Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islindeps2 Structured version   Visualization version   GIF version

Theorem islindeps2 43287
Description: Conditions for being a linearly dependent subset of a (left) module over a nonzero ring. (Contributed by AV, 29-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.)
Hypotheses
Ref Expression
islindeps2.b 𝐵 = (Base‘𝑀)
islindeps2.z 𝑍 = (0g𝑀)
islindeps2.r 𝑅 = (Scalar‘𝑀)
islindeps2.e 𝐸 = (Base‘𝑅)
islindeps2.0 0 = (0g𝑅)
Assertion
Ref Expression
islindeps2 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) → (∃𝑠𝑆𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) → 𝑆 linDepS 𝑀))
Distinct variable groups:   𝐵,𝑓,𝑠   𝑓,𝐸,𝑠   𝑓,𝑀,𝑠   𝑅,𝑓,𝑠   𝑆,𝑓,𝑠   𝑓,𝑍,𝑠   0 ,𝑓,𝑠

Proof of Theorem islindeps2
Dummy variables 𝑔 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . . . . . . . . 12 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) → (𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵))
213adant3 1123 . . . . . . . . . . 11 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) → (𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵))
32ad3antrrr 720 . . . . . . . . . 10 (((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) ∧ 𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → (𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵))
4 nzrring 19658 . . . . . . . . . . . . . 14 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
5 islindeps2.e . . . . . . . . . . . . . . 15 𝐸 = (Base‘𝑅)
6 eqid 2778 . . . . . . . . . . . . . . 15 (1r𝑅) = (1r𝑅)
75, 6ringidcl 18955 . . . . . . . . . . . . . 14 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐸)
84, 7syl 17 . . . . . . . . . . . . 13 (𝑅 ∈ NzRing → (1r𝑅) ∈ 𝐸)
983ad2ant3 1126 . . . . . . . . . . . 12 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) → (1r𝑅) ∈ 𝐸)
109ad3antrrr 720 . . . . . . . . . . 11 (((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) ∧ 𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → (1r𝑅) ∈ 𝐸)
11 simpllr 766 . . . . . . . . . . 11 (((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) ∧ 𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → 𝑠𝑆)
12 simplr 759 . . . . . . . . . . 11 (((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) ∧ 𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → 𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠})))
1310, 11, 123jca 1119 . . . . . . . . . 10 (((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) ∧ 𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → ((1r𝑅) ∈ 𝐸𝑠𝑆𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))))
14 simprl 761 . . . . . . . . . 10 (((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) ∧ 𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → 𝑓 finSupp 0 )
15 islindeps2.b . . . . . . . . . . 11 𝐵 = (Base‘𝑀)
16 islindeps2.r . . . . . . . . . . 11 𝑅 = (Scalar‘𝑀)
17 islindeps2.0 . . . . . . . . . . 11 0 = (0g𝑅)
18 islindeps2.z . . . . . . . . . . 11 𝑍 = (0g𝑀)
19 eqid 2778 . . . . . . . . . . 11 (invg𝑅) = (invg𝑅)
20 eqid 2778 . . . . . . . . . . 11 (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) = (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))
2115, 16, 5, 17, 18, 19, 20lincext2 43259 . . . . . . . . . 10 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ ((1r𝑅) ∈ 𝐸𝑠𝑆𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))) ∧ 𝑓 finSupp 0 ) → (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) finSupp 0 )
223, 13, 14, 21syl3anc 1439 . . . . . . . . 9 (((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) ∧ 𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) finSupp 0 )
23 simpl1 1199 . . . . . . . . . . . . 13 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) → 𝑀 ∈ LMod)
24 elelpwi 4392 . . . . . . . . . . . . . . . 16 ((𝑠𝑆𝑆 ∈ 𝒫 𝐵) → 𝑠𝐵)
2524expcom 404 . . . . . . . . . . . . . . 15 (𝑆 ∈ 𝒫 𝐵 → (𝑠𝑆𝑠𝐵))
26253ad2ant2 1125 . . . . . . . . . . . . . 14 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) → (𝑠𝑆𝑠𝐵))
