Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincsum Structured version   Visualization version   GIF version

Theorem lincsum 47063
Description: The sum of two linear combinations is a linear combination, see also the proof in [Lang] p. 129. (Contributed by AV, 4-Apr-2019.) (Revised by AV, 28-Jul-2019.)
Hypotheses
Ref Expression
lincsum.p + = (+gβ€˜π‘€)
lincsum.x 𝑋 = (𝐴( linC β€˜π‘€)𝑉)
lincsum.y π‘Œ = (𝐡( linC β€˜π‘€)𝑉)
lincsum.s 𝑆 = (Scalarβ€˜π‘€)
lincsum.r 𝑅 = (Baseβ€˜π‘†)
lincsum.b ✚ = (+gβ€˜π‘†)
Assertion
Ref Expression
lincsum (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐡 ∈ (𝑅 ↑m 𝑉)) ∧ (𝐴 finSupp (0gβ€˜π‘†) ∧ 𝐡 finSupp (0gβ€˜π‘†))) β†’ (𝑋 + π‘Œ) = ((𝐴 ∘f ✚ 𝐡)( linC β€˜π‘€)𝑉))

Proof of Theorem lincsum
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2732 . . 3 (Baseβ€˜π‘€) = (Baseβ€˜π‘€)
2 eqid 2732 . . 3 (0gβ€˜π‘€) = (0gβ€˜π‘€)
3 lincsum.p . . 3 + = (+gβ€˜π‘€)
4 lmodcmn 20512 . . . . 5 (𝑀 ∈ LMod β†’ 𝑀 ∈ CMnd)
54adantr 481 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) β†’ 𝑀 ∈ CMnd)
653ad2ant1 1133 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐡 ∈ (𝑅 ↑m 𝑉)) ∧ (𝐴 finSupp (0gβ€˜π‘†) ∧ 𝐡 finSupp (0gβ€˜π‘†))) β†’ 𝑀 ∈ CMnd)
7 simpr 485 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) β†’ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€))
873ad2ant1 1133 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐡 ∈ (𝑅 ↑m 𝑉)) ∧ (𝐴 finSupp (0gβ€˜π‘†) ∧ 𝐡 finSupp (0gβ€˜π‘†))) β†’ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€))
9 simpl 483 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) β†’ 𝑀 ∈ LMod)
1093ad2ant1 1133 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐡 ∈ (𝑅 ↑m 𝑉)) ∧ (𝐴 finSupp (0gβ€˜π‘†) ∧ 𝐡 finSupp (0gβ€˜π‘†))) β†’ 𝑀 ∈ LMod)
1110adantr 481 . . . 4 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐡 ∈ (𝑅 ↑m 𝑉)) ∧ (𝐴 finSupp (0gβ€˜π‘†) ∧ 𝐡 finSupp (0gβ€˜π‘†))) ∧ π‘₯ ∈ 𝑉) β†’ 𝑀 ∈ LMod)
12 elmapi 8839 . . . . . . . 8 (𝐴 ∈ (𝑅 ↑m 𝑉) β†’ 𝐴:π‘‰βŸΆπ‘…)
13 ffvelcdm 7080 . . . . . . . . 9 ((𝐴:π‘‰βŸΆπ‘… ∧ π‘₯ ∈ 𝑉) β†’ (π΄β€˜π‘₯) ∈ 𝑅)
1413ex 413 . . . . . . . 8 (𝐴:π‘‰βŸΆπ‘… β†’ (π‘₯ ∈ 𝑉 β†’ (π΄β€˜π‘₯) ∈ 𝑅))
1512, 14syl 17 . . . . . . 7 (𝐴 ∈ (𝑅 ↑m 𝑉) β†’ (π‘₯ ∈ 𝑉 β†’ (π΄β€˜π‘₯) ∈ 𝑅))
1615adantr 481 . . . . . 6 ((𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐡 ∈ (𝑅 ↑m 𝑉)) β†’ (π‘₯ ∈ 𝑉 β†’ (π΄β€˜π‘₯) ∈ 𝑅))
17163ad2ant2 1134 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐡 ∈ (𝑅 ↑m 𝑉)) ∧ (𝐴 finSupp (0gβ€˜π‘†) ∧ 𝐡 finSupp (0gβ€˜π‘†))) β†’ (π‘₯ ∈ 𝑉 β†’ (π΄β€˜π‘₯) ∈ 𝑅))
