Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islindeps2 Structured version   Visualization version   GIF version

Theorem islindeps2 48608
Description: Conditions for being a linearly dependent subset of a (left) module over a nonzero ring. (Contributed by AV, 29-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.)
Hypotheses
Ref Expression
islindeps2.b 𝐵 = (Base‘𝑀)
islindeps2.z 𝑍 = (0g𝑀)
islindeps2.r 𝑅 = (Scalar‘𝑀)
islindeps2.e 𝐸 = (Base‘𝑅)
islindeps2.0 0 = (0g𝑅)
Assertion
Ref Expression
islindeps2 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) → (∃𝑠𝑆𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) → 𝑆 linDepS 𝑀))
Distinct variable groups:   𝐵,𝑓,𝑠   𝑓,𝐸,𝑠   𝑓,𝑀,𝑠   𝑅,𝑓,𝑠   𝑆,𝑓,𝑠   𝑓,𝑍,𝑠   0 ,𝑓,𝑠

Proof of Theorem islindeps2
Dummy variables 𝑔 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . . . . . . . . 12 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) → (𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵))
213adant3 1132 . . . . . . . . . . 11 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) → (𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵))
32ad3antrrr 730 . . . . . . . . . 10 (((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) ∧ 𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → (𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵))
4 nzrring 20433 . . . . . . . . . . . . . 14 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
5 islindeps2.e . . . . . . . . . . . . . . 15 𝐸 = (Base‘𝑅)
6 eqid 2733 . . . . . . . . . . . . . . 15 (1r𝑅) = (1r𝑅)
75, 6ringidcl 20185 . . . . . . . . . . . . . 14 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐸)
84, 7syl 17 . . . . . . . . . . . . 13 (𝑅 ∈ NzRing → (1r𝑅) ∈ 𝐸)
983ad2ant3 1135 . . . . . . . . . . . 12 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) → (1r𝑅) ∈ 𝐸)
109ad3antrrr 730 . . . . . . . . . . 11 (((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) ∧ 𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → (1r𝑅) ∈ 𝐸)
11 simpllr 775 . . . . . . . . . . 11 (((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) ∧ 𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → 𝑠𝑆)
12 simplr 768 . . . . . . . . . . 11 (((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) ∧ 𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → 𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠})))
1310, 11, 123jca 1128 . . . . . . . . . 10 (((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) ∧ 𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → ((1r𝑅) ∈ 𝐸𝑠𝑆𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))))
14 simprl 770 . . . . . . . . . 10 (((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) ∧ 𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → 𝑓 finSupp 0 )
15 islindeps2.b . . . . . . . . . . 11 𝐵 = (Base‘𝑀)
16 islindeps2.r . . . . . . . . . . 11 𝑅 = (Scalar‘𝑀)
17 islindeps2.0 . . . . . . . . . . 11 0 = (0g𝑅)
18 islindeps2.z . . . . . . . . . . 11 𝑍 = (0g𝑀)
19 eqid 2733 . . . . . . . . . . 11 (invg𝑅) = (invg𝑅)
20 eqid 2733 . . . . . . . . . . 11 (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) = (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))
2115, 16, 5, 17, 18, 19, 20lincext2 48580 . . . . . . . . . 10 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ ((1r𝑅) ∈ 𝐸𝑠𝑆𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))) ∧ 𝑓 finSupp 0 ) → (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) finSupp 0 )
223, 13, 14, 21syl3anc 1373 . . . . . . . . 9 (((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) ∧ 𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) finSupp 0 )
23 simpl1 1192 . . . . . . . . . . . . 13 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) → 𝑀 ∈ LMod)
24 elelpwi 4559 . . . . . . . . . . . . . . . 16 ((𝑠𝑆𝑆 ∈ 𝒫 𝐵) → 𝑠𝐵)
2524expcom 413 . . . . . . . . . . . . . . 15 (𝑆 ∈ 𝒫 𝐵 → (𝑠𝑆𝑠𝐵))
26253ad2ant2 1134 . . . . . . . . . . . . . 14 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) → (𝑠𝑆𝑠𝐵))
2726imp 406 . . . . . . . . . . . . 13 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) → 𝑠𝐵)
28 eqid 2733 . . . . . . . . . . . . . 14 ( ·𝑠𝑀) = ( ·𝑠𝑀)
2915, 16, 28, 6lmodvs1 20825 . . . . . . . . . . . . 13 ((𝑀 ∈ LMod ∧ 𝑠𝐵) → ((1r𝑅)( ·𝑠𝑀)𝑠) = 𝑠)
3023, 27, 29syl2anc 584 . . . . . . . . . . . 12 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) → ((1r𝑅)( ·𝑠𝑀)𝑠) = 𝑠)
3130adantr 480 . . . . . . . . . . 11 ((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) ∧ 𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))) → ((1r𝑅)( ·𝑠𝑀)𝑠) = 𝑠)
32 id 22 . . . . . . . . . . . . 13 ((𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠 → (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)
3332eqcomd 2739 . . . . . . . . . . . 12 ((𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠𝑠 = (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})))
3433adantl 481 . . . . . . . . . . 11 ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) → 𝑠 = (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})))