2726imp 397 . . . . . . . . . . . . 13 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) → 𝑠𝐵)
28 eqid 2778 . . . . . . . . . . . . . 14 ( ·𝑠𝑀) = ( ·𝑠𝑀)
2915, 16, 28, 6lmodvs1 19283 . . . . . . . . . . . . 13 ((𝑀 ∈ LMod ∧ 𝑠𝐵) → ((1r𝑅)( ·𝑠𝑀)𝑠) = 𝑠)
3023, 27, 29syl2anc 579 . . . . . . . . . . . 12 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) → ((1r𝑅)( ·𝑠𝑀)𝑠) = 𝑠)
3130adantr 474 . . . . . . . . . . 11 ((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) ∧ 𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))) → ((1r𝑅)( ·𝑠𝑀)𝑠) = 𝑠)
32 id 22 . . . . . . . . . . . . 13 ((𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠 → (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)
3332eqcomd 2784 . . . . . . . . . . . 12 ((𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠𝑠 = (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})))
3433adantl 475 . . . . . . . . . . 11 ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) → 𝑠 = (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})))
3531, 34sylan9eq 2834 . . . . . . . . . 10 (((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) ∧ 𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → ((1r𝑅)( ·𝑠𝑀)𝑠) = (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})))
3615, 16, 5, 17, 18, 19, 20lincext3 43260 . . . . . . . . . 10 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ ((1r𝑅) ∈ 𝐸𝑠𝑆𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ ((1r𝑅)( ·𝑠𝑀)𝑠) = (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})))) → ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))( linC ‘𝑀)𝑆) = 𝑍)
373, 13, 14, 35, 36syl112anc 1442 . . . . . . . . 9 (((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) ∧ 𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))( linC ‘𝑀)𝑆) = 𝑍)
3822, 37jca 507 . . . . . . . 8 (((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) ∧ 𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) finSupp 0 ∧ ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))( linC ‘𝑀)𝑆) = 𝑍))
39 eqidd 2779 . . . . . . . . . . . 12 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) → (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) = (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))))
40 iftrue 4313 . . . . . . . . . . . . 13 (𝑧 = 𝑠 → if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)) = ((invg𝑅)‘(1r𝑅)))
4140adantl 475 . . . . . . . . . . . 12 ((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) ∧ 𝑧 = 𝑠) → if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)) = ((invg𝑅)‘(1r𝑅)))
42 simpr 479 . . . . . . . . . . . 12 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) → 𝑠𝑆)
43 fvexd 6461 . . . . . . . . . . . 12 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) → ((invg𝑅)‘(1r𝑅)) ∈ V)
4439, 41, 42, 43fvmptd 6548 . . . . . . . . . . 11 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) → ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))‘𝑠) = ((invg𝑅)‘(1r𝑅)))
45 nzrneg1ne0 42884 . . . . . . . . . . . . . 14 (𝑅 ∈ NzRing → ((invg𝑅)‘(1r𝑅)) ≠ (0g𝑅))
4617a1i 11 . . . . . . . . . . . . . 14 (𝑅 ∈ NzRing → 0 = (0g𝑅))
4745, 46neeqtrrd 3043 . . . . . . . . . . . . 13 (𝑅 ∈ NzRing → ((invg𝑅)‘(1r𝑅)) ≠ 0 )
48473ad2ant3 1126 . . . . . . . . . . . 12 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) → ((invg𝑅)‘(1r𝑅)) ≠ 0 )
4948adantr 474 . . . . . . . . . . 11 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) → ((invg𝑅)‘(1r𝑅)) ≠ 0 )
5044, 49eqnetrd 3036 . . . . . . . . . 10 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) → ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))‘𝑠) ≠ 0 )
5150adantr 474 . . . . . . . . 9 ((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) ∧ 𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))) → ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))‘𝑠) ≠ 0 )