1817imp 407 . . . 4 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐡 ∈ (𝑅 ↑m 𝑉)) ∧ (𝐴 finSupp (0gβ€˜π‘†) ∧ 𝐡 finSupp (0gβ€˜π‘†))) ∧ π‘₯ ∈ 𝑉) β†’ (π΄β€˜π‘₯) ∈ 𝑅)
19 elelpwi 4611 . . . . . . . 8 ((π‘₯ ∈ 𝑉 ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) β†’ π‘₯ ∈ (Baseβ€˜π‘€))
2019expcom 414 . . . . . . 7 (𝑉 ∈ 𝒫 (Baseβ€˜π‘€) β†’ (π‘₯ ∈ 𝑉 β†’ π‘₯ ∈ (Baseβ€˜π‘€)))
2120adantl 482 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) β†’ (π‘₯ ∈ 𝑉 β†’ π‘₯ ∈ (Baseβ€˜π‘€)))
22213ad2ant1 1133 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐡 ∈ (𝑅 ↑m 𝑉)) ∧ (𝐴 finSupp (0gβ€˜π‘†) ∧ 𝐡 finSupp (0gβ€˜π‘†))) β†’ (π‘₯ ∈ 𝑉 β†’ π‘₯ ∈ (Baseβ€˜π‘€)))
2322imp 407 . . . 4 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐡 ∈ (𝑅 ↑m 𝑉)) ∧ (𝐴 finSupp (0gβ€˜π‘†) ∧ 𝐡 finSupp (0gβ€˜π‘†))) ∧ π‘₯ ∈ 𝑉) β†’ π‘₯ ∈ (Baseβ€˜π‘€))
24 lincsum.s . . . . 5 𝑆 = (Scalarβ€˜π‘€)
25 eqid 2732 . . . . 5 ( ·𝑠 β€˜π‘€) = ( ·𝑠 β€˜π‘€)
26 lincsum.r . . . . 5 𝑅 = (Baseβ€˜π‘†)
271, 24, 25, 26lmodvscl 20481 . . . 4 ((𝑀 ∈ LMod ∧ (π΄β€˜π‘₯) ∈ 𝑅 ∧ π‘₯ ∈ (Baseβ€˜π‘€)) β†’ ((π΄β€˜π‘₯)( ·𝑠 β€˜π‘€)π‘₯) ∈ (Baseβ€˜π‘€))
2811, 18, 23, 27syl3anc 1371 . . 3 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐡 ∈ (𝑅 ↑m 𝑉)) ∧ (𝐴 finSupp (0gβ€˜π‘†) ∧ 𝐡 finSupp (0gβ€˜π‘†))) ∧ π‘₯ ∈ 𝑉) β†’ ((π΄β€˜π‘₯)( ·𝑠 β€˜π‘€)π‘₯) ∈ (Baseβ€˜π‘€))
29 elmapi 8839 . . . . . . . 8 (𝐡 ∈ (𝑅 ↑m 𝑉) β†’ 𝐡:π‘‰βŸΆπ‘…)
30 ffvelcdm 7080 . . . . . . . . 9 ((𝐡:π‘‰βŸΆπ‘… ∧ π‘₯ ∈ 𝑉) β†’ (π΅β€˜π‘₯) ∈ 𝑅)
3130ex 413 . . . . . . . 8 (𝐡:π‘‰βŸΆπ‘… β†’ (π‘₯ ∈ 𝑉 β†’ (π΅β€˜π‘₯) ∈ 𝑅))
3229, 31syl 17 . . . . . . 7 (𝐡 ∈ (𝑅 ↑m 𝑉) β†’ (π‘₯ ∈ 𝑉 β†’ (π΅β€˜π‘₯) ∈ 𝑅))
3332adantl 482 . . . . . 6 ((𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐡 ∈ (𝑅 ↑m 𝑉)) β†’ (π‘₯ ∈ 𝑉 β†’ (π΅β€˜π‘₯) ∈ 𝑅))
34333ad2ant2 1134 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐡 ∈ (𝑅 ↑m 𝑉)) ∧ (𝐴 finSupp (0gβ€˜π‘†) ∧ 𝐡 finSupp (0gβ€˜π‘†))) β†’ (π‘₯ ∈ 𝑉 β†’ (π΅β€˜π‘₯) ∈ 𝑅))
3534imp 407 . . . 4 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐡 ∈ (𝑅 ↑m 𝑉)) ∧ (𝐴 finSupp (0gβ€˜π‘†) ∧ 𝐡 finSupp (0gβ€˜π‘†))) ∧ π‘₯ ∈ 𝑉) β†’ (π΅β€˜π‘₯) ∈ 𝑅)
361, 24, 25, 26lmodvscl 20481 . . . 4 ((𝑀 ∈ LMod ∧ (π΅β€˜π‘₯) ∈ 𝑅 ∧ π‘₯ ∈ (Baseβ€˜π‘€)) β†’ ((π΅β€˜π‘₯)( ·𝑠 β€˜π‘€)π‘₯) ∈ (Baseβ€˜π‘€))
3711, 35, 23, 36syl3anc 1371 . . 3 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐡 ∈ (𝑅 ↑m 𝑉)) ∧ (𝐴 finSupp (0gβ€˜π‘†) ∧ 𝐡 finSupp (0gβ€˜π‘†))) ∧ π‘₯ ∈ 𝑉) β†’ ((π΅β€˜π‘₯)( ·𝑠 β€˜π‘€)π‘₯) ∈ (Baseβ€˜π‘€))
38 eqidd 2733 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐡 ∈ (𝑅 ↑m 𝑉)) ∧ (𝐴 finSupp (0gβ€˜π‘†) ∧ 𝐡 finSupp (0gβ€˜π‘†))) β†’ (π‘₯ ∈ 𝑉 ↦ ((π΄β€˜π‘₯)( ·𝑠 β€˜π‘€)π‘₯)) = (π‘₯ ∈ 𝑉 ↦ ((π΄β€˜π‘₯)( ·𝑠 β€˜π‘€)π‘₯)))
