Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  linc0scn0 Structured version   Visualization version   GIF version

Theorem linc0scn0 46494
Description: If a set contains the zero element of a module, there is a linear combination being 0 where not all scalars are 0. (Contributed by AV, 13-Apr-2019.)
Hypotheses
Ref Expression
linc0scn0.b 𝐵 = (Base‘𝑀)
linc0scn0.s 𝑆 = (Scalar‘𝑀)
linc0scn0.0 0 = (0g𝑆)
linc0scn0.1 1 = (1r𝑆)
linc0scn0.z 𝑍 = (0g𝑀)
linc0scn0.f 𝐹 = (𝑥𝑉 ↦ if(𝑥 = 𝑍, 1 , 0 ))
Assertion
Ref Expression
linc0scn0 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹( linC ‘𝑀)𝑉) = 𝑍)
Distinct variable groups:   𝑥,𝐵   𝑥,𝑀   𝑥,𝑉   𝑥,𝑍   𝑥, 0   𝑥, 1
Allowed substitution hints:   𝑆(𝑥)   𝐹(𝑥)

Proof of Theorem linc0scn0
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 simpl 483 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 𝑀 ∈ LMod)
2 linc0scn0.s . . . . . . . . 9 𝑆 = (Scalar‘𝑀)
32lmodring 20330 . . . . . . . 8 (𝑀 ∈ LMod → 𝑆 ∈ Ring)
42eqcomi 2745 . . . . . . . . . . 11 (Scalar‘𝑀) = 𝑆
54fveq2i 6845 . . . . . . . . . 10 (Base‘(Scalar‘𝑀)) = (Base‘𝑆)
6 linc0scn0.1 . . . . . . . . . 10 1 = (1r𝑆)
75, 6ringidcl 19989 . . . . . . . . 9 (𝑆 ∈ Ring → 1 ∈ (Base‘(Scalar‘𝑀)))
8 linc0scn0.0 . . . . . . . . . 10 0 = (0g𝑆)
95, 8ring0cl 19990 . . . . . . . . 9 (𝑆 ∈ Ring → 0 ∈ (Base‘(Scalar‘𝑀)))
107, 9jca 512 . . . . . . . 8 (𝑆 ∈ Ring → ( 1 ∈ (Base‘(Scalar‘𝑀)) ∧ 0 ∈ (Base‘(Scalar‘𝑀))))
113, 10syl 17 . . . . . . 7 (𝑀 ∈ LMod → ( 1 ∈ (Base‘(Scalar‘𝑀)) ∧ 0 ∈ (Base‘(Scalar‘𝑀))))
1211ad2antrr 724 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥𝑉) → ( 1 ∈ (Base‘(Scalar‘𝑀)) ∧ 0 ∈ (Base‘(Scalar‘𝑀))))
13 ifcl 4531 . . . . . 6 (( 1 ∈ (Base‘(Scalar‘𝑀)) ∧ 0 ∈ (Base‘(Scalar‘𝑀))) → if(𝑥 = 𝑍, 1 , 0 ) ∈ (Base‘(Scalar‘𝑀)))
1412, 13syl 17 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥𝑉) → if(𝑥 = 𝑍, 1 , 0 ) ∈ (Base‘(Scalar‘𝑀)))
15 linc0scn0.f . . . . 5 𝐹 = (𝑥𝑉 ↦ if(𝑥 = 𝑍, 1 , 0 ))
1614, 15fmptd 7062 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 𝐹:𝑉⟶(Base‘(Scalar‘𝑀)))
17 fvex 6855 . . . . . 6 (Base‘(Scalar‘𝑀)) ∈ V
1817a1i 11 . . . . 5 (𝑀 ∈ LMod → (Base‘(Scalar‘𝑀)) ∈ V)
19 elmapg 8778 . . . . 5 (((Base‘(Scalar‘𝑀)) ∈ V ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ↔ 𝐹:𝑉⟶(Base‘(Scalar‘𝑀))))
2018, 19sylan 580 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ↔ 𝐹:𝑉⟶(Base‘(Scalar‘𝑀))))
