Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islindeps2 Structured version   Visualization version   GIF version

Theorem islindeps2 48469
Description: Conditions for being a linearly dependent subset of a (left) module over a nonzero ring. (Contributed by AV, 29-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.)
Hypotheses
Ref Expression
islindeps2.b 𝐵 = (Base‘𝑀)
islindeps2.z 𝑍 = (0g𝑀)
islindeps2.r 𝑅 = (Scalar‘𝑀)
islindeps2.e 𝐸 = (Base‘𝑅)
islindeps2.0 0 = (0g𝑅)
Assertion
Ref Expression
islindeps2 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) → (∃𝑠𝑆𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) → 𝑆 linDepS 𝑀))
Distinct variable groups:   𝐵,𝑓,𝑠   𝑓,𝐸,𝑠   𝑓,𝑀,𝑠   𝑅,𝑓,𝑠   𝑆,𝑓,𝑠   𝑓,𝑍,𝑠   0 ,𝑓,𝑠

Proof of Theorem islindeps2
Dummy variables 𝑔 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . . . . . . . . 12 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) → (𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵))
213adant3 1132 . . . . . . . . . . 11 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) → (𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵))
32ad3antrrr 730 . . . . . . . . . 10 (((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) ∧ 𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → (𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵))
4 nzrring 20419 . . . . . . . . . . . . . 14 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
5 islindeps2.e . . . . . . . . . . . . . . 15 𝐸 = (Base‘𝑅)
6 eqid 2729 . . . . . . . . . . . . . . 15 (1r𝑅) = (1r𝑅)
75, 6ringidcl 20168 . . . . . . . . . . . . . 14 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐸)
84, 7syl 17 . . . . . . . . . . . . 13 (𝑅 ∈ NzRing → (1r𝑅) ∈ 𝐸)
983ad2ant3 1135 . . . . . . . . . . . 12 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) → (1r𝑅) ∈ 𝐸)
109ad3antrrr 730 . . . . . . . . . . 11 (((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) ∧ 𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → (1r𝑅) ∈ 𝐸)
11 simpllr 775 . . . . . . . . . . 11 (((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) ∧ 𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → 𝑠𝑆)
12 simplr 768 . . . . . . . . . . 11 (((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) ∧ 𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → 𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠})))
1310, 11, 123jca 1128 . . . . . . . . . 10 (((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) ∧ 𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → ((1r𝑅) ∈ 𝐸𝑠𝑆𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))))
14 simprl 770 . . . . . . . . . 10 (((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) ∧ 𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → 𝑓 finSupp 0 )
15 islindeps2.b . . . . . . . . . . 11 𝐵 = (Base‘𝑀)
16 islindeps2.r . . . . . . . . . . 11 𝑅 = (Scalar‘𝑀)
17 islindeps2.0 . . . . . . . . . . 11 0 = (0g𝑅)
18 islindeps2.z . . . . . . . . . . 11 𝑍 = (0g𝑀)
19 eqid 2729 . . . . . . . . . . 11 (invg𝑅) = (invg𝑅)
20 eqid 2729 . . . . . . . . . . 11 (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) = (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))
2115, 16, 5, 17, 18, 19, 20lincext2 48441 . . . . . . . . . 10 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ ((1r𝑅) ∈ 𝐸𝑠𝑆𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))) ∧ 𝑓 finSupp 0 ) → (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) finSupp 0 )
223, 13, 14, 21syl3anc 1373 . . . . . . . . 9 (((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) ∧ 𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) finSupp 0 )
23 simpl1 1192 . . . . . . . . . . . . 13 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) → 𝑀 ∈ LMod)
24 elelpwi 4563 . . . . . . . . . . . . . . . 16 ((𝑠𝑆𝑆 ∈ 𝒫 𝐵) → 𝑠𝐵)
2524expcom 413 . . . . . . . . . . . . . . 15 (𝑆 ∈ 𝒫 𝐵 → (𝑠𝑆𝑠𝐵))
26253ad2ant2 1134 . . . . . . . . . . . . . 14 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) → (𝑠𝑆𝑠𝐵))
2726imp 406 . . . . . . . . . . . . 13 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) → 𝑠𝐵)
28 eqid 2729 . . . . . . . . . . . . . 14 ( ·𝑠𝑀) = ( ·𝑠𝑀)
2915, 16, 28, 6lmodvs1 20811 . . . . . . . . . . . . 13 ((𝑀 ∈ LMod ∧ 𝑠𝐵) → ((1r𝑅)( ·𝑠𝑀)𝑠) = 𝑠)
3023, 27, 29syl2anc 584 . . . . . . . . . . . 12 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) → ((1r𝑅)( ·𝑠𝑀)𝑠) = 𝑠)
3130adantr 480 . . . . . . . . . . 11 ((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) ∧ 𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))) → ((1r𝑅)( ·𝑠𝑀)𝑠) = 𝑠)
32 id 22 . . . . . . . . . . . . 13 ((𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠 → (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)
3332eqcomd 2735 . . . . . . . . . . . 12 ((𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠𝑠 = (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})))
3433adantl 481 . . . . . . . . . . 11 ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) → 𝑠 = (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})))