39 eqidd 2733 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐡 ∈ (𝑅 ↑m 𝑉)) ∧ (𝐴 finSupp (0gβ€˜π‘†) ∧ 𝐡 finSupp (0gβ€˜π‘†))) β†’ (π‘₯ ∈ 𝑉 ↦ ((π΅β€˜π‘₯)( ·𝑠 β€˜π‘€)π‘₯)) = (π‘₯ ∈ 𝑉 ↦ ((π΅β€˜π‘₯)( ·𝑠 β€˜π‘€)π‘₯)))
40 id 22 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) β†’ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)))
41 simpl 483 . . . 4 ((𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐡 ∈ (𝑅 ↑m 𝑉)) β†’ 𝐴 ∈ (𝑅 ↑m 𝑉))
42 simpl 483 . . . 4 ((𝐴 finSupp (0gβ€˜π‘†) ∧ 𝐡 finSupp (0gβ€˜π‘†)) β†’ 𝐴 finSupp (0gβ€˜π‘†))
4324, 26scmfsupp 47007 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐴 finSupp (0gβ€˜π‘†)) β†’ (π‘₯ ∈ 𝑉 ↦ ((π΄β€˜π‘₯)( ·𝑠 β€˜π‘€)π‘₯)) finSupp (0gβ€˜π‘€))
4440, 41, 42, 43syl3an 1160 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐡 ∈ (𝑅 ↑m 𝑉)) ∧ (𝐴 finSupp (0gβ€˜π‘†) ∧ 𝐡 finSupp (0gβ€˜π‘†))) β†’ (π‘₯ ∈ 𝑉 ↦ ((π΄β€˜π‘₯)( ·𝑠 β€˜π‘€)π‘₯)) finSupp (0gβ€˜π‘€))
45 simpr 485 . . . 4 ((𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐡 ∈ (𝑅 ↑m 𝑉)) β†’ 𝐡 ∈ (𝑅 ↑m 𝑉))
46 simpr 485 . . . 4 ((𝐴 finSupp (0gβ€˜π‘†) ∧ 𝐡 finSupp (0gβ€˜π‘†)) β†’ 𝐡 finSupp (0gβ€˜π‘†))
4724, 26scmfsupp 47007 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝐡 ∈ (𝑅 ↑m 𝑉) ∧ 𝐡 finSupp (0gβ€˜π‘†)) β†’ (π‘₯ ∈ 𝑉 ↦ ((π΅β€˜π‘₯)( ·𝑠 β€˜π‘€)π‘₯)) finSupp (0gβ€˜π‘€))
4840, 45, 46, 47syl3an 1160 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐡 ∈ (𝑅 ↑m 𝑉)) ∧ (𝐴 finSupp (0gβ€˜π‘†) ∧ 𝐡 finSupp (0gβ€˜π‘†))) β†’ (π‘₯ ∈ 𝑉 ↦ ((π΅β€˜π‘₯)( ·𝑠 β€˜π‘€)π‘₯)) finSupp (0gβ€˜π‘€))
491, 2, 3, 6, 8, 28, 37, 38, 39, 44, 48gsummptfsadd 19786 . 2 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐡 ∈ (𝑅 ↑m 𝑉)) ∧ (𝐴 finSupp (0gβ€˜π‘†) ∧ 𝐡 finSupp (0gβ€˜π‘†))) β†’ (𝑀 Ξ£g (π‘₯ ∈ 𝑉 ↦ (((π΄β€˜π‘₯)( ·𝑠 β€˜π‘€)π‘₯) + ((π΅β€˜π‘₯)( ·𝑠 β€˜π‘€)π‘₯)))) = ((𝑀 Ξ£g (π‘₯ ∈ 𝑉 ↦ ((π΄β€˜π‘₯)( ·𝑠 β€˜π‘€)π‘₯))) + (𝑀 Ξ£g (π‘₯ ∈ 𝑉 ↦ ((π΅β€˜π‘₯)( ·𝑠 β€˜π‘€)π‘₯)))))
507adantr 481 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐡 ∈ (𝑅 ↑m 𝑉))) β†’ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€))
51 elmapfn 8855 . . . . . . . 8 (𝐴 ∈ (𝑅 ↑m 𝑉) β†’ 𝐴 Fn 𝑉)
5251ad2antrl 726 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐡 ∈ (𝑅 ↑m 𝑉))) β†’ 𝐴 Fn 𝑉)
53 elmapfn 8855 . . . . . . . 8 (𝐡 ∈ (𝑅 ↑m 𝑉) β†’ 𝐡 Fn 𝑉)
5453ad2antll 727 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐡 ∈ (𝑅 ↑m 𝑉))) β†’ 𝐡 Fn 𝑉)
5550, 52, 54offvalfv 46971 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐡 ∈ (𝑅 ↑m 𝑉))) β†’ (𝐴 ∘f ✚ 𝐡) = (𝑦 ∈ 𝑉 ↦ ((π΄β€˜π‘¦) ✚ (π΅β€˜π‘¦))))