5251adantr 474 . . . . . . . 8 (((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) ∧ 𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))‘𝑠) ≠ 0 )
5315, 16, 5, 17, 18, 19, 20lincext1 43258 . . . . . . . . . 10 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ ((1r𝑅) ∈ 𝐸𝑠𝑆𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠})))) → (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) ∈ (𝐸𝑚 𝑆))
543, 13, 53syl2anc 579 . . . . . . . . 9 (((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) ∧ 𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) ∈ (𝐸𝑚 𝑆))
55 breq1 4889 . . . . . . . . . . . 12 (𝑔 = (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) → (𝑔 finSupp 0 ↔ (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) finSupp 0 ))
56 oveq1 6929 . . . . . . . . . . . . 13 (𝑔 = (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) → (𝑔( linC ‘𝑀)𝑆) = ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))( linC ‘𝑀)𝑆))
5756eqeq1d 2780 . . . . . . . . . . . 12 (𝑔 = (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) → ((𝑔( linC ‘𝑀)𝑆) = 𝑍 ↔ ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))( linC ‘𝑀)𝑆) = 𝑍))
5855, 57anbi12d 624 . . . . . . . . . . 11 (𝑔 = (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) → ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ↔ ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) finSupp 0 ∧ ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))( linC ‘𝑀)𝑆) = 𝑍)))
59 fveq1 6445 . . . . . . . . . . . 12 (𝑔 = (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) → (𝑔𝑠) = ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))‘𝑠))
6059neeq1d 3028 . . . . . . . . . . 11 (𝑔 = (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) → ((𝑔𝑠) ≠ 0 ↔ ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))‘𝑠) ≠ 0 ))
6158, 60anbi12d 624 . . . . . . . . . 10 (𝑔 = (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) → (((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ) ↔ (((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) finSupp 0 ∧ ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))( linC ‘𝑀)𝑆) = 𝑍) ∧ ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))‘𝑠) ≠ 0 )))
6261adantl 475 . . . . . . . . 9 ((((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) ∧ 𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) ∧ 𝑔 = (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))) → (((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ) ↔ (((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) finSupp 0 ∧ ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))( linC ‘𝑀)𝑆) = 𝑍) ∧ ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))‘𝑠) ≠ 0 )))
6354, 62rspcedv 3515 . . . . . . . 8 (((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) ∧ 𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → ((((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) finSupp 0 ∧ ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))( linC ‘𝑀)𝑆) = 𝑍) ∧ ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))‘𝑠) ≠ 0 ) → ∃𝑔 ∈ (𝐸𝑚 𝑆)((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )))
6438, 52, 63mp2and 689 . . . . . . 7 (((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) ∧ 𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → ∃𝑔 ∈ (𝐸𝑚 𝑆)((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ))
6564rexlimdva2 3216 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) → (∃𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) → ∃𝑔 ∈ (𝐸𝑚 𝑆)((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )))
6665reximdva 3198 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) → (∃𝑠𝑆𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) → ∃𝑠𝑆𝑔 ∈ (𝐸𝑚 𝑆)((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )))
6766imp 397 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ ∃𝑠𝑆𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → ∃𝑠𝑆𝑔 ∈ (𝐸𝑚 𝑆)((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ))
