd 7148 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 𝐹:𝑉⟶(Base‘(Scalar‘𝑀)))
17 fvex 6933 . . . . . 6 (Base‘(Scalar‘𝑀)) ∈ V
1817a1i 11 . . . . 5 (𝑀 ∈ LMod → (Base‘(Scalar‘𝑀)) ∈ V)
19 elmapg 8897 . . . . 5 (((Base‘(Scalar‘𝑀)) ∈ V ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ↔ 𝐹:𝑉⟶(Base‘(Scalar‘𝑀))))
2018, 19sylan 579 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ↔ 𝐹:𝑉⟶(Base‘(Scalar‘𝑀))))
2116, 20mpbird 257 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
22 linc0scn0.b . . . . . . 7 𝐵 = (Base‘𝑀)
2322pweqi 4638 . . . . . 6 𝒫 𝐵 = 𝒫 (Base‘𝑀)
2423eleq2i 2836 . . . . 5 (𝑉 ∈ 𝒫 𝐵𝑉 ∈ 𝒫 (Base‘𝑀))
2524biimpi 216 . . . 4 (𝑉 ∈ 𝒫 𝐵𝑉 ∈ 𝒫 (Base‘𝑀))
2625adantl 481 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 𝑉 ∈ 𝒫 (Base‘𝑀))
27 lincval 48138 . . 3 ((𝑀 ∈ LMod ∧ 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝐹( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣))))
281, 21, 26, 27syl3anc 1371 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣))))
29 simpr 484 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) → 𝑣𝑉)
306fvexi 6934 . . . . . . . 8 1 ∈ V
318fvexi 6934 . . . . . . . 8 0 ∈ V
3230, 31ifex 4598 . . . . . . 7 if(𝑣 = 𝑍, 1 , 0 ) ∈ V
33 eqeq1 2744 . . . . . . . . 9 (𝑥 = 𝑣 → (𝑥 = 𝑍𝑣 = 𝑍))
3433ifbid 4571 . . . . . . . 8 (𝑥 = 𝑣 → if(𝑥 = 𝑍, 1 , 0 ) = if(𝑣 = 𝑍, 1 , 0 ))
3534, 15fvmptg 7027 . . . . . . 7 ((𝑣𝑉 ∧ if(𝑣 = 𝑍, 1 , 0 ) ∈ V) → (𝐹𝑣) = if(𝑣 = 𝑍, 1 , 0 ))
3629, 32, 35sylancl 585 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) → (𝐹𝑣) = if(𝑣 = 𝑍, 1 , 0 ))
3736oveq1d 7463 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) → ((𝐹𝑣)( ·𝑠𝑀)𝑣) = (if(𝑣 = 𝑍, 1 , 0 )( ·𝑠𝑀)𝑣))
38 ovif 7548 . . . . . 6 (if(𝑣 = 𝑍, 1 , 0 )( ·𝑠𝑀)𝑣) = if(𝑣 = 𝑍, ( 1 ( ·𝑠𝑀)𝑣), ( 0 ( ·𝑠𝑀)𝑣))
3938a1i 11 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) → (if(𝑣 = 𝑍, 1 , 0 )( ·𝑠𝑀)𝑣) = if(𝑣 = 𝑍, ( 1 ( ·𝑠𝑀)𝑣), ( 0 ( ·𝑠𝑀)𝑣)))
40 oveq2 7456 . . . . . . . 8 (𝑣 = 𝑍 → ( 1 ( ·𝑠𝑀)𝑣) = ( 1 ( ·𝑠𝑀)𝑍))
4140adantl 481 . . . . . . 7 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) ∧ 𝑣 = 𝑍) → ( 1 ( ·𝑠𝑀)𝑣) = ( 1 ( ·𝑠𝑀)𝑍))
42 eqid 2740 . . . . . . . . . . . 12 (Base‘𝑆) = (Base‘𝑆)
432, 42, 6lmod1cl 20909 . . . . . . . . . . 11 (𝑀 ∈ LMod → 1 ∈ (Base‘𝑆))
4443ancli 548 . . . . . . . . . 10 (𝑀 ∈ LMod → (𝑀 ∈ LMod ∧ 1 ∈ (Base‘𝑆)))
4544adantr 480 . . . . . . . . 9 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑀 ∈ LMod ∧ 1 ∈ (Base‘𝑆)))
4645ad2antrr 725 . . . . . . . 8 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) ∧ 𝑣 = 𝑍) → (𝑀 ∈ LMod ∧ 1 ∈ (Base‘𝑆)))