56553adant3 1132 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐡 ∈ (𝑅 ↑m 𝑉)) ∧ (𝐴 finSupp (0gβ€˜π‘†) ∧ 𝐡 finSupp (0gβ€˜π‘†))) β†’ (𝐴 ∘f ✚ 𝐡) = (𝑦 ∈ 𝑉 ↦ ((π΄β€˜π‘¦) ✚ (π΅β€˜π‘¦))))
5724lmodfgrp 20472 . . . . . . . . . . 11 (𝑀 ∈ LMod β†’ 𝑆 ∈ Grp)
5857grpmndd 18828 . . . . . . . . . 10 (𝑀 ∈ LMod β†’ 𝑆 ∈ Mnd)
5958ad3antrrr 728 . . . . . . . . 9 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐡 ∈ (𝑅 ↑m 𝑉))) ∧ 𝑦 ∈ 𝑉) β†’ 𝑆 ∈ Mnd)
60 ffvelcdm 7080 . . . . . . . . . . . . . 14 ((𝐴:π‘‰βŸΆπ‘… ∧ 𝑦 ∈ 𝑉) β†’ (π΄β€˜π‘¦) ∈ 𝑅)
6160ex 413 . . . . . . . . . . . . 13 (𝐴:π‘‰βŸΆπ‘… β†’ (𝑦 ∈ 𝑉 β†’ (π΄β€˜π‘¦) ∈ 𝑅))
6212, 61syl 17 . . . . . . . . . . . 12 (𝐴 ∈ (𝑅 ↑m 𝑉) β†’ (𝑦 ∈ 𝑉 β†’ (π΄β€˜π‘¦) ∈ 𝑅))
6362ad2antrl 726 . . . . . . . . . . 11 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐡 ∈ (𝑅 ↑m 𝑉))) β†’ (𝑦 ∈ 𝑉 β†’ (π΄β€˜π‘¦) ∈ 𝑅))
6463imp 407 . . . . . . . . . 10 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐡 ∈ (𝑅 ↑m 𝑉))) ∧ 𝑦 ∈ 𝑉) β†’ (π΄β€˜π‘¦) ∈ 𝑅)
6524fveq2i 6891 . . . . . . . . . . 11 (Baseβ€˜π‘†) = (Baseβ€˜(Scalarβ€˜π‘€))
6626, 65eqtri 2760 . . . . . . . . . 10 𝑅 = (Baseβ€˜(Scalarβ€˜π‘€))
6764, 66eleqtrdi 2843 . . . . . . . . 9 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐡 ∈ (𝑅 ↑m 𝑉))) ∧ 𝑦 ∈ 𝑉) β†’ (π΄β€˜π‘¦) ∈ (Baseβ€˜(Scalarβ€˜π‘€)))
68 ffvelcdm 7080 . . . . . . . . . . . . . 14 ((𝐡:π‘‰βŸΆπ‘… ∧ 𝑦 ∈ 𝑉) β†’ (π΅β€˜π‘¦) ∈ 𝑅)
6968, 66eleqtrdi 2843 . . . . . . . . . . . . 13 ((𝐡:π‘‰βŸΆπ‘… ∧ 𝑦 ∈ 𝑉) β†’ (π΅β€˜π‘¦) ∈ (Baseβ€˜(Scalarβ€˜π‘€)))
7069ex 413 . . . . . . . . . . . 12 (𝐡:π‘‰βŸΆπ‘… β†’ (𝑦 ∈ 𝑉 β†’ (π΅β€˜π‘¦) ∈ (Baseβ€˜(Scalarβ€˜π‘€))))
7129, 70syl 17 . . . . . . . . . . 11 (𝐡 ∈ (𝑅 ↑m 𝑉) β†’ (𝑦 ∈ 𝑉 β†’ (π΅β€˜π‘¦) ∈ (Baseβ€˜(Scalarβ€˜π‘€))))
7271ad2antll 727 . . . . . . . . . 10 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐡 ∈ (𝑅 ↑m 𝑉))) β†’ (𝑦 ∈ 𝑉 β†’ (π΅β€˜π‘¦) ∈ (Baseβ€˜(Scalarβ€˜π‘€))))
7372imp 407 . . . . . . . . 9 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐡 ∈ (𝑅 ↑m 𝑉))) ∧ 𝑦 ∈ 𝑉) β†’ (π΅β€˜π‘¦) ∈ (Baseβ€˜(Scalarβ€˜π‘€)))
7424eqcomi 2741 . . . . . . . . . . 11 (Scalarβ€˜π‘€) = 𝑆
7574fveq2i 6891 . . . . . . . . . 10 (Baseβ€˜(Scalarβ€˜π‘€)) = (Baseβ€˜π‘†)
76 lincsum.b . . . . . . . . . 10 ✚ = (+gβ€˜π‘†)
7775, 76mndcl 18629 . . . . . . . . 9 ((𝑆 ∈ Mnd ∧ (π΄β€˜π‘¦) ∈ (Baseβ€˜(Scalarβ€˜π‘€)) ∧ (π΅β€˜π‘¦) ∈ (Baseβ€˜(Scalarβ€˜π‘€))) β†’ ((π΄β€˜π‘¦) ✚ (π΅β€˜π‘¦)) ∈ (Baseβ€˜(Scalarβ€˜π‘€)))
7859, 67, 73, 77syl3anc 1371 . . . . . . . 8 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐡 ∈ (𝑅 ↑m 𝑉))) ∧ 𝑦 ∈ 𝑉) β†’ ((π΄β€˜π‘¦) ✚ (π΅β€˜π‘¦)) ∈ (Baseβ€˜(Scalarβ€˜π‘€)))