3531, 34sylan9eq 2788 . . . . . . . . . 10 (((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) ∧ 𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → ((1r𝑅)( ·𝑠𝑀)𝑠) = (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})))
3615, 16, 5, 17, 18, 19, 20lincext3 48581 . . . . . . . . . 10 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ ((1r𝑅) ∈ 𝐸𝑠𝑆𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ ((1r𝑅)( ·𝑠𝑀)𝑠) = (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})))) → ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))( linC ‘𝑀)𝑆) = 𝑍)
373, 13, 14, 35, 36syl112anc 1376 . . . . . . . . 9 (((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) ∧ 𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))( linC ‘𝑀)𝑆) = 𝑍)
3822, 37jca 511 . . . . . . . 8 (((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) ∧ 𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) finSupp 0 ∧ ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))( linC ‘𝑀)𝑆) = 𝑍))
39 eqidd 2734 . . . . . . . . . . . 12 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) → (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) = (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))))
40 iftrue 4480 . . . . . . . . . . . . 13 (𝑧 = 𝑠 → if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)) = ((invg𝑅)‘(1r𝑅)))
4140adantl 481 . . . . . . . . . . . 12 ((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) ∧ 𝑧 = 𝑠) → if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)) = ((invg𝑅)‘(1r𝑅)))
42 simpr 484 . . . . . . . . . . . 12 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) → 𝑠𝑆)
43 fvexd 6843 . . . . . . . . . . . 12 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) → ((invg𝑅)‘(1r𝑅)) ∈ V)
4439, 41, 42, 43fvmptd 6942 . . . . . . . . . . 11 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) → ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))‘𝑠) = ((invg𝑅)‘(1r𝑅)))
45 nzrneg1ne0 48354 . . . . . . . . . . . . . 14 (𝑅 ∈ NzRing → ((invg𝑅)‘(1r𝑅)) ≠ (0g𝑅))
4617a1i 11 . . . . . . . . . . . . . 14 (𝑅 ∈ NzRing → 0 = (0g𝑅))
4745, 46neeqtrrd 3003 . . . . . . . . . . . . 13 (𝑅 ∈ NzRing → ((invg𝑅)‘(1r𝑅)) ≠ 0 )
48473ad2ant3 1135 . . . . . . . . . . . 12 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) → ((invg𝑅)‘(1r𝑅)) ≠ 0 )
4948adantr 480 . . . . . . . . . . 11 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) → ((invg𝑅)‘(1r𝑅)) ≠ 0 )
5044, 49eqnetrd 2996 . . . . . . . . . 10 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) → ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))‘𝑠) ≠ 0 )
5150adantr 480 . . . . . . . . 9 ((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) ∧ 𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))) → ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))‘𝑠) ≠ 0 )
5251adantr 480 . . . . . . . 8 (((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) ∧ 𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))‘𝑠) ≠ 0 )
5315, 16, 5, 17, 18, 19, 20lincext1 48579 . . . . . . . . . 10 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ ((1r𝑅) ∈ 𝐸𝑠𝑆𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠})))) → (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) ∈ (𝐸m 𝑆))
543, 13, 53syl2anc 584 . . . . . . . . 9 (((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) ∧ 𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) ∈ (𝐸m 𝑆))
55 breq1 5096 . . . . . . . . . . . 12 (𝑔 = (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) → (𝑔 finSupp 0 ↔ (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) finSupp 0 ))
56 oveq1 7359 . . . . . . . . . . . . 13 (𝑔 = (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) → (𝑔( linC ‘𝑀)𝑆) = ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))( linC ‘𝑀)𝑆))
5756eqeq1d 2735 . . . . . . . . . . . 12 (𝑔 = (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) → ((𝑔( linC ‘𝑀)𝑆) = 𝑍 ↔ ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))( linC ‘𝑀)𝑆) = 𝑍))
5855, 57anbi12d 632 . . . . . . . . . . 11 (𝑔 = (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) → ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ↔ ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) finSupp 0 ∧ ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))( linC ‘𝑀)𝑆) = 𝑍)))
59 fveq1 6827 . . . . . . . . . . . 12 (𝑔 = (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) → (𝑔𝑠) = ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))‘𝑠))
6059neeq1d 2988 . . . . . . . . . . 11 (𝑔 = (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) → ((𝑔𝑠) ≠ 0 ↔ ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))‘𝑠) ≠ 0 ))
6158, 60anbi12d 632 . . . . . . . . . 10 (𝑔 = (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) → (((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ) ↔ (((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) finSupp 0 ∧ ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))( linC ‘𝑀)𝑆) = 𝑍) ∧ ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))‘𝑠) ≠ 0 )))
