Step | Hyp | Ref
| Expression |
1 | | id 22 |
. . . . . . . . . . . 12
⊢ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) → (𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵)) |
2 | 1 | 3adant3 1131 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ∧ 𝑅 ∈ NzRing) → (𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵)) |
3 | 2 | ad3antrrr 727 |
. . . . . . . . . 10
⊢
(((((𝑀 ∈ LMod
∧ 𝑆 ∈ 𝒫
𝐵 ∧ 𝑅 ∈ NzRing) ∧ 𝑠 ∈ 𝑆) ∧ 𝑓 ∈ (𝐸 ↑m (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → (𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵)) |
4 | | nzrring 20543 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ∈ NzRing → 𝑅 ∈ Ring) |
5 | | islindeps2.e |
. . . . . . . . . . . . . . 15
⊢ 𝐸 = (Base‘𝑅) |
6 | | eqid 2740 |
. . . . . . . . . . . . . . 15
⊢
(1r‘𝑅) = (1r‘𝑅) |
7 | 5, 6 | ringidcl 19818 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ∈ Ring →
(1r‘𝑅)
∈ 𝐸) |
8 | 4, 7 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ NzRing →
(1r‘𝑅)
∈ 𝐸) |
9 | 8 | 3ad2ant3 1134 |
. . . . . . . . . . . 12
⊢ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ∧ 𝑅 ∈ NzRing) →
(1r‘𝑅)
∈ 𝐸) |
10 | 9 | ad3antrrr 727 |
. . . . . . . . . . 11
⊢
(((((𝑀 ∈ LMod
∧ 𝑆 ∈ 𝒫
𝐵 ∧ 𝑅 ∈ NzRing) ∧ 𝑠 ∈ 𝑆) ∧ 𝑓 ∈ (𝐸 ↑m (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → (1r‘𝑅) ∈ 𝐸) |
11 | | simpllr 773 |
. . . . . . . . . . 11
⊢
(((((𝑀 ∈ LMod
∧ 𝑆 ∈ 𝒫
𝐵 ∧ 𝑅 ∈ NzRing) ∧ 𝑠 ∈ 𝑆) ∧ 𝑓 ∈ (𝐸 ↑m (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → 𝑠 ∈ 𝑆) |
12 | | simplr 766 |
. . . . . . . . . . 11
⊢
(((((𝑀 ∈ LMod
∧ 𝑆 ∈ 𝒫
𝐵 ∧ 𝑅 ∈ NzRing) ∧ 𝑠 ∈ 𝑆) ∧ 𝑓 ∈ (𝐸 ↑m (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → 𝑓 ∈ (𝐸 ↑m (𝑆 ∖ {𝑠}))) |
13 | 10, 11, 12 | 3jca 1127 |
. . . . . . . . . 10
⊢
(((((𝑀 ∈ LMod
∧ 𝑆 ∈ 𝒫
𝐵 ∧ 𝑅 ∈ NzRing) ∧ 𝑠 ∈ 𝑆) ∧ 𝑓 ∈ (𝐸 ↑m (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → ((1r‘𝑅) ∈ 𝐸 ∧ 𝑠 ∈ 𝑆 ∧ 𝑓 ∈ (𝐸 ↑m (𝑆 ∖ {𝑠})))) |
14 | | simprl 768 |
. . . . . . . . . 10
⊢
(((((𝑀 ∈ LMod
∧ 𝑆 ∈ 𝒫
𝐵 ∧ 𝑅 ∈ NzRing) ∧ 𝑠 ∈ 𝑆) ∧ 𝑓 ∈ (𝐸 ↑m (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → 𝑓 finSupp 0 ) |
15 | | islindeps2.b |
. . . . . . . . . . 11
⊢ 𝐵 = (Base‘𝑀) |
16 | | islindeps2.r |
. . . . . . . . . . 11
⊢ 𝑅 = (Scalar‘𝑀) |
17 | | islindeps2.0 |
. . . . . . . . . . 11
⊢ 0 =
(0g‘𝑅) |
18 | | islindeps2.z |
. . . . . . . . . . 11
⊢ 𝑍 = (0g‘𝑀) |
19 | | eqid 2740 |
. . . . . . . . . . 11
⊢
(invg‘𝑅) = (invg‘𝑅) |
20 | | eqid 2740 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘(1r‘𝑅)), (𝑓‘𝑧))) = (𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘(1r‘𝑅)), (𝑓‘𝑧))) |