2116, 20mpbird 256 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
22 linc0scn0.b . . . . . . 7 𝐵 = (Base‘𝑀)
2322pweqi 4576 . . . . . 6 𝒫 𝐵 = 𝒫 (Base‘𝑀)
2423eleq2i 2829 . . . . 5 (𝑉 ∈ 𝒫 𝐵𝑉 ∈ 𝒫 (Base‘𝑀))
2524biimpi 215 . . . 4 (𝑉 ∈ 𝒫 𝐵𝑉 ∈ 𝒫 (Base‘𝑀))
2625adantl 482 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 𝑉 ∈ 𝒫 (Base‘𝑀))
27 lincval 46480 . . 3 ((𝑀 ∈ LMod ∧ 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝐹( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣))))
281, 21, 26, 27syl3anc 1371 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣))))
29 simpr 485 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) → 𝑣𝑉)
306fvexi 6856 . . . . . . . 8 1 ∈ V
318fvexi 6856 . . . . . . . 8 0 ∈ V
3230, 31ifex 4536 . . . . . . 7 if(𝑣 = 𝑍, 1 , 0 ) ∈ V
33 eqeq1 2740 . . . . . . . . 9 (𝑥 = 𝑣 → (𝑥 = 𝑍𝑣 = 𝑍))
3433ifbid 4509 . . . . . . . 8 (𝑥 = 𝑣 → if(𝑥 = 𝑍, 1 , 0 ) = if(𝑣 = 𝑍, 1 , 0 ))
3534, 15fvmptg 6946 . . . . . . 7 ((𝑣𝑉 ∧ if(𝑣 = 𝑍, 1 , 0 ) ∈ V) → (𝐹𝑣) = if(𝑣 = 𝑍, 1 , 0 ))
3629, 32, 35sylancl 586 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) → (𝐹𝑣) = if(𝑣 = 𝑍, 1 , 0 ))
3736oveq1d 7372 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) → ((𝐹𝑣)( ·𝑠𝑀)𝑣) = (if(𝑣 = 𝑍, 1 , 0 )( ·𝑠𝑀)𝑣))
38 ovif 7454 . . . . . 6 (if(𝑣 = 𝑍, 1 , 0 )( ·𝑠𝑀)𝑣) = if(𝑣 = 𝑍, ( 1 ( ·𝑠𝑀)𝑣), ( 0 ( ·𝑠𝑀)𝑣))
3938a1i 11 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) → (if(𝑣 = 𝑍, 1 , 0 )( ·𝑠𝑀)𝑣) = if(𝑣 = 𝑍, ( 1 ( ·𝑠𝑀)𝑣), ( 0 ( ·𝑠𝑀)𝑣)))
40 oveq2 7365 . . . . . . . 8 (𝑣 = 𝑍 → ( 1 ( ·𝑠𝑀)𝑣) = ( 1 ( ·𝑠𝑀)𝑍))
4140adantl 482 . . . . . . 7 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) ∧ 𝑣 = 𝑍) → ( 1 ( ·𝑠𝑀)𝑣) = ( 1 ( ·𝑠𝑀)𝑍))
42 eqid 2736 . . . . . . . . . . . 12 (Base‘𝑆) = (Base‘𝑆)
432, 42, 6lmod1cl 20349 . . . . . . . . . . 11 (𝑀 ∈ LMod → 1 ∈ (Base‘𝑆))
4443ancli 549 . . . . . . . . . 10 (𝑀 ∈ LMod → (𝑀 ∈ LMod ∧ 1 ∈ (Base‘𝑆)))
4544adantr 481 . . . . . . . . 9 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑀 ∈ LMod ∧ 1 ∈ (Base‘𝑆)))
4645ad2antrr 724 . . . . . . . 8 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) ∧ 𝑣 = 𝑍) → (𝑀 ∈ LMod ∧ 1 ∈ (Base‘𝑆)))
47 eqid 2736 . . . . . . . . 9 ( ·𝑠𝑀) = ( ·𝑠𝑀)
48 linc0scn0.z . . . . . . . . 9 𝑍 = (0g𝑀)
492, 47, 42, 48lmodvs0 20356 . . . . . . . 8 ((𝑀 ∈ LMod ∧ 1 ∈ (Base‘𝑆)) → ( 1 ( ·𝑠𝑀)𝑍) = 𝑍)
5046, 49syl 17 . . . . . . 7 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) ∧ 𝑣 = 𝑍) → ( 1 ( ·𝑠𝑀)𝑍) = 𝑍)