6261adantl 481 . . . . . . . . 9 ((((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) ∧ 𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) ∧ 𝑔 = (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))) → (((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ) ↔ (((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) finSupp 0 ∧ ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))( linC ‘𝑀)𝑆) = 𝑍) ∧ ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))‘𝑠) ≠ 0 )))
6354, 62rspcedv 3566 . . . . . . . 8 (((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) ∧ 𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → ((((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) finSupp 0 ∧ ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))( linC ‘𝑀)𝑆) = 𝑍) ∧ ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))‘𝑠) ≠ 0 ) → ∃𝑔 ∈ (𝐸m 𝑆)((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )))
6438, 52, 63mp2and 699 . . . . . . 7 (((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) ∧ 𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → ∃𝑔 ∈ (𝐸m 𝑆)((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ))
6564rexlimdva2 3136 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) → (∃𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) → ∃𝑔 ∈ (𝐸m 𝑆)((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )))
6665reximdva 3146 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) → (∃𝑠𝑆𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) → ∃𝑠𝑆𝑔 ∈ (𝐸m 𝑆)((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )))
6766imp 406 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ ∃𝑠𝑆𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → ∃𝑠𝑆𝑔 ∈ (𝐸m 𝑆)((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ))
68 df-3an 1088 . . . . . . 7 ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑠𝑆 (𝑔𝑠) ≠ 0 ) ↔ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ ∃𝑠𝑆 (𝑔𝑠) ≠ 0 ))
69 r19.42v 3165 . . . . . . 7 (∃𝑠𝑆 ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ) ↔ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ ∃𝑠𝑆 (𝑔𝑠) ≠ 0 ))
7068, 69bitr4i 278 . . . . . 6 ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑠𝑆 (𝑔𝑠) ≠ 0 ) ↔ ∃𝑠𝑆 ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ))
7170rexbii 3080 . . . . 5 (∃𝑔 ∈ (𝐸m 𝑆)(𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑠𝑆 (𝑔𝑠) ≠ 0 ) ↔ ∃𝑔 ∈ (𝐸m 𝑆)∃𝑠𝑆 ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ))
72 rexcom 3262 . . . . 5 (∃𝑔 ∈ (𝐸m 𝑆)∃𝑠𝑆 ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ) ↔ ∃𝑠𝑆𝑔 ∈ (𝐸m 𝑆)((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ))
7371, 72bitri 275 . . . 4 (∃𝑔 ∈ (𝐸m 𝑆)(𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑠𝑆 (𝑔𝑠) ≠ 0 ) ↔ ∃𝑠𝑆𝑔 ∈ (𝐸m 𝑆)((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ))
7467, 73sylibr 234 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ ∃𝑠𝑆𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → ∃𝑔 ∈ (𝐸m 𝑆)(𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑠𝑆 (𝑔𝑠) ≠ 0 ))
7515, 18, 16, 5, 17islindeps 48578 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) → (𝑆 linDepS 𝑀 ↔ ∃𝑔 ∈ (𝐸m 𝑆)(𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑠𝑆 (𝑔𝑠) ≠ 0 )))
76753adant3 1132 . . . 4 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) → (𝑆 linDepS 𝑀 ↔ ∃𝑔 ∈ (𝐸m 𝑆)(𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑠𝑆 (𝑔𝑠) ≠ 0 )))
7776adantr 480 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ ∃𝑠𝑆𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → (𝑆 linDepS 𝑀 ↔ ∃𝑔 ∈ (𝐸m 𝑆)(𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑠𝑆 (𝑔𝑠) ≠ 0 )))
7874, 77mpbird 257 . 2 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ ∃𝑠𝑆𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → 𝑆 linDepS 𝑀)
7978ex 412 1 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) → (∃𝑠𝑆𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) → 𝑆 linDepS 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2929  wrex 3057  Vcvv 3437  cdif 3895  ifcif 4474  𝒫 cpw 4549  {csn 4575   class class class wbr 5093  cmpt 5174  cfv 6486  (class class class)co 7352  m cmap 8756   finSupp cfsupp 9252  Basecbs 17122  Scalarcsca 17166   ·𝑠 cvsca 17167  0gc0g 17345  invgcminusg 18849  1rcur 20101  Ringcrg 20153  NzRingcnzr 20429  LModclmod 20795   linC clinc 48529   linDepS clindeps 48566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-tpos 8162  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fsupp 9253  df-oi 9403  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-n0 12389  df-z 12476  df-uz 12739  df-fz 13410  df-fzo 13557  df-seq 13911  df-hash 14240  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-0g 17347  df-gsum 17348  df-mre 17490  df-mrc 17491  df-acs 17493  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-submnd 18694  df-grp 18851  df-minusg 18852  df-mulg 18983  df-cntz 19231  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-oppr 20257  df-dvdsr 20277  df-unit 20278  df-invr 20308  df-nzr 20430  df-lmod 20797  df-linc 48531  df-lininds 48567  df-lindeps 48569
This theorem is referenced by:  islininds2  48609  isldepslvec2  48610
  Copyright terms: Public domain W3C validator