Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  linc0scn0 Structured version   Visualization version   GIF version

Theorem linc0scn0 48269
Description: If a set contains the zero element of a module, there is a linear combination being 0 where not all scalars are 0. (Contributed by AV, 13-Apr-2019.)
Hypotheses
Ref Expression
linc0scn0.b 𝐵 = (Base‘𝑀)
linc0scn0.s 𝑆 = (Scalar‘𝑀)
linc0scn0.0 0 = (0g𝑆)
linc0scn0.1 1 = (1r𝑆)
linc0scn0.z 𝑍 = (0g𝑀)
linc0scn0.f 𝐹 = (𝑥𝑉 ↦ if(𝑥 = 𝑍, 1 , 0 ))
Assertion
Ref Expression
linc0scn0 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹( linC ‘𝑀)𝑉) = 𝑍)
Distinct variable groups:   𝑥,𝐵   𝑥,𝑀   𝑥,𝑉   𝑥,𝑍   𝑥, 0   𝑥, 1
Allowed substitution hints:   𝑆(𝑥)   𝐹(𝑥)

Proof of Theorem linc0scn0
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 𝑀 ∈ LMod)
2 linc0scn0.s . . . . . . . . 9 𝑆 = (Scalar‘𝑀)
32lmodring 20883 . . . . . . . 8 (𝑀 ∈ LMod → 𝑆 ∈ Ring)
42eqcomi 2744 . . . . . . . . . . 11 (Scalar‘𝑀) = 𝑆
54fveq2i 6910 . . . . . . . . . 10 (Base‘(Scalar‘𝑀)) = (Base‘𝑆)
6 linc0scn0.1 . . . . . . . . . 10 1 = (1r𝑆)
75, 6ringidcl 20280 . . . . . . . . 9 (𝑆 ∈ Ring → 1 ∈ (Base‘(Scalar‘𝑀)))
8 linc0scn0.0 . . . . . . . . . 10 0 = (0g𝑆)
95, 8ring0cl 20281 . . . . . . . . 9 (𝑆 ∈ Ring → 0 ∈ (Base‘(Scalar‘𝑀)))
107, 9jca 511 . . . . . . . 8 (𝑆 ∈ Ring → ( 1 ∈ (Base‘(Scalar‘𝑀)) ∧ 0 ∈ (Base‘(Scalar‘𝑀))))
113, 10syl 17 . . . . . . 7 (𝑀 ∈ LMod → ( 1 ∈ (Base‘(Scalar‘𝑀)) ∧ 0 ∈ (Base‘(Scalar‘𝑀))))
1211ad2antrr 726 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥𝑉) → ( 1 ∈ (Base‘(Scalar‘𝑀)) ∧ 0 ∈ (Base‘(Scalar‘𝑀))))
13 ifcl 4576 . . . . . 6 (( 1 ∈ (Base‘(Scalar‘𝑀)) ∧ 0 ∈ (Base‘(Scalar‘𝑀))) → if(𝑥 = 𝑍, 1 , 0 ) ∈ (Base‘(Scalar‘𝑀)))
1412, 13syl 17 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥𝑉) → if(𝑥 = 𝑍, 1 , 0 ) ∈ (Base‘(Scalar‘𝑀)))
15 linc0scn0.f . . . . 5 𝐹 = (𝑥𝑉 ↦ if(𝑥 = 𝑍, 1 , 0 ))
1614, 15fmptd 7134 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 𝐹:𝑉⟶(Base‘(Scalar‘𝑀)))
17 fvex 6920 . . . . . 6 (Base‘(Scalar‘𝑀)) ∈ V
1817a1i 11 . . . . 5 (𝑀 ∈ LMod → (Base‘(Scalar‘𝑀)) ∈ V)
19 elmapg 8878 . . . . 5 (((Base‘(Scalar‘𝑀)) ∈ V ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ↔ 𝐹:𝑉⟶(Base‘(Scalar‘𝑀))))
2018, 19sylan 580 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ↔ 𝐹:𝑉⟶(Base‘(Scalar‘𝑀))))
2116, 20mpbird 257 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