21 | 15, 16, 5, 17, 18, 19, 20 | lincext2 45775 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧
((1r‘𝑅)
∈ 𝐸 ∧ 𝑠 ∈ 𝑆 ∧ 𝑓 ∈ (𝐸 ↑m (𝑆 ∖ {𝑠}))) ∧ 𝑓 finSupp 0 ) → (𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘(1r‘𝑅)), (𝑓‘𝑧))) finSupp 0 ) |
22 | 3, 13, 14, 21 | syl3anc 1370 |
. . . . . . . . 9
⊢
(((((𝑀 ∈ LMod
∧ 𝑆 ∈ 𝒫
𝐵 ∧ 𝑅 ∈ NzRing) ∧ 𝑠 ∈ 𝑆) ∧ 𝑓 ∈ (𝐸 ↑m (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → (𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘(1r‘𝑅)), (𝑓‘𝑧))) finSupp 0 ) |
23 | | simpl1 1190 |
. . . . . . . . . . . . 13
⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ∧ 𝑅 ∈ NzRing) ∧ 𝑠 ∈ 𝑆) → 𝑀 ∈ LMod) |
24 | | elelpwi 4551 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑠 ∈ 𝑆 ∧ 𝑆 ∈ 𝒫 𝐵) → 𝑠 ∈ 𝐵) |
25 | 24 | expcom 414 |
. . . . . . . . . . . . . . 15
⊢ (𝑆 ∈ 𝒫 𝐵 → (𝑠 ∈ 𝑆 → 𝑠 ∈ 𝐵)) |
26 | 25 | 3ad2ant2 1133 |
. . . . . . . . . . . . . 14
⊢ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ∧ 𝑅 ∈ NzRing) → (𝑠 ∈ 𝑆 → 𝑠 ∈ 𝐵)) |
27 | 26 | imp 407 |
. . . . . . . . . . . . 13
⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ∧ 𝑅 ∈ NzRing) ∧ 𝑠 ∈ 𝑆) → 𝑠 ∈ 𝐵) |
28 | | eqid 2740 |
. . . . . . . . . . . . . 14
⊢ (
·𝑠 ‘𝑀) = ( ·𝑠
‘𝑀) |
29 | 15, 16, 28, 6 | lmodvs1 20162 |
. . . . . . . . . . . . 13
⊢ ((𝑀 ∈ LMod ∧ 𝑠 ∈ 𝐵) → ((1r‘𝑅)(
·𝑠 ‘𝑀)𝑠) = 𝑠) |
30 | 23, 27, 29 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ∧ 𝑅 ∈ NzRing) ∧ 𝑠 ∈ 𝑆) → ((1r‘𝑅)(
·𝑠 ‘𝑀)𝑠) = 𝑠) |
31 | 30 | adantr 481 |
. . . . . . . . . . 11
⊢ ((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ∧ 𝑅 ∈ NzRing) ∧ 𝑠 ∈ 𝑆) ∧ 𝑓 ∈ (𝐸 ↑m (𝑆 ∖ {𝑠}))) → ((1r‘𝑅)(
·𝑠 ‘𝑀)𝑠) = 𝑠) |
32 | | id 22 |
. . . . . . . . . . . . 13
⊢ ((𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠 → (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) |
33 | 32 | eqcomd 2746 |
. . . . . . . . . . . 12
⊢ ((𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠 → 𝑠 = (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠}))) |
34 | 33 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) → 𝑠 = (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠}))) |
35 | 31, 34 | sylan9eq 2800 |
. . . . . . . . . 10
⊢
(((((𝑀 ∈ LMod
∧ 𝑆 ∈ 𝒫
𝐵 ∧ 𝑅 ∈ NzRing) ∧ 𝑠 ∈ 𝑆) ∧ 𝑓 ∈ (𝐸 ↑m (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → ((1r‘𝑅)(
·𝑠 ‘𝑀)𝑠) = (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠}))) |
36 | 15, 16, 5, 17, 18, 19, 20 | lincext3 45776 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧
((1r‘𝑅)
∈ 𝐸 ∧ 𝑠 ∈ 𝑆 ∧ 𝑓 ∈ (𝐸 ↑m (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧
((1r‘𝑅)(
