Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincsum Structured version   Visualization version   GIF version

Theorem lincsum 47272
Description: The sum of two linear combinations is a linear combination, see also the proof in [Lang] p. 129. (Contributed by AV, 4-Apr-2019.) (Revised by AV, 28-Jul-2019.)
Hypotheses
Ref Expression
lincsum.p + = (+g𝑀)
lincsum.x 𝑋 = (𝐴( linC ‘𝑀)𝑉)
lincsum.y 𝑌 = (𝐵( linC ‘𝑀)𝑉)
lincsum.s 𝑆 = (Scalar‘𝑀)
lincsum.r 𝑅 = (Base‘𝑆)
lincsum.b = (+g𝑆)
Assertion
Ref Expression
lincsum (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) ∧ (𝐴 finSupp (0g𝑆) ∧ 𝐵 finSupp (0g𝑆))) → (𝑋 + 𝑌) = ((𝐴f 𝐵)( linC ‘𝑀)𝑉))

Proof of Theorem lincsum
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . 3 (Base‘𝑀) = (Base‘𝑀)
2 eqid 2731 . . 3 (0g𝑀) = (0g𝑀)
3 lincsum.p . . 3 + = (+g𝑀)
4 lmodcmn 20752 . . . . 5 (𝑀 ∈ LMod → 𝑀 ∈ CMnd)
54adantr 480 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → 𝑀 ∈ CMnd)
653ad2ant1 1132 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) ∧ (𝐴 finSupp (0g𝑆) ∧ 𝐵 finSupp (0g𝑆))) → 𝑀 ∈ CMnd)
7 simpr 484 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → 𝑉 ∈ 𝒫 (Base‘𝑀))
873ad2ant1 1132 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) ∧ (𝐴 finSupp (0g𝑆) ∧ 𝐵 finSupp (0g𝑆))) → 𝑉 ∈ 𝒫 (Base‘𝑀))
9 simpl 482 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → 𝑀 ∈ LMod)
1093ad2ant1 1132 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) ∧ (𝐴 finSupp (0g𝑆) ∧ 𝐵 finSupp (0g𝑆))) → 𝑀 ∈ LMod)
1110adantr 480 . . . 4 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) ∧ (𝐴 finSupp (0g𝑆) ∧ 𝐵 finSupp (0g𝑆))) ∧ 𝑥𝑉) → 𝑀 ∈ LMod)
12 elmapi 8849 . . . . . . . 8 (𝐴 ∈ (𝑅m 𝑉) → 𝐴:𝑉𝑅)
13 ffvelcdm 7083 . . . . . . . . 9 ((𝐴:𝑉𝑅𝑥𝑉) → (𝐴𝑥) ∈ 𝑅)
1413ex 412 . . . . . . . 8 (𝐴:𝑉𝑅 → (𝑥𝑉 → (𝐴𝑥) ∈ 𝑅))
1512, 14syl 17 . . . . . . 7 (𝐴 ∈ (𝑅m 𝑉) → (𝑥𝑉 → (𝐴𝑥) ∈ 𝑅))
1615adantr 480 . . . . . 6 ((𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) → (𝑥𝑉 → (𝐴𝑥) ∈ 𝑅))
17163ad2ant2 1133 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) ∧ (𝐴 finSupp (0g𝑆) ∧ 𝐵 finSupp (0g𝑆))) → (𝑥𝑉 → (𝐴𝑥) ∈ 𝑅))
1817imp 406 . . . 4 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) ∧ (𝐴 finSupp (0g𝑆) ∧ 𝐵 finSupp (0g𝑆))) ∧ 𝑥𝑉) → (𝐴𝑥) ∈ 𝑅)
19 elelpwi 4612 . . . . . . . 8 ((𝑥𝑉𝑉 ∈ 𝒫 (Base‘𝑀)) → 𝑥 ∈ (Base‘𝑀))
2019expcom 413 . . . . . . 7 (𝑉 ∈ 𝒫 (Base‘𝑀) → (𝑥𝑉𝑥 ∈ (Base‘𝑀)))
2120adantl 481 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝑥𝑉𝑥 ∈ (Base‘𝑀)))
22213ad2ant1 1132 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) ∧ (𝐴 finSupp (0g𝑆) ∧ 𝐵 finSupp (0g𝑆))) → (𝑥𝑉𝑥 ∈ (Base‘𝑀)))
2322imp 406 . . . 4 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) ∧ (𝐴 finSupp (0g𝑆) ∧ 𝐵 finSupp (0g𝑆))) ∧ 𝑥𝑉) → 𝑥 ∈ (Base‘𝑀))
24 lincsum.s . . . . 5 𝑆 = (Scalar‘𝑀)
25 eqid 2731 . . . . 5 ( ·𝑠𝑀) = ( ·𝑠𝑀)
26 lincsum.r . . . . 5 𝑅 = (Base‘𝑆)