7978fmpttd 7111 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐡 ∈ (𝑅 ↑m 𝑉))) β†’ (𝑦 ∈ 𝑉 ↦ ((π΄β€˜π‘¦) ✚ (π΅β€˜π‘¦))):π‘‰βŸΆ(Baseβ€˜(Scalarβ€˜π‘€)))
80 fvex 6901 . . . . . . . 8 (Baseβ€˜(Scalarβ€˜π‘€)) ∈ V
81 elmapg 8829 . . . . . . . 8 (((Baseβ€˜(Scalarβ€˜π‘€)) ∈ V ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) β†’ ((𝑦 ∈ 𝑉 ↦ ((π΄β€˜π‘¦) ✚ (π΅β€˜π‘¦))) ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉) ↔ (𝑦 ∈ 𝑉 ↦ ((π΄β€˜π‘¦) ✚ (π΅β€˜π‘¦))):π‘‰βŸΆ(Baseβ€˜(Scalarβ€˜π‘€))))
8280, 50, 81sylancr 587 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐡 ∈ (𝑅 ↑m 𝑉))) β†’ ((𝑦 ∈ 𝑉 ↦ ((π΄β€˜π‘¦) ✚ (π΅β€˜π‘¦))) ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉) ↔ (𝑦 ∈ 𝑉 ↦ ((π΄β€˜π‘¦) ✚ (π΅β€˜π‘¦))):π‘‰βŸΆ(Baseβ€˜(Scalarβ€˜π‘€))))
8379, 82mpbird 256 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐡 ∈ (𝑅 ↑m 𝑉))) β†’ (𝑦 ∈ 𝑉 ↦ ((π΄β€˜π‘¦) ✚ (π΅β€˜π‘¦))) ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉))
84833adant3 1132 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐡 ∈ (𝑅 ↑m 𝑉)) ∧ (𝐴 finSupp (0gβ€˜π‘†) ∧ 𝐡 finSupp (0gβ€˜π‘†))) β†’ (𝑦 ∈ 𝑉 ↦ ((π΄β€˜π‘¦) ✚ (π΅β€˜π‘¦))) ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉))
8556, 84eqeltrd 2833 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐡 ∈ (𝑅 ↑m 𝑉)) ∧ (𝐴 finSupp (0gβ€˜π‘†) ∧ 𝐡 finSupp (0gβ€˜π‘†))) β†’ (𝐴 ∘f ✚ 𝐡) ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉))
86 lincval 47043 . . . 4 ((𝑀 ∈ LMod ∧ (𝐴 ∘f ✚ 𝐡) ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) β†’ ((𝐴 ∘f ✚ 𝐡)( linC β€˜π‘€)𝑉) = (𝑀 Ξ£g (π‘₯ ∈ 𝑉 ↦ (((𝐴 ∘f ✚ 𝐡)β€˜π‘₯)( ·𝑠 β€˜π‘€)π‘₯))))
8710, 85, 8, 86syl3anc 1371 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐡 ∈ (𝑅 ↑m 𝑉)) ∧ (𝐴 finSupp (0gβ€˜π‘†) ∧ 𝐡 finSupp (0gβ€˜π‘†))) β†’ ((𝐴 ∘f ✚ 𝐡)( linC β€˜π‘€)𝑉) = (𝑀 Ξ£g (π‘₯ ∈ 𝑉 ↦ (((𝐴 ∘f ✚ 𝐡)β€˜π‘₯)( ·𝑠 β€˜π‘€)π‘₯))))
8851, 53anim12i 613 . . . . . . . . . . . 12 ((𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐡 ∈ (𝑅 ↑m 𝑉)) β†’ (𝐴 Fn 𝑉 ∧ 𝐡 Fn 𝑉))
8988adantl 482 . . . . . . . . . . 11 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐡 ∈ (𝑅 ↑m 𝑉))) β†’ (𝐴 Fn 𝑉 ∧ 𝐡 Fn 𝑉))
9089adantr 481 . . . . . . . . . 10 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐡 ∈ (𝑅 ↑m 𝑉))) ∧ π‘₯ ∈ 𝑉) β†’ (𝐴 Fn 𝑉 ∧ 𝐡 Fn 𝑉))
9150anim1i 615 . . . . . . . . . 10 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐡 ∈ (𝑅 ↑m 𝑉))) ∧ π‘₯ ∈ 𝑉) β†’ (𝑉 ∈ 𝒫 (Baseβ€˜π‘€) ∧ π‘₯ ∈ 𝑉))
92 fnfvof 7683 . . . . . . . . . 10 (((𝐴 Fn 𝑉 ∧ 𝐡 Fn 𝑉) ∧ (𝑉 ∈ 𝒫 (Baseβ€˜π‘€) ∧ π‘₯ ∈ 𝑉)) β†’ ((𝐴 ∘f ✚ 𝐡)β€˜π‘₯) = ((π΄β€˜π‘₯) ✚ (π΅β€˜π‘₯)))