68 df-3an 1073 . . . . . . 7 ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑠𝑆 (𝑔𝑠) ≠ 0 ) ↔ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ ∃𝑠𝑆 (𝑔𝑠) ≠ 0 ))
69 r19.42v 3278 . . . . . . 7 (∃𝑠𝑆 ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ) ↔ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ ∃𝑠𝑆 (𝑔𝑠) ≠ 0 ))
7068, 69bitr4i 270 . . . . . 6 ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑠𝑆 (𝑔𝑠) ≠ 0 ) ↔ ∃𝑠𝑆 ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ))
7170rexbii 3224 . . . . 5 (∃𝑔 ∈ (𝐸𝑚 𝑆)(𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑠𝑆 (𝑔𝑠) ≠ 0 ) ↔ ∃𝑔 ∈ (𝐸𝑚 𝑆)∃𝑠𝑆 ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ))
72 rexcom 3285 . . . . 5 (∃𝑔 ∈ (𝐸𝑚 𝑆)∃𝑠𝑆 ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ) ↔ ∃𝑠𝑆𝑔 ∈ (𝐸𝑚 𝑆)((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ))
7371, 72bitri 267 . . . 4 (∃𝑔 ∈ (𝐸𝑚 𝑆)(𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑠𝑆 (𝑔𝑠) ≠ 0 ) ↔ ∃𝑠𝑆𝑔 ∈ (𝐸𝑚 𝑆)((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ))
7467, 73sylibr 226 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ ∃𝑠𝑆𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → ∃𝑔 ∈ (𝐸𝑚 𝑆)(𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑠𝑆 (𝑔𝑠) ≠ 0 ))
7515, 18, 16, 5, 17islindeps 43257 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) → (𝑆 linDepS 𝑀 ↔ ∃𝑔 ∈ (𝐸𝑚 𝑆)(𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑠𝑆 (𝑔𝑠) ≠ 0 )))
76753adant3 1123 . . . 4 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) → (𝑆 linDepS 𝑀 ↔ ∃𝑔 ∈ (𝐸𝑚 𝑆)(𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑠𝑆 (𝑔𝑠) ≠ 0 )))
7776adantr 474 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ ∃𝑠𝑆𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → (𝑆 linDepS 𝑀 ↔ ∃𝑔 ∈ (𝐸𝑚 𝑆)(𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑠𝑆 (𝑔𝑠) ≠ 0 )))
7874, 77mpbird 249 . 2 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ ∃𝑠𝑆𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → 𝑆 linDepS 𝑀)
7978ex 403 1 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) → (∃𝑠𝑆𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) → 𝑆 linDepS 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1071   = wceq 1601  wcel 2107  wne 2969  wrex 3091  Vcvv 3398  cdif 3789  ifcif 4307  𝒫 cpw 4379  {csn 4398   class class class wbr 4886  cmpt 4965  cfv 6135  (class class class)co 6922  𝑚 cmap 8140   finSupp cfsupp 8563  Basecbs 16255  Scalarcsca 16341   ·𝑠 cvsca 16342  0gc0g 16486  invgcminusg 17810  1rcur 18888  Ringcrg 18934  LModclmod 19255  NzRingcnzr 19654   linC clinc 43208   linDepS clindeps 43245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-inf2 8835  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-iin 4756  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-se 5315  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-isom 6144  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-of 7174  df-om 7344  df-1st 7445  df-2nd 7446  df-supp 7577  df-tpos 7634  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-oadd 7847  df-er 8026  df-map 8142  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-fsupp 8564  df-oi 8704  df-card 9098  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-nn 11375  df-2 11438  df-3 11439  df-n0 11643  df-z 11729  df-uz 11993  df-fz 12644  df-fzo 12785  df-seq 13120  df-hash 13436  df-ndx 16258  df-slot 16259  df-base 16261  df-sets 16262  df-ress 16263  df-plusg 16351  df-mulr 16352  df-0g 16488  df-gsum 16489  df-mre 16632  df-mrc 16633  df-acs 16635  df-mgm 17628  df-sgrp 17670  df-mnd 17681  df-submnd 17722  df-grp 17812  df-minusg 17813  df-mulg 17928  df-cntz 18133  df-cmn 18581  df-abl 18582  df-mgp 18877  df-ur 18889  df-ring 18936  df-oppr 19010  df-dvdsr 19028  df-unit 19029  df-invr 19059  df-lmod 19257  df-nzr 19655  df-linc 43210  df-lininds 43246  df-lindeps 43248
This theorem is referenced by:  islininds2  43288  isldepslvec2  43289
  Copyright terms: Public domain W3C validator