3531, 34sylan9eq 2784 . . . . . . . . . 10 (((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) ∧ 𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → ((1r𝑅)( ·𝑠𝑀)𝑠) = (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})))
3615, 16, 5, 17, 18, 19, 20lincext3 48442 . . . . . . . . . 10 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ ((1r𝑅) ∈ 𝐸𝑠𝑆𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ ((1r𝑅)( ·𝑠𝑀)𝑠) = (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})))) → ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))( linC ‘𝑀)𝑆) = 𝑍)
373, 13, 14, 35, 36syl112anc 1376 . . . . . . . . 9 (((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) ∧ 𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))( linC ‘𝑀)𝑆) = 𝑍)
3822, 37jca 511 . . . . . . . 8 (((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) ∧ 𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) finSupp 0 ∧ ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))( linC ‘𝑀)𝑆) = 𝑍))
39 eqidd 2730 . . . . . . . . . . . 12 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) → (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) = (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))))
40 iftrue 4484 . . . . . . . . . . . . 13 (𝑧 = 𝑠 → if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)) = ((invg𝑅)‘(1r𝑅)))
4140adantl 481 . . . . . . . . . . . 12 ((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) ∧ 𝑧 = 𝑠) → if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)) = ((invg𝑅)‘(1r𝑅)))
42 simpr 484 . . . . . . . . . . . 12 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) → 𝑠𝑆)
43 fvexd 6841 . . . . . . . . . . . 12 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) → ((invg𝑅)‘(1r𝑅)) ∈ V)
4439, 41, 42, 43fvmptd 6941 . . . . . . . . . . 11 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) → ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))‘𝑠) = ((invg𝑅)‘(1r𝑅)))
45 nzrneg1ne0 48215 . . . . . . . . . . . . . 14 (𝑅 ∈ NzRing → ((invg𝑅)‘(1r𝑅)) ≠ (0g𝑅))
4617a1i 11 . . . . . . . . . . . . . 14 (𝑅 ∈ NzRing → 0 = (0g𝑅))
4745, 46neeqtrrd 2999 . . . . . . . . . . . . 13 (𝑅 ∈ NzRing → ((invg𝑅)‘(1r𝑅)) ≠ 0 )
48473ad2ant3 1135 . . . . . . . . . . . 12 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) → ((invg𝑅)‘(1r𝑅)) ≠ 0 )
4948adantr 480 . . . . . . . . . . 11 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) → ((invg𝑅)‘(1r𝑅)) ≠ 0 )
5044, 49eqnetrd 2992 . . . . . . . . . 10 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) → ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))‘𝑠) ≠ 0 )
5150adantr 480 . . . . . . . . 9 ((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) ∧ 𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))) → ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))‘𝑠) ≠ 0 )
5251adantr 480 . . . . . . . 8 (((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) ∧ 𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))‘𝑠) ≠ 0 )
5315, 16, 5, 17, 18, 19, 20lincext1 48440 . . . . . . . . . 10 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ ((1r𝑅) ∈ 𝐸𝑠𝑆𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠})))) → (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) ∈ (𝐸m 𝑆))
543, 13, 53syl2anc 584 . . . . . . . . 9 (((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) ∧ 𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) ∈ (𝐸m 𝑆))
55 breq1 5098 . . . . . . . . . . . 12 (𝑔 = (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) → (𝑔 finSupp 0 ↔ (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) finSupp 0 ))
56 oveq1 7360 . . . . . . . . . . . . 13 (𝑔 = (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) → (𝑔( linC ‘𝑀)𝑆) = ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))( linC ‘𝑀)𝑆))
5756eqeq1d 2731 . . . . . . . . . . . 12 (𝑔 = (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) → ((𝑔( linC ‘𝑀)𝑆) = 𝑍 ↔ ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))( linC ‘𝑀)𝑆) = 𝑍))
5855, 57anbi12d 632 . . . . . . . . . . 11 (𝑔 = (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) → ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ↔ ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) finSupp 0 ∧ ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))( linC ‘𝑀)𝑆) = 𝑍)))
59 fveq1 6825 . . . . . . . . . . . 12 (𝑔 = (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) → (𝑔𝑠) = ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))‘𝑠))
6059neeq1d 2984 . . . . . . . . . . 11 (𝑔 = (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) → ((𝑔𝑠) ≠ 0 ↔ ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))‘𝑠) ≠ 0 ))
6158, 60anbi12d 632 . . . . . . . . . 10 (𝑔 = (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) → (((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ) ↔ (((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) finSupp 0 ∧ ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))( linC ‘𝑀)𝑆) = 𝑍) ∧ ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))‘𝑠) ≠ 0 )))
