Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  linc0scn0 Structured version   Visualization version   GIF version

Theorem linc0scn0 48399
Description: If a set contains the zero element of a module, there is a linear combination being 0 where not all scalars are 0. (Contributed by AV, 13-Apr-2019.)
Hypotheses
Ref Expression
linc0scn0.b 𝐵 = (Base‘𝑀)
linc0scn0.s 𝑆 = (Scalar‘𝑀)
linc0scn0.0 0 = (0g𝑆)
linc0scn0.1 1 = (1r𝑆)
linc0scn0.z 𝑍 = (0g𝑀)
linc0scn0.f 𝐹 = (𝑥𝑉 ↦ if(𝑥 = 𝑍, 1 , 0 ))
Assertion
Ref Expression
linc0scn0 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹( linC ‘𝑀)𝑉) = 𝑍)
Distinct variable groups:   𝑥,𝐵   𝑥,𝑀   𝑥,𝑉   𝑥,𝑍   𝑥, 0   𝑥, 1
Allowed substitution hints:   𝑆(𝑥)   𝐹(𝑥)

Proof of Theorem linc0scn0
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 𝑀 ∈ LMod)
2 linc0scn0.s . . . . . . . . 9 𝑆 = (Scalar‘𝑀)
32lmodring 20825 . . . . . . . 8 (𝑀 ∈ LMod → 𝑆 ∈ Ring)
42eqcomi 2744 . . . . . . . . . . 11 (Scalar‘𝑀) = 𝑆
54fveq2i 6879 . . . . . . . . . 10 (Base‘(Scalar‘𝑀)) = (Base‘𝑆)
6 linc0scn0.1 . . . . . . . . . 10 1 = (1r𝑆)
75, 6ringidcl 20225 . . . . . . . . 9 (𝑆 ∈ Ring → 1 ∈ (Base‘(Scalar‘𝑀)))
8 linc0scn0.0 . . . . . . . . . 10 0 = (0g𝑆)
95, 8ring0cl 20227 . . . . . . . . 9 (𝑆 ∈ Ring → 0 ∈ (Base‘(Scalar‘𝑀)))
107, 9jca 511 . . . . . . . 8 (𝑆 ∈ Ring → ( 1 ∈ (Base‘(Scalar‘𝑀)) ∧ 0 ∈ (Base‘(Scalar‘𝑀))))
113, 10syl 17 . . . . . . 7 (𝑀 ∈ LMod → ( 1 ∈ (Base‘(Scalar‘𝑀)) ∧ 0 ∈ (Base‘(Scalar‘𝑀))))
1211ad2antrr 726 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥𝑉) → ( 1 ∈ (Base‘(Scalar‘𝑀)) ∧ 0 ∈ (Base‘(Scalar‘𝑀))))
13 ifcl 4546 . . . . . 6 (( 1 ∈ (Base‘(Scalar‘𝑀)) ∧ 0 ∈ (Base‘(Scalar‘𝑀))) → if(𝑥 = 𝑍, 1 , 0 ) ∈ (Base‘(Scalar‘𝑀)))
1412, 13syl 17 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥𝑉) → if(𝑥 = 𝑍, 1 , 0 ) ∈ (Base‘(Scalar‘𝑀)))
15 linc0scn0.f . . . . 5 𝐹 = (𝑥𝑉 ↦ if(𝑥 = 𝑍, 1 , 0 ))
1614, 15fmptd 7104 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 𝐹:𝑉⟶(Base‘(Scalar‘𝑀)))
17 fvex 6889 . . . . . 6 (Base‘(Scalar‘𝑀)) ∈ V
1817a1i 11 . . . . 5 (𝑀 ∈ LMod → (Base‘(Scalar‘𝑀)) ∈ V)
19 elmapg 8853 . . . . 5 (((Base‘(Scalar‘𝑀)) ∈ V ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ↔ 𝐹:𝑉⟶(Base‘(Scalar‘𝑀))))
2018, 19sylan 580 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ↔ 𝐹:𝑉⟶(Base‘(Scalar‘𝑀))))
2116, 20mpbird 257 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