47 eqid 2740 . . . . . . . . 9 ( ·𝑠𝑀) = ( ·𝑠𝑀)
48 linc0scn0.z . . . . . . . . 9 𝑍 = (0g𝑀)
492, 47, 42, 48lmodvs0 20916 . . . . . . . 8 ((𝑀 ∈ LMod ∧ 1 ∈ (Base‘𝑆)) → ( 1 ( ·𝑠𝑀)𝑍) = 𝑍)
5046, 49syl 17 . . . . . . 7 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) ∧ 𝑣 = 𝑍) → ( 1 ( ·𝑠𝑀)𝑍) = 𝑍)
5141, 50eqtrd 2780 . . . . . 6 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) ∧ 𝑣 = 𝑍) → ( 1 ( ·𝑠𝑀)𝑣) = 𝑍)
521adantr 480 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) → 𝑀 ∈ LMod)
53 elelpwi 4632 . . . . . . . . . . 11 ((𝑣𝑉𝑉 ∈ 𝒫 𝐵) → 𝑣𝐵)
5453expcom 413 . . . . . . . . . 10 (𝑉 ∈ 𝒫 𝐵 → (𝑣𝑉𝑣𝐵))
5554adantl 481 . . . . . . . . 9 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑣𝑉𝑣𝐵))
5655imp 406 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) → 𝑣𝐵)
5722, 2, 47, 8, 48lmod0vs 20915 . . . . . . . 8 ((𝑀 ∈ LMod ∧ 𝑣𝐵) → ( 0 ( ·𝑠𝑀)𝑣) = 𝑍)
5852, 56, 57syl2anc 583 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) → ( 0 ( ·𝑠𝑀)𝑣) = 𝑍)
5958adantr 480 . . . . . 6 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) ∧ ¬ 𝑣 = 𝑍) → ( 0 ( ·𝑠𝑀)𝑣) = 𝑍)
6051, 59ifeqda 4584 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) → if(𝑣 = 𝑍, ( 1 ( ·𝑠𝑀)𝑣), ( 0 ( ·𝑠𝑀)𝑣)) = 𝑍)
6137, 39, 603eqtrd 2784 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) → ((𝐹𝑣)( ·𝑠𝑀)𝑣) = 𝑍)
6261mpteq2dva 5266 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣)) = (𝑣𝑉𝑍))
6362oveq2d 7464 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑀 Σg (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣))) = (𝑀 Σg (𝑣𝑉𝑍)))
64 lmodgrp 20887 . . . 4 (𝑀 ∈ LMod → 𝑀 ∈ Grp)
6564grpmndd 18986 . . 3 (𝑀 ∈ LMod → 𝑀 ∈ Mnd)
6648gsumz 18871 . . 3 ((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑀 Σg (𝑣𝑉𝑍)) = 𝑍)
6765, 66sylan 579 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑀 Σg (𝑣𝑉𝑍)) = 𝑍)
6828, 63, 673eqtrd 2784 1 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹( linC ‘𝑀)𝑉) = 𝑍)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  ifcif 4548  𝒫 cpw 4622  cmpt 5249  wf 6569  cfv 6573  (class class class)co 7448  m cmap 8884  Basecbs 17258  Scalarcsca 17314   ·𝑠 cvsca 17315  0gc0g 17499   Σg cgsu 17500  Mndcmnd 18772  1rcur 20208  Ringcrg 20260  LModclmod 20880   linC clinc 48133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-seq 14053  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-plusg 17324  df-0g 17501  df-gsum 17502  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-lmod 20882  df-linc 48135
This theorem is referenced by:  el0ldep  48195
  Copyright terms: Public domain W3C validator