9390, 91, 92syl2anc 584 . . . . . . . . 9 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐡 ∈ (𝑅 ↑m 𝑉))) ∧ π‘₯ ∈ 𝑉) β†’ ((𝐴 ∘f ✚ 𝐡)β€˜π‘₯) = ((π΄β€˜π‘₯) ✚ (π΅β€˜π‘₯)))
9476a1i 11 . . . . . . . . . 10 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐡 ∈ (𝑅 ↑m 𝑉))) ∧ π‘₯ ∈ 𝑉) β†’ ✚ = (+gβ€˜π‘†))
9594oveqd 7422 . . . . . . . . 9 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐡 ∈ (𝑅 ↑m 𝑉))) ∧ π‘₯ ∈ 𝑉) β†’ ((π΄β€˜π‘₯) ✚ (π΅β€˜π‘₯)) = ((π΄β€˜π‘₯)(+gβ€˜π‘†)(π΅β€˜π‘₯)))
9693, 95eqtrd 2772 . . . . . . . 8 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐡 ∈ (𝑅 ↑m 𝑉))) ∧ π‘₯ ∈ 𝑉) β†’ ((𝐴 ∘f ✚ 𝐡)β€˜π‘₯) = ((π΄β€˜π‘₯)(+gβ€˜π‘†)(π΅β€˜π‘₯)))
9796oveq1d 7420 . . . . . . 7 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐡 ∈ (𝑅 ↑m 𝑉))) ∧ π‘₯ ∈ 𝑉) β†’ (((𝐴 ∘f ✚ 𝐡)β€˜π‘₯)( ·𝑠 β€˜π‘€)π‘₯) = (((π΄β€˜π‘₯)(+gβ€˜π‘†)(π΅β€˜π‘₯))( ·𝑠 β€˜π‘€)π‘₯))
989adantr 481 . . . . . . . . 9 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐡 ∈ (𝑅 ↑m 𝑉))) β†’ 𝑀 ∈ LMod)
9998adantr 481 . . . . . . . 8 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐡 ∈ (𝑅 ↑m 𝑉))) ∧ π‘₯ ∈ 𝑉) β†’ 𝑀 ∈ LMod)
10015ad2antrl 726 . . . . . . . . 9 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐡 ∈ (𝑅 ↑m 𝑉))) β†’ (π‘₯ ∈ 𝑉 β†’ (π΄β€˜π‘₯) ∈ 𝑅))
101100imp 407 . . . . . . . 8 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐡 ∈ (𝑅 ↑m 𝑉))) ∧ π‘₯ ∈ 𝑉) β†’ (π΄β€˜π‘₯) ∈ 𝑅)
10232ad2antll 727 . . . . . . . . 9 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐡 ∈ (𝑅 ↑m 𝑉))) β†’ (π‘₯ ∈ 𝑉 β†’ (π΅β€˜π‘₯) ∈ 𝑅))
103102imp 407 . . . . . . . 8 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐡 ∈ (𝑅 ↑m 𝑉))) ∧ π‘₯ ∈ 𝑉) β†’ (π΅β€˜π‘₯) ∈ 𝑅)
10421adantr 481 . . . . . . . . 9 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐡 ∈ (𝑅 ↑m 𝑉))) β†’ (π‘₯ ∈ 𝑉 β†’ π‘₯ ∈ (Baseβ€˜π‘€)))
105104imp 407 . . . . . . . 8 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐡 ∈ (𝑅 ↑m 𝑉))) ∧ π‘₯ ∈ 𝑉) β†’ π‘₯ ∈ (Baseβ€˜π‘€))
106 eqid 2732 . . . . . . . . 9 (Scalarβ€˜π‘€) = (Scalarβ€˜π‘€)
10724fveq2i 6891 . . . . . . . . 9 (+gβ€˜π‘†) = (+gβ€˜(Scalarβ€˜π‘€))
1081, 3, 106, 25, 66, 107lmodvsdir 20488 . . . . . . . 8 ((𝑀 ∈ LMod ∧ ((π΄β€˜π‘₯) ∈ 𝑅 ∧ (π΅β€˜π‘₯) ∈ 𝑅 ∧ π‘₯ ∈ (Baseβ€˜π‘€))) β†’ (((π΄β€˜π‘₯)(+gβ€˜π‘†)(π΅β€˜π‘₯))( ·𝑠 β€˜π‘€)π‘₯) = (((π΄β€˜π‘₯)( ·𝑠 β€˜π‘€)π‘₯) + ((π΅β€˜π‘₯)( ·𝑠 β€˜π‘€)π‘₯)))
10999, 101, 103, 105, 108syl13anc 1372 . . . . . . 7 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐡 ∈ (𝑅 ↑m 𝑉))) ∧ π‘₯ ∈ 𝑉) β†’ (((π΄β€˜π‘₯)(+gβ€˜π‘†)(π΅β€˜π‘₯))( ·𝑠 β€˜π‘€)π‘₯) = (((π΄β€˜π‘₯)( ·𝑠 β€˜π‘€)π‘₯) + ((π΅β€˜π‘₯)( ·𝑠 β€˜π‘€)π‘₯)))