·𝑠 ‘𝑀)𝑠) = (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})))) → ((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘(1r‘𝑅)), (𝑓‘𝑧)))( linC ‘𝑀)𝑆) = 𝑍) |
37 | 3, 13, 14, 35, 36 | syl112anc 1373 |
. . . . . . . . 9
⊢
(((((𝑀 ∈ LMod
∧ 𝑆 ∈ 𝒫
𝐵 ∧ 𝑅 ∈ NzRing) ∧ 𝑠 ∈ 𝑆) ∧ 𝑓 ∈ (𝐸 ↑m (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → ((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘(1r‘𝑅)), (𝑓‘𝑧)))( linC ‘𝑀)𝑆) = 𝑍) |
38 | 22, 37 | jca 512 |
. . . . . . . 8
⊢
(((((𝑀 ∈ LMod
∧ 𝑆 ∈ 𝒫
𝐵 ∧ 𝑅 ∈ NzRing) ∧ 𝑠 ∈ 𝑆) ∧ 𝑓 ∈ (𝐸 ↑m (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → ((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘(1r‘𝑅)), (𝑓‘𝑧))) finSupp 0 ∧ ((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘(1r‘𝑅)), (𝑓‘𝑧)))( linC ‘𝑀)𝑆) = 𝑍)) |
39 | | eqidd 2741 |
. . . . . . . . . . . 12
⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ∧ 𝑅 ∈ NzRing) ∧ 𝑠 ∈ 𝑆) → (𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘(1r‘𝑅)), (𝑓‘𝑧))) = (𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘(1r‘𝑅)), (𝑓‘𝑧)))) |
40 | | iftrue 4471 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑠 → if(𝑧 = 𝑠, ((invg‘𝑅)‘(1r‘𝑅)), (𝑓‘𝑧)) = ((invg‘𝑅)‘(1r‘𝑅))) |
41 | 40 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ∧ 𝑅 ∈ NzRing) ∧ 𝑠 ∈ 𝑆) ∧ 𝑧 = 𝑠) → if(𝑧 = 𝑠, ((invg‘𝑅)‘(1r‘𝑅)), (𝑓‘𝑧)) = ((invg‘𝑅)‘(1r‘𝑅))) |
42 | | simpr 485 |
. . . . . . . . . . . 12
⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ∧ 𝑅 ∈ NzRing) ∧ 𝑠 ∈ 𝑆) → 𝑠 ∈ 𝑆) |
43 | | fvexd 6786 |
. . . . . . . . . . . 12
⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ∧ 𝑅 ∈ NzRing) ∧ 𝑠 ∈ 𝑆) → ((invg‘𝑅)‘(1r‘𝑅)) ∈ V) |
44 | 39, 41, 42, 43 | fvmptd 6879 |
. . . . . . . . . . 11
⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ∧ 𝑅 ∈ NzRing) ∧ 𝑠 ∈ 𝑆) → ((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘(1r‘𝑅)), (𝑓‘𝑧)))‘𝑠) = ((invg‘𝑅)‘(1r‘𝑅))) |
45 | | nzrneg1ne0 45406 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ∈ NzRing →
((invg‘𝑅)‘(1r‘𝑅)) ≠
(0g‘𝑅)) |
46 | 17 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ∈ NzRing → 0 =
(0g‘𝑅)) |
47 | 45, 46 | neeqtrrd 3020 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ NzRing →
((invg‘𝑅)‘(1r‘𝑅)) ≠ 0 ) |
48 | 47 | 3ad2ant3 1134 |
. . . . . . . . . . . 12
⊢ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ∧ 𝑅 ∈ NzRing) →
((invg‘𝑅)‘(1r‘𝑅)) ≠ 0 ) |
49 | 48 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ∧ 𝑅 ∈ NzRing) ∧ 𝑠 ∈ 𝑆) → ((invg‘𝑅)‘(1r‘𝑅)) ≠ 0 ) |
50 | 44, 49 | eqnetrd 3013 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ∧ 𝑅 ∈ NzRing) ∧ 𝑠 ∈ 𝑆) → ((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘(1r‘𝑅)), (𝑓‘𝑧)))‘𝑠) ≠ 0 ) |