22 linc0scn0.b . . . . . . 7 𝐵 = (Base‘𝑀)
2322pweqi 4591 . . . . . 6 𝒫 𝐵 = 𝒫 (Base‘𝑀)
2423eleq2i 2826 . . . . 5 (𝑉 ∈ 𝒫 𝐵𝑉 ∈ 𝒫 (Base‘𝑀))
2524biimpi 216 . . . 4 (𝑉 ∈ 𝒫 𝐵𝑉 ∈ 𝒫 (Base‘𝑀))
2625adantl 481 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 𝑉 ∈ 𝒫 (Base‘𝑀))
27 lincval 48385 . . 3 ((𝑀 ∈ LMod ∧ 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝐹( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣))))
281, 21, 26, 27syl3anc 1373 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣))))
29 simpr 484 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) → 𝑣𝑉)
306fvexi 6890 . . . . . . . 8 1 ∈ V
318fvexi 6890 . . . . . . . 8 0 ∈ V
3230, 31ifex 4551 . . . . . . 7 if(𝑣 = 𝑍, 1 , 0 ) ∈ V
33 eqeq1 2739 . . . . . . . . 9 (𝑥 = 𝑣 → (𝑥 = 𝑍𝑣 = 𝑍))
3433ifbid 4524 . . . . . . . 8 (𝑥 = 𝑣 → if(𝑥 = 𝑍, 1 , 0 ) = if(𝑣 = 𝑍, 1 , 0 ))
3534, 15fvmptg 6984 . . . . . . 7 ((𝑣𝑉 ∧ if(𝑣 = 𝑍, 1 , 0 ) ∈ V) → (𝐹𝑣) = if(𝑣 = 𝑍, 1 , 0 ))
3629, 32, 35sylancl 586 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) → (𝐹𝑣) = if(𝑣 = 𝑍, 1 , 0 ))
3736oveq1d 7420 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) → ((𝐹𝑣)( ·𝑠𝑀)𝑣) = (if(𝑣 = 𝑍, 1 , 0 )( ·𝑠𝑀)𝑣))
38 ovif 7505 . . . . . 6 (if(𝑣 = 𝑍, 1 , 0 )( ·𝑠𝑀)𝑣) = if(𝑣 = 𝑍, ( 1 ( ·𝑠𝑀)𝑣), ( 0 ( ·𝑠𝑀)𝑣))
3938a1i 11 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) → (if(𝑣 = 𝑍, 1 , 0 )( ·𝑠𝑀)𝑣) = if(𝑣 = 𝑍, ( 1 ( ·𝑠𝑀)𝑣), ( 0 ( ·𝑠𝑀)𝑣)))
40 oveq2 7413 . . . . . . . 8 (𝑣 = 𝑍 → ( 1 ( ·𝑠𝑀)𝑣) = ( 1 ( ·𝑠𝑀)𝑍))
4140adantl 481 . . . . . . 7 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) ∧ 𝑣 = 𝑍) → ( 1 ( ·𝑠𝑀)𝑣) = ( 1 ( ·𝑠𝑀)𝑍))
42 eqid 2735 . . . . . . . . . . . 12 (Base‘𝑆) = (Base‘𝑆)
432, 42, 6lmod1cl 20846 . . . . . . . . . . 11 (𝑀 ∈ LMod → 1 ∈ (Base‘𝑆))
4443ancli 548 . . . . . . . . . 10 (𝑀 ∈ LMod → (𝑀 ∈ LMod ∧ 1 ∈ (Base‘𝑆)))
4544adantr 480 . . . . . . . . 9 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑀 ∈ LMod ∧ 1 ∈ (Base‘𝑆)))
4645ad2antrr 726 . . . . . . . 8 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) ∧ 𝑣 = 𝑍) → (𝑀 ∈ LMod ∧ 1 ∈ (Base‘𝑆)))
47 eqid 2735 . . . . . . . . 9 ( ·𝑠𝑀) = ( ·𝑠𝑀)
48 linc0scn0.z . . . . . . . . 9 𝑍 = (0g𝑀)
492, 47, 42, 48lmodvs0 20853 . . . . . . . 8 ((𝑀 ∈ LMod ∧ 1 ∈ (Base‘𝑆)) → ( 1 ( ·𝑠𝑀)𝑍) = 𝑍)
5046, 49syl 17 . . . . . . 7 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) ∧ 𝑣 = 𝑍) → ( 1 ( ·𝑠𝑀)𝑍) = 𝑍)