5141, 50eqtrd 2776 . . . . . 6 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) ∧ 𝑣 = 𝑍) → ( 1 ( ·𝑠𝑀)𝑣) = 𝑍)
521adantr 481 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) → 𝑀 ∈ LMod)
53 elelpwi 4570 . . . . . . . . . . 11 ((𝑣𝑉𝑉 ∈ 𝒫 𝐵) → 𝑣𝐵)
5453expcom 414 . . . . . . . . . 10 (𝑉 ∈ 𝒫 𝐵 → (𝑣𝑉𝑣𝐵))
5554adantl 482 . . . . . . . . 9 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑣𝑉𝑣𝐵))
5655imp 407 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) → 𝑣𝐵)
5722, 2, 47, 8, 48lmod0vs 20355 . . . . . . . 8 ((𝑀 ∈ LMod ∧ 𝑣𝐵) → ( 0 ( ·𝑠𝑀)𝑣) = 𝑍)
5852, 56, 57syl2anc 584 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) → ( 0 ( ·𝑠𝑀)𝑣) = 𝑍)
5958adantr 481 . . . . . 6 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) ∧ ¬ 𝑣 = 𝑍) → ( 0 ( ·𝑠𝑀)𝑣) = 𝑍)
6051, 59ifeqda 4522 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) → if(𝑣 = 𝑍, ( 1 ( ·𝑠𝑀)𝑣), ( 0 ( ·𝑠𝑀)𝑣)) = 𝑍)
6137, 39, 603eqtrd 2780 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) → ((𝐹𝑣)( ·𝑠𝑀)𝑣) = 𝑍)
6261mpteq2dva 5205 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣)) = (𝑣𝑉𝑍))
6362oveq2d 7373 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑀 Σg (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣))) = (𝑀 Σg (𝑣𝑉𝑍)))
64 lmodgrp 20329 . . . 4 (𝑀 ∈ LMod → 𝑀 ∈ Grp)
6564grpmndd 18760 . . 3 (𝑀 ∈ LMod → 𝑀 ∈ Mnd)
6648gsumz 18646 . . 3 ((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑀 Σg (𝑣𝑉𝑍)) = 𝑍)
6765, 66sylan 580 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑀 Σg (𝑣𝑉𝑍)) = 𝑍)
6828, 63, 673eqtrd 2780 1 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹( linC ‘𝑀)𝑉) = 𝑍)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  Vcvv 3445  ifcif 4486  𝒫 cpw 4560  cmpt 5188  wf 6492  cfv 6496  (class class class)co 7357  m cmap 8765  Basecbs 17083  Scalarcsca 17136   ·𝑠 cvsca 17137  0gc0g 17321   Σg cgsu 17322  Mndcmnd 18556  1rcur 19913  Ringcrg 19964  LModclmod 20322   linC clinc 46475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-seq 13907  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-plusg 17146  df-0g 17323  df-gsum 17324  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-grp 18751  df-mgp 19897  df-ur 19914  df-ring 19966  df-lmod 20324  df-linc 46477
This theorem is referenced by:  el0ldep  46537
  Copyright terms: Public domain W3C validator