51 | 50 | adantr 481 |
. . . . . . . . 9
⊢ ((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ∧ 𝑅 ∈ NzRing) ∧ 𝑠 ∈ 𝑆) ∧ 𝑓 ∈ (𝐸 ↑m (𝑆 ∖ {𝑠}))) → ((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘(1r‘𝑅)), (𝑓‘𝑧)))‘𝑠) ≠ 0 ) |
52 | 51 | adantr 481 |
. . . . . . . 8
⊢
(((((𝑀 ∈ LMod
∧ 𝑆 ∈ 𝒫
𝐵 ∧ 𝑅 ∈ NzRing) ∧ 𝑠 ∈ 𝑆) ∧ 𝑓 ∈ (𝐸 ↑m (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → ((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘(1r‘𝑅)), (𝑓‘𝑧)))‘𝑠) ≠ 0 ) |
53 | 15, 16, 5, 17, 18, 19, 20 | lincext1 45774 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧
((1r‘𝑅)
∈ 𝐸 ∧ 𝑠 ∈ 𝑆 ∧ 𝑓 ∈ (𝐸 ↑m (𝑆 ∖ {𝑠})))) → (𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘(1r‘𝑅)), (𝑓‘𝑧))) ∈ (𝐸 ↑m 𝑆)) |
54 | 3, 13, 53 | syl2anc 584 |
. . . . . . . . 9
⊢
(((((𝑀 ∈ LMod
∧ 𝑆 ∈ 𝒫
𝐵 ∧ 𝑅 ∈ NzRing) ∧ 𝑠 ∈ 𝑆) ∧ 𝑓 ∈ (𝐸 ↑m (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → (𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘(1r‘𝑅)), (𝑓‘𝑧))) ∈ (𝐸 ↑m 𝑆)) |
55 | | breq1 5082 |
. . . . . . . . . . . 12
⊢ (𝑔 = (𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘(1r‘𝑅)), (𝑓‘𝑧))) → (𝑔 finSupp 0 ↔ (𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘(1r‘𝑅)), (𝑓‘𝑧))) finSupp 0 )) |
56 | | oveq1 7279 |
. . . . . . . . . . . . 13
⊢ (𝑔 = (𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘(1r‘𝑅)), (𝑓‘𝑧))) → (𝑔( linC ‘𝑀)𝑆) = ((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘(1r‘𝑅)), (𝑓‘𝑧)))( linC ‘𝑀)𝑆)) |
57 | 56 | eqeq1d 2742 |
. . . . . . . . . . . 12
⊢ (𝑔 = (𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘(1r‘𝑅)), (𝑓‘𝑧))) → ((𝑔( linC ‘𝑀)𝑆) = 𝑍 ↔ ((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘(1r‘𝑅)), (𝑓‘𝑧)))( linC ‘𝑀)𝑆) = 𝑍)) |
58 | 55, 57 | anbi12d 631 |
. . . . . . . . . . 11
⊢ (𝑔 = (𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘(1r‘𝑅)), (𝑓‘𝑧))) → ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ↔ ((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘(1r‘𝑅)), (𝑓‘𝑧))) finSupp 0 ∧ ((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘(1r‘𝑅)), (𝑓‘𝑧)))( linC ‘𝑀)𝑆) = 𝑍))) |
59 | | fveq1 6770 |
. . . . . . . . . . . 12
⊢ (𝑔 = (𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘(1r‘𝑅)), (𝑓‘𝑧))) → (𝑔‘𝑠) = ((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘(1r‘𝑅)), (𝑓‘𝑧)))‘𝑠)) |
60 | 59 | neeq1d 3005 |
. . . . . . . . . . 11
⊢ (𝑔 = (𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘(1r‘𝑅)), (𝑓‘𝑧))) → ((𝑔‘𝑠) ≠ 0 ↔ ((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘(1r‘𝑅)), (𝑓‘𝑧)))‘𝑠) ≠ 0 )) |
61 | 58, 60 | anbi12d 631 |
. . . . . . . . . 10