22 linc0scn0.b . . . . . . 7 𝐵 = (Base‘𝑀)
2322pweqi 4621 . . . . . 6 𝒫 𝐵 = 𝒫 (Base‘𝑀)
2423eleq2i 2831 . . . . 5 (𝑉 ∈ 𝒫 𝐵𝑉 ∈ 𝒫 (Base‘𝑀))
2524biimpi 216 . . . 4 (𝑉 ∈ 𝒫 𝐵𝑉 ∈ 𝒫 (Base‘𝑀))
2625adantl 481 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 𝑉 ∈ 𝒫 (Base‘𝑀))
27 lincval 48255 . . 3 ((𝑀 ∈ LMod ∧ 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝐹( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣))))
281, 21, 26, 27syl3anc 1370 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣))))
29 simpr 484 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) → 𝑣𝑉)
306fvexi 6921 . . . . . . . 8 1 ∈ V
318fvexi 6921 . . . . . . . 8 0 ∈ V
3230, 31ifex 4581 . . . . . . 7 if(𝑣 = 𝑍, 1 , 0 ) ∈ V
33 eqeq1 2739 . . . . . . . . 9 (𝑥 = 𝑣 → (𝑥 = 𝑍𝑣 = 𝑍))
3433ifbid 4554 . . . . . . . 8 (𝑥 = 𝑣 → if(𝑥 = 𝑍, 1 , 0 ) = if(𝑣 = 𝑍, 1 , 0 ))
3534, 15fvmptg 7014 . . . . . . 7 ((𝑣𝑉 ∧ if(𝑣 = 𝑍, 1 , 0 ) ∈ V) → (𝐹𝑣) = if(𝑣 = 𝑍, 1 , 0 ))
3629, 32, 35sylancl 586 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) → (𝐹𝑣) = if(𝑣 = 𝑍, 1 , 0 ))
3736oveq1d 7446 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) → ((𝐹𝑣)( ·𝑠𝑀)𝑣) = (if(𝑣 = 𝑍, 1 , 0 )( ·𝑠𝑀)𝑣))
38 ovif 7531 . . . . . 6 (if(𝑣 = 𝑍, 1 , 0 )( ·𝑠𝑀)𝑣) = if(𝑣 = 𝑍, ( 1 ( ·𝑠𝑀)𝑣), ( 0 ( ·𝑠𝑀)𝑣))
3938a1i 11 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) → (if(𝑣 = 𝑍, 1 , 0 )( ·𝑠𝑀)𝑣) = if(𝑣 = 𝑍, ( 1 ( ·𝑠𝑀)𝑣), ( 0 ( ·𝑠𝑀)𝑣)))
40 oveq2 7439 . . . . . . . 8 (𝑣 = 𝑍 → ( 1 ( ·𝑠𝑀)𝑣) = ( 1 ( ·𝑠𝑀)𝑍))
4140adantl 481 . . . . . . 7 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) ∧ 𝑣 = 𝑍) → ( 1 ( ·𝑠𝑀)𝑣) = ( 1 ( ·𝑠𝑀)𝑍))
42 eqid 2735 . . . . . . . . . . . 12 (Base‘𝑆) = (Base‘𝑆)
432, 42, 6lmod1cl 20904 . . . . . . . . . . 11 (𝑀 ∈ LMod → 1 ∈ (Base‘𝑆))
4443ancli 548 . . . . . . . . . 10 (𝑀 ∈ LMod → (𝑀 ∈ LMod ∧ 1 ∈ (Base‘𝑆)))
4544adantr 480 . . . . . . . . 9 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑀 ∈ LMod ∧ 1 ∈ (Base‘𝑆)))
4645ad2antrr 726 . . . . . . . 8 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) ∧ 𝑣 = 𝑍) → (𝑀 ∈ LMod ∧ 1 ∈ (Base‘𝑆)))
47 eqid 2735 . . . . . . . . 9 ( ·𝑠𝑀) = ( ·𝑠𝑀)
48 linc0scn0.z . . . . . . . . 9 𝑍 = (0g𝑀)
492, 47, 42, 48lmodvs0 20911 . . . . . . . 8 ((𝑀 ∈ LMod ∧ 1 ∈ (Base‘𝑆)) → ( 1 ( ·𝑠𝑀)𝑍) = 𝑍)
5046, 49syl 17 . . . . . . 7 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) ∧ 𝑣 = 𝑍) → ( 1 ( ·𝑠𝑀)𝑍) = 𝑍)