271, 24, 25, 26lmodvscl 20720 . . . 4 ((𝑀 ∈ LMod ∧ (𝐴𝑥) ∈ 𝑅𝑥 ∈ (Base‘𝑀)) → ((𝐴𝑥)( ·𝑠𝑀)𝑥) ∈ (Base‘𝑀))
2811, 18, 23, 27syl3anc 1370 . . 3 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) ∧ (𝐴 finSupp (0g𝑆) ∧ 𝐵 finSupp (0g𝑆))) ∧ 𝑥𝑉) → ((𝐴𝑥)( ·𝑠𝑀)𝑥) ∈ (Base‘𝑀))
29 elmapi 8849 . . . . . . . 8 (𝐵 ∈ (𝑅m 𝑉) → 𝐵:𝑉𝑅)
30 ffvelcdm 7083 . . . . . . . . 9 ((𝐵:𝑉𝑅𝑥𝑉) → (𝐵𝑥) ∈ 𝑅)
3130ex 412 . . . . . . . 8 (𝐵:𝑉𝑅 → (𝑥𝑉 → (𝐵𝑥) ∈ 𝑅))
3229, 31syl 17 . . . . . . 7 (𝐵 ∈ (𝑅m 𝑉) → (𝑥𝑉 → (𝐵𝑥) ∈ 𝑅))
3332adantl 481 . . . . . 6 ((𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) → (𝑥𝑉 → (𝐵𝑥) ∈ 𝑅))
34333ad2ant2 1133 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) ∧ (𝐴 finSupp (0g𝑆) ∧ 𝐵 finSupp (0g𝑆))) → (𝑥𝑉 → (𝐵𝑥) ∈ 𝑅))
3534imp 406 . . . 4 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) ∧ (𝐴 finSupp (0g𝑆) ∧ 𝐵 finSupp (0g𝑆))) ∧ 𝑥𝑉) → (𝐵𝑥) ∈ 𝑅)
361, 24, 25, 26lmodvscl 20720 . . . 4 ((𝑀 ∈ LMod ∧ (𝐵𝑥) ∈ 𝑅𝑥 ∈ (Base‘𝑀)) → ((𝐵𝑥)( ·𝑠𝑀)𝑥) ∈ (Base‘𝑀))
3711, 35, 23, 36syl3anc 1370 . . 3 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) ∧ (𝐴 finSupp (0g𝑆) ∧ 𝐵 finSupp (0g𝑆))) ∧ 𝑥𝑉) → ((𝐵𝑥)( ·𝑠𝑀)𝑥) ∈ (Base‘𝑀))
38 eqidd 2732 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) ∧ (𝐴 finSupp (0g𝑆) ∧ 𝐵 finSupp (0g𝑆))) → (𝑥𝑉 ↦ ((𝐴𝑥)( ·𝑠𝑀)𝑥)) = (𝑥𝑉 ↦ ((𝐴𝑥)( ·𝑠𝑀)𝑥)))
39 eqidd 2732 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) ∧ (𝐴 finSupp (0g𝑆) ∧ 𝐵 finSupp (0g𝑆))) → (𝑥𝑉 ↦ ((𝐵𝑥)( ·𝑠𝑀)𝑥)) = (𝑥𝑉 ↦ ((𝐵𝑥)( ·𝑠𝑀)𝑥)))
40 id 22 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)))
41 simpl 482 . . . 4 ((𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) → 𝐴 ∈ (𝑅m 𝑉))
42 simpl 482 . . . 4 ((𝐴 finSupp (0g𝑆) ∧ 𝐵 finSupp (0g𝑆)) → 𝐴 finSupp (0g𝑆))
4324, 26scmfsupp 47217 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉) ∧ 𝐴 finSupp (0g𝑆)) → (𝑥𝑉 ↦ ((𝐴𝑥)( ·𝑠𝑀)𝑥)) finSupp (0g𝑀))
4440, 41, 42, 43syl3an 1159 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) ∧ (𝐴 finSupp (0g𝑆) ∧ 𝐵 finSupp (0g𝑆))) → (𝑥𝑉 ↦ ((𝐴𝑥)( ·𝑠𝑀)𝑥)) finSupp (0g𝑀))
45 simpr 484 . . . 4 ((𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) → 𝐵 ∈ (𝑅m 𝑉))
46 simpr 484 . . . 4 ((𝐴 finSupp (0g𝑆) ∧ 𝐵 finSupp (0g𝑆)) → 𝐵 finSupp (0g𝑆))
4724, 26scmfsupp 47217 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐵 ∈ (𝑅m 𝑉) ∧ 𝐵 finSupp (0g𝑆)) → (𝑥𝑉 ↦ ((𝐵𝑥)( ·𝑠𝑀)𝑥)) finSupp (0g𝑀))
4840, 45, 46, 47syl3an 1159 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) ∧ (𝐴 finSupp (0g𝑆) ∧ 𝐵 finSupp (0g𝑆))) → (𝑥𝑉 ↦ ((𝐵𝑥)( ·𝑠𝑀)𝑥)) finSupp (0g𝑀))
491, 2, 3, 6, 8, 28, 37, 38, 39, 44, 48gsummptfsadd 19840 . 2 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) ∧ (𝐴 finSupp (0g𝑆) ∧ 𝐵 finSupp (0g𝑆))) → (𝑀 Σg (𝑥𝑉 ↦ (((𝐴𝑥)( ·𝑠𝑀)𝑥) + ((𝐵𝑥)( ·𝑠𝑀)𝑥)))) = ((𝑀 Σg (𝑥𝑉 ↦ ((𝐴𝑥)( ·𝑠𝑀)𝑥))) + (𝑀 Σg (𝑥𝑉 ↦ ((𝐵𝑥)( ·𝑠𝑀)𝑥)))))
507adantr 480 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → 𝑉 ∈ 𝒫 (Base‘𝑀))
51 elmapfn 8865 . . . . . . . 8 (𝐴 ∈ (𝑅m 𝑉) → 𝐴 Fn 𝑉)
5251ad2