11097, 109eqtrd 2772 . . . . . 6 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐡 ∈ (𝑅 ↑m 𝑉))) ∧ π‘₯ ∈ 𝑉) β†’ (((𝐴 ∘f ✚ 𝐡)β€˜π‘₯)( ·𝑠 β€˜π‘€)π‘₯) = (((π΄β€˜π‘₯)( ·𝑠 β€˜π‘€)π‘₯) + ((π΅β€˜π‘₯)( ·𝑠 β€˜π‘€)π‘₯)))
111110mpteq2dva 5247 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐡 ∈ (𝑅 ↑m 𝑉))) β†’ (π‘₯ ∈ 𝑉 ↦ (((𝐴 ∘f ✚ 𝐡)β€˜π‘₯)( ·𝑠 β€˜π‘€)π‘₯)) = (π‘₯ ∈ 𝑉 ↦ (((π΄β€˜π‘₯)( ·𝑠 β€˜π‘€)π‘₯) + ((π΅β€˜π‘₯)( ·𝑠 β€˜π‘€)π‘₯))))
112111oveq2d 7421 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐡 ∈ (𝑅 ↑m 𝑉))) β†’ (𝑀 Ξ£g (π‘₯ ∈ 𝑉 ↦ (((𝐴 ∘f ✚ 𝐡)β€˜π‘₯)( ·𝑠 β€˜π‘€)π‘₯))) = (𝑀 Ξ£g (π‘₯ ∈ 𝑉 ↦ (((π΄β€˜π‘₯)( ·𝑠 β€˜π‘€)π‘₯) + ((π΅β€˜π‘₯)( ·𝑠 β€˜π‘€)π‘₯)))))
1131123adant3 1132 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐡 ∈ (𝑅 ↑m 𝑉)) ∧ (𝐴 finSupp (0gβ€˜π‘†) ∧ 𝐡 finSupp (0gβ€˜π‘†))) β†’ (𝑀 Ξ£g (π‘₯ ∈ 𝑉 ↦ (((𝐴 ∘f ✚ 𝐡)β€˜π‘₯)( ·𝑠 β€˜π‘€)π‘₯))) = (𝑀 Ξ£g (π‘₯ ∈ 𝑉 ↦ (((π΄β€˜π‘₯)( ·𝑠 β€˜π‘€)π‘₯) + ((π΅β€˜π‘₯)( ·𝑠 β€˜π‘€)π‘₯)))))
11487, 113eqtrd 2772 . 2 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐡 ∈ (𝑅 ↑m 𝑉)) ∧ (𝐴 finSupp (0gβ€˜π‘†) ∧ 𝐡 finSupp (0gβ€˜π‘†))) β†’ ((𝐴 ∘f ✚ 𝐡)( linC β€˜π‘€)𝑉) = (𝑀 Ξ£g (π‘₯ ∈ 𝑉 ↦ (((π΄β€˜π‘₯)( ·𝑠 β€˜π‘€)π‘₯) + ((π΅β€˜π‘₯)( ·𝑠 β€˜π‘€)π‘₯)))))
115 lincsum.x . . . 4 𝑋 = (𝐴( linC β€˜π‘€)𝑉)
116 lincsum.y . . . 4 π‘Œ = (𝐡( linC β€˜π‘€)𝑉)
117115, 116oveq12i 7417 . . 3 (𝑋 + π‘Œ) = ((𝐴( linC β€˜π‘€)𝑉) + (𝐡( linC β€˜π‘€)𝑉))
11866oveq1i 7415 . . . . . . . . 9 (𝑅 ↑m 𝑉) = ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉)
119118eleq2i 2825 . . . . . . . 8 (𝐴 ∈ (𝑅 ↑m 𝑉) ↔ 𝐴 ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉))
120119biimpi 215 . . . . . . 7 (𝐴 ∈ (𝑅 ↑m 𝑉) β†’ 𝐴 ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉))
121120ad2antrl 726 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐡 ∈ (𝑅 ↑m 𝑉))) β†’ 𝐴 ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉))
122 lincval 47043 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝐴 ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) β†’ (𝐴( linC β€˜π‘€)𝑉) = (𝑀 Ξ£g (π‘₯ ∈ 𝑉 ↦ ((π΄β€˜π‘₯)( ·𝑠 β€˜π‘€)π‘₯))))
12398, 121, 50, 122syl3anc 1371 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐡 ∈ (𝑅 ↑m 𝑉))) β†’ (𝐴( linC β€˜π‘€)𝑉) = (𝑀 Ξ£g (π‘₯ ∈ 𝑉 ↦ ((π΄β€˜π‘₯)( ·𝑠 β€˜π‘€)π‘₯))))
124118eleq2i 2825 . . . . . . . 8 (𝐡 ∈ (𝑅 ↑m 𝑉) ↔ 𝐡 ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉))
125124biimpi 215 . . . . . . 7 (𝐡 ∈ (𝑅 ↑m 𝑉) β†’ 𝐡 ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉))