5141, 50eqtrd 2775 . . . . . 6 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) ∧ 𝑣 = 𝑍) → ( 1 ( ·𝑠𝑀)𝑣) = 𝑍)
521adantr 480 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) → 𝑀 ∈ LMod)
53 elelpwi 4615 . . . . . . . . . . 11 ((𝑣𝑉𝑉 ∈ 𝒫 𝐵) → 𝑣𝐵)
5453expcom 413 . . . . . . . . . 10 (𝑉 ∈ 𝒫 𝐵 → (𝑣𝑉𝑣𝐵))
5554adantl 481 . . . . . . . . 9 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑣𝑉𝑣𝐵))
5655imp 406 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) → 𝑣𝐵)
5722, 2, 47, 8, 48lmod0vs 20910 . . . . . . . 8 ((𝑀 ∈ LMod ∧ 𝑣𝐵) → ( 0 ( ·𝑠𝑀)𝑣) = 𝑍)
5852, 56, 57syl2anc 584 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) → ( 0 ( ·𝑠𝑀)𝑣) = 𝑍)
5958adantr 480 . . . . . 6 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) ∧ ¬ 𝑣 = 𝑍) → ( 0 ( ·𝑠𝑀)𝑣) = 𝑍)
6051, 59ifeqda 4567 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) → if(𝑣 = 𝑍, ( 1 ( ·𝑠𝑀)𝑣), ( 0 ( ·𝑠𝑀)𝑣)) = 𝑍)
6137, 39, 603eqtrd 2779 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) → ((𝐹𝑣)( ·𝑠𝑀)𝑣) = 𝑍)
6261mpteq2dva 5248 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣)) = (𝑣𝑉𝑍))
6362oveq2d 7447 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑀 Σg (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣))) = (𝑀 Σg (𝑣𝑉𝑍)))
64 lmodgrp 20882 . . . 4 (𝑀 ∈ LMod → 𝑀 ∈ Grp)
6564grpmndd 18977 . . 3 (𝑀 ∈ LMod → 𝑀 ∈ Mnd)
6648gsumz 18862 . . 3 ((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑀 Σg (𝑣𝑉𝑍)) = 𝑍)
6765, 66sylan 580 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑀 Σg (𝑣𝑉𝑍)) = 𝑍)
6828, 63, 673eqtrd 2779 1 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹( linC ‘𝑀)𝑉) = 𝑍)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  Vcvv 3478  ifcif 4531  𝒫 cpw 4605  cmpt 5231  wf 6559  cfv 6563  (class class class)co 7431  m cmap 8865  Basecbs 17245  Scalarcsca 17301   ·𝑠 cvsca 17302  0gc0g 17486   Σg cgsu 17487  Mndcmnd 18760  1rcur 20199  Ringcrg 20251  LModclmod 20875   linC clinc 48250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-seq 14040  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-plusg 17311  df-0g 17488  df-gsum 17489  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-minusg 18968  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-lmod 20877  df-linc 48252
This theorem is referenced by:  el0ldep  48312
  Copyright terms: Public domain W3C validator