⊢ (𝑔 = (𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘(1r‘𝑅)), (𝑓‘𝑧))) → (((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔‘𝑠) ≠ 0 ) ↔ (((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘(1r‘𝑅)), (𝑓‘𝑧))) finSupp 0 ∧ ((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘(1r‘𝑅)), (𝑓‘𝑧)))( linC ‘𝑀)𝑆) = 𝑍) ∧ ((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘(1r‘𝑅)), (𝑓‘𝑧)))‘𝑠) ≠ 0 ))) |
62 | 61 | adantl 482 |
. . . . . . . . 9
⊢
((((((𝑀 ∈ LMod
∧ 𝑆 ∈ 𝒫
𝐵 ∧ 𝑅 ∈ NzRing) ∧ 𝑠 ∈ 𝑆) ∧ 𝑓 ∈ (𝐸 ↑m (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) ∧ 𝑔 = (𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘(1r‘𝑅)), (𝑓‘𝑧)))) → (((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔‘𝑠) ≠ 0 ) ↔ (((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘(1r‘𝑅)), (𝑓‘𝑧))) finSupp 0 ∧ ((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘(1r‘𝑅)), (𝑓‘𝑧)))( linC ‘𝑀)𝑆) = 𝑍) ∧ ((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘(1r‘𝑅)), (𝑓‘𝑧)))‘𝑠) ≠ 0 ))) |
63 | 54, 62 | rspcedv 3553 |
. . . . . . . 8
⊢
(((((𝑀 ∈ LMod
∧ 𝑆 ∈ 𝒫
𝐵 ∧ 𝑅 ∈ NzRing) ∧ 𝑠 ∈ 𝑆) ∧ 𝑓 ∈ (𝐸 ↑m (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → ((((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘(1r‘𝑅)), (𝑓‘𝑧))) finSupp 0 ∧ ((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘(1r‘𝑅)), (𝑓‘𝑧)))( linC ‘𝑀)𝑆) = 𝑍) ∧ ((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘(1r‘𝑅)), (𝑓‘𝑧)))‘𝑠) ≠ 0 ) → ∃𝑔 ∈ (𝐸 ↑m 𝑆)((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔‘𝑠) ≠ 0 ))) |
64 | 38, 52, 63 | mp2and 696 |
. . . . . . 7
⊢
(((((𝑀 ∈ LMod
∧ 𝑆 ∈ 𝒫
𝐵 ∧ 𝑅 ∈ NzRing) ∧ 𝑠 ∈ 𝑆) ∧ 𝑓 ∈ (𝐸 ↑m (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → ∃𝑔 ∈ (𝐸 ↑m 𝑆)((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔‘𝑠) ≠ 0 )) |
65 | 64 | rexlimdva2 3218 |
. . . . . 6
⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ∧ 𝑅 ∈ NzRing) ∧ 𝑠 ∈ 𝑆) → (∃𝑓 ∈ (𝐸 ↑m (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) → ∃𝑔 ∈ (𝐸 ↑m 𝑆)((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔‘𝑠) ≠ 0 ))) |
66 | 65 | reximdva 3205 |
. . . . 5
⊢ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ∧ 𝑅 ∈ NzRing) → (∃𝑠 ∈ 𝑆 ∃𝑓 ∈ (𝐸 ↑m (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) → ∃𝑠 ∈ 𝑆 ∃𝑔 ∈ (𝐸 ↑m 𝑆)((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔‘𝑠) ≠ 0 ))) |
67 | 66 | imp 407 |
. . . 4
⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ∧ 𝑅 ∈ NzRing) ∧ ∃𝑠 ∈ 𝑆 ∃𝑓 ∈ (𝐸 ↑m (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → ∃𝑠 ∈ 𝑆 ∃𝑔 ∈ (𝐸 ↑m 𝑆)((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔‘𝑠) ≠ 0 )) |