6261adantl 481 . . . . . . . . 9 ((((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) ∧ 𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) ∧ 𝑔 = (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))) → (((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ) ↔ (((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) finSupp 0 ∧ ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))( linC ‘𝑀)𝑆) = 𝑍) ∧ ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))‘𝑠) ≠ 0 )))
6354, 62rspcedv 3572 . . . . . . . 8 (((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) ∧ 𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → ((((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) finSupp 0 ∧ ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))( linC ‘𝑀)𝑆) = 𝑍) ∧ ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))‘𝑠) ≠ 0 ) → ∃𝑔 ∈ (𝐸m 𝑆)((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )))
6438, 52, 63mp2and 699 . . . . . . 7 (((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) ∧ 𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → ∃𝑔 ∈ (𝐸m 𝑆)((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ))
6564rexlimdva2 3132 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) → (∃𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) → ∃𝑔 ∈ (𝐸m 𝑆)((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )))
6665reximdva 3142 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) → (∃𝑠𝑆𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) → ∃𝑠𝑆𝑔 ∈ (𝐸m 𝑆)((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )))
6766imp 406 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ ∃𝑠𝑆𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → ∃𝑠𝑆𝑔 ∈ (𝐸m 𝑆)((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ))
68 df-3an 1088 . . . . . . 7 ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑠𝑆 (𝑔𝑠) ≠ 0 ) ↔ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ ∃𝑠𝑆 (𝑔𝑠) ≠ 0 ))
69 r19.42v 3161 . . . . . . 7 (∃𝑠𝑆 ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ) ↔ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ ∃𝑠𝑆 (𝑔𝑠) ≠ 0 ))
7068, 69bitr4i 278 . . . . . 6 ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑠𝑆 (𝑔𝑠) ≠ 0 ) ↔ ∃𝑠𝑆 ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ))
7170rexbii 3076 . . . . 5 (∃𝑔 ∈ (𝐸m 𝑆)(𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑠𝑆 (𝑔𝑠) ≠ 0 ) ↔ ∃𝑔 ∈ (𝐸m 𝑆)∃𝑠𝑆 ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ))
72 rexcom 3258 . . . . 5 (∃𝑔 ∈ (𝐸m 𝑆)∃𝑠𝑆 ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ) ↔ ∃𝑠𝑆𝑔 ∈ (𝐸m 𝑆)((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ))
7371, 72bitri 275 . . . 4 (∃𝑔 ∈ (𝐸m 𝑆)(𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑠𝑆 (𝑔𝑠) ≠ 0 ) ↔ ∃𝑠𝑆𝑔 ∈ (𝐸m 𝑆)((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ))
7467, 73sylibr 234 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ ∃𝑠𝑆𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → ∃𝑔 ∈ (𝐸m 𝑆)(𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑠𝑆 (𝑔𝑠) ≠ 0 ))
7515, 18, 16, 5, 17islindeps 48439 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) → (𝑆 linDepS 𝑀 ↔ ∃𝑔 ∈ (𝐸m 𝑆)(𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑠𝑆 (𝑔𝑠) ≠ 0 )))
76753adant3 1132 . . . 4 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) → (𝑆 linDepS 𝑀 ↔ ∃𝑔 ∈ (𝐸m 𝑆)(𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑠𝑆 (𝑔𝑠) ≠ 0 )))
7776adantr 480 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ ∃𝑠𝑆𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → (𝑆 linDepS 𝑀 ↔ ∃𝑔 ∈ (𝐸m 𝑆)(𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑠𝑆 (𝑔𝑠) ≠ 0 )))
7874, 77mpbird 257 . 2 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ ∃𝑠𝑆𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → 𝑆 linDepS 𝑀)
7978ex 412 1 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) → (∃𝑠𝑆𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) → 𝑆 linDepS 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053  Vcvv 3438  cdif 3902  ifcif 4478  𝒫 cpw 4553  {csn 4579   class class class wbr 5095  cmpt 5176  cfv 6486  (class class class)co 7353  m cmap 8760   finSupp cfsupp 9270  Basecbs 17138  Scalarcsca 17182   ·𝑠 cvsca 17183  0gc0g 17361  invgcminusg 18831  1rcur 20084  Ringcrg 20136  NzRingcnzr 20415  LModclmod 20781   linC clinc 48390   linDepS clindeps 48427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-tpos 8166  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-fz 13429  df-fzo 13576  df-seq 13927  df-hash 14256  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-0g 17363  df-gsum 17364  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-grp 18833  df-minusg 18834  df-mulg 18965  df-cntz 19214  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-ring 20138  df-oppr 20240  df-dvdsr 20260  df-unit 20261  df-invr 20291  df-nzr 20416  df-lmod 20783  df-linc 48392  df-lininds 48428  df-lindeps 48430
This theorem is referenced by:  islininds2  48470  isldepslvec2  48471
  Copyright terms: Public domain W3C validator