5141, 50eqtrd 2770 . . . . . 6 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) ∧ 𝑣 = 𝑍) → ( 1 ( ·𝑠𝑀)𝑣) = 𝑍)
521adantr 480 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) → 𝑀 ∈ LMod)
53 elelpwi 4585 . . . . . . . . . . 11 ((𝑣𝑉𝑉 ∈ 𝒫 𝐵) → 𝑣𝐵)
5453expcom 413 . . . . . . . . . 10 (𝑉 ∈ 𝒫 𝐵 → (𝑣𝑉𝑣𝐵))
5554adantl 481 . . . . . . . . 9 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑣𝑉𝑣𝐵))
5655imp 406 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) → 𝑣𝐵)
5722, 2, 47, 8, 48lmod0vs 20852 . . . . . . . 8 ((𝑀 ∈ LMod ∧ 𝑣𝐵) → ( 0 ( ·𝑠𝑀)𝑣) = 𝑍)
5852, 56, 57syl2anc 584 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) → ( 0 ( ·𝑠𝑀)𝑣) = 𝑍)
5958adantr 480 . . . . . 6 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) ∧ ¬ 𝑣 = 𝑍) → ( 0 ( ·𝑠𝑀)𝑣) = 𝑍)
6051, 59ifeqda 4537 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) → if(𝑣 = 𝑍, ( 1 ( ·𝑠𝑀)𝑣), ( 0 ( ·𝑠𝑀)𝑣)) = 𝑍)
6137, 39, 603eqtrd 2774 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) → ((𝐹𝑣)( ·𝑠𝑀)𝑣) = 𝑍)
6261mpteq2dva 5214 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣)) = (𝑣𝑉𝑍))
6362oveq2d 7421 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑀 Σg (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣))) = (𝑀 Σg (𝑣𝑉𝑍)))
64 lmodgrp 20824 . . . 4 (𝑀 ∈ LMod → 𝑀 ∈ Grp)
6564grpmndd 18929 . . 3 (𝑀 ∈ LMod → 𝑀 ∈ Mnd)
6648gsumz 18814 . . 3 ((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑀 Σg (𝑣𝑉𝑍)) = 𝑍)
6765, 66sylan 580 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑀 Σg (𝑣𝑉𝑍)) = 𝑍)
6828, 63, 673eqtrd 2774 1 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹( linC ‘𝑀)𝑉) = 𝑍)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  Vcvv 3459  ifcif 4500  𝒫 cpw 4575  cmpt 5201  wf 6527  cfv 6531  (class class class)co 7405  m cmap 8840  Basecbs 17228  Scalarcsca 17274   ·𝑠 cvsca 17275  0gc0g 17453   Σg cgsu 17454  Mndcmnd 18712  1rcur 20141  Ringcrg 20193  LModclmod 20817   linC clinc 48380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-seq 14020  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-plusg 17284  df-0g 17455  df-gsum 17456  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-grp 18919  df-minusg 18920  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-lmod 20819  df-linc 48382
This theorem is referenced by:  el0ldep  48442
  Copyright terms: Public domain W3C validator