126125ad2antll 727 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐡 ∈ (𝑅 ↑m 𝑉))) β†’ 𝐡 ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉))
127 lincval 47043 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝐡 ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) β†’ (𝐡( linC β€˜π‘€)𝑉) = (𝑀 Ξ£g (π‘₯ ∈ 𝑉 ↦ ((π΅β€˜π‘₯)( ·𝑠 β€˜π‘€)π‘₯))))
12898, 126, 50, 127syl3anc 1371 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐡 ∈ (𝑅 ↑m 𝑉))) β†’ (𝐡( linC β€˜π‘€)𝑉) = (𝑀 Ξ£g (π‘₯ ∈ 𝑉 ↦ ((π΅β€˜π‘₯)( ·𝑠 β€˜π‘€)π‘₯))))
129123, 128oveq12d 7423 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐡 ∈ (𝑅 ↑m 𝑉))) β†’ ((𝐴( linC β€˜π‘€)𝑉) + (𝐡( linC β€˜π‘€)𝑉)) = ((𝑀 Ξ£g (π‘₯ ∈ 𝑉 ↦ ((π΄β€˜π‘₯)( ·𝑠 β€˜π‘€)π‘₯))) + (𝑀 Ξ£g (π‘₯ ∈ 𝑉 ↦ ((π΅β€˜π‘₯)( ·𝑠 β€˜π‘€)π‘₯)))))
1301293adant3 1132 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐡 ∈ (𝑅 ↑m 𝑉)) ∧ (𝐴 finSupp (0gβ€˜π‘†) ∧ 𝐡 finSupp (0gβ€˜π‘†))) β†’ ((𝐴( linC β€˜π‘€)𝑉) + (𝐡( linC β€˜π‘€)𝑉)) = ((𝑀 Ξ£g (π‘₯ ∈ 𝑉 ↦ ((π΄β€˜π‘₯)( ·𝑠 β€˜π‘€)π‘₯))) + (𝑀 Ξ£g (π‘₯ ∈ 𝑉 ↦ ((π΅β€˜π‘₯)( ·𝑠 β€˜π‘€)π‘₯)))))
131117, 130eqtrid 2784 . 2 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐡 ∈ (𝑅 ↑m 𝑉)) ∧ (𝐴 finSupp (0gβ€˜π‘†) ∧ 𝐡 finSupp (0gβ€˜π‘†))) β†’ (𝑋 + π‘Œ) = ((𝑀 Ξ£g (π‘₯ ∈ 𝑉 ↦ ((π΄β€˜π‘₯)( ·𝑠 β€˜π‘€)π‘₯))) + (𝑀 Ξ£g (π‘₯ ∈ 𝑉 ↦ ((π΅β€˜π‘₯)( ·𝑠 β€˜π‘€)π‘₯)))))
13249, 114, 1313eqtr4rd 2783 1 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐡 ∈ (𝑅 ↑m 𝑉)) ∧ (𝐴 finSupp (0gβ€˜π‘†) ∧ 𝐡 finSupp (0gβ€˜π‘†))) β†’ (𝑋 + π‘Œ) = ((𝐴 ∘f ✚ 𝐡)( linC β€˜π‘€)𝑉))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  Vcvv 3474  π’« cpw 4601   class class class wbr 5147   ↦ cmpt 5230   Fn wfn 6535  βŸΆwf 6536  β€˜cfv 6540  (class class class)co 7405   ∘f cof 7664   ↑m cmap 8816   finSupp cfsupp 9357  Basecbs 17140  +gcplusg 17193  Scalarcsca 17196   ·𝑠 cvsca 17197  0gc0g 17381   Ξ£g cgsu 17382  Mndcmnd 18621  CMndccmn 19642  LModclmod 20463   linC clinc 47038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7666  df-om 7852  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fsupp 9358  df-oi 9501  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-n0 12469  df-z 12555  df-uz 12819  df-fz 13481  df-fzo 13624  df-seq 13963  df-hash 14287  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-0g 17383  df-gsum 17384  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-submnd 18668  df-grp 18818  df-minusg 18819  df-cntz 19175  df-cmn 19644  df-abl 19645  df-mgp 19982  df-ur 19999  df-ring 20051  df-lmod 20465  df-linc 47040
This theorem is referenced by:  lincsumcl  47065
  Copyright terms: Public domain W3C validator