68 | | df-3an 1088 |
. . . . . . 7
⊢ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑠 ∈ 𝑆 (𝑔‘𝑠) ≠ 0 ) ↔ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ ∃𝑠 ∈ 𝑆 (𝑔‘𝑠) ≠ 0 )) |
69 | | r19.42v 3279 |
. . . . . . 7
⊢
(∃𝑠 ∈
𝑆 ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔‘𝑠) ≠ 0 ) ↔ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ ∃𝑠 ∈ 𝑆 (𝑔‘𝑠) ≠ 0 )) |
70 | 68, 69 | bitr4i 277 |
. . . . . 6
⊢ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑠 ∈ 𝑆 (𝑔‘𝑠) ≠ 0 ) ↔ ∃𝑠 ∈ 𝑆 ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔‘𝑠) ≠ 0 )) |
71 | 70 | rexbii 3180 |
. . . . 5
⊢
(∃𝑔 ∈
(𝐸 ↑m 𝑆)(𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑠 ∈ 𝑆 (𝑔‘𝑠) ≠ 0 ) ↔ ∃𝑔 ∈ (𝐸 ↑m 𝑆)∃𝑠 ∈ 𝑆 ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔‘𝑠) ≠ 0 )) |
72 | | rexcom 3284 |
. . . . 5
⊢
(∃𝑔 ∈
(𝐸 ↑m 𝑆)∃𝑠 ∈ 𝑆 ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔‘𝑠) ≠ 0 ) ↔ ∃𝑠 ∈ 𝑆 ∃𝑔 ∈ (𝐸 ↑m 𝑆)((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔‘𝑠) ≠ 0 )) |
73 | 71, 72 | bitri 274 |
. . . 4
⊢
(∃𝑔 ∈
(𝐸 ↑m 𝑆)(𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑠 ∈ 𝑆 (𝑔‘𝑠) ≠ 0 ) ↔ ∃𝑠 ∈ 𝑆 ∃𝑔 ∈ (𝐸 ↑m 𝑆)((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔‘𝑠) ≠ 0 )) |
74 | 67, 73 | sylibr 233 |
. . 3
⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ∧ 𝑅 ∈ NzRing) ∧ ∃𝑠 ∈ 𝑆 ∃𝑓 ∈ (𝐸 ↑m (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → ∃𝑔 ∈ (𝐸 ↑m 𝑆)(𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑠 ∈ 𝑆 (𝑔‘𝑠) ≠ 0 )) |
75 | 15, 18, 16, 5, 17 | islindeps 45773 |
. . . . 5
⊢ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) → (𝑆 linDepS 𝑀 ↔ ∃𝑔 ∈ (𝐸 ↑m 𝑆)(𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑠 ∈ 𝑆 (𝑔‘𝑠) ≠ 0 ))) |
76 | 75 | 3adant3 1131 |
. . . 4
⊢ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ∧ 𝑅 ∈ NzRing) → (𝑆 linDepS 𝑀 ↔ ∃𝑔 ∈ (𝐸 ↑m 𝑆)(𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑠 ∈ 𝑆 (𝑔‘𝑠) ≠ 0 ))) |
77 | 76 | adantr 481 |
. . 3
⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ∧ 𝑅 ∈ NzRing) ∧ ∃𝑠 ∈ 𝑆 ∃𝑓 ∈ (𝐸 ↑m (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → (𝑆 linDepS 𝑀 ↔ ∃𝑔 ∈ (𝐸 ↑m 𝑆)(𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑠 ∈ 𝑆 (𝑔‘𝑠) ≠ 0 ))) |
78 | 74, 77 | mpbird 256 |
. 2
⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ∧ 𝑅 ∈ NzRing) ∧ ∃𝑠 ∈ 𝑆 ∃𝑓 ∈ (𝐸 ↑m (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → 𝑆 linDepS 𝑀) |
79 | 78 | ex 413 |
1
⊢ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ∧ 𝑅 ∈ NzRing) → (∃𝑠 ∈ 𝑆 ∃𝑓 ∈ (𝐸 ↑m (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) → 𝑆 linDepS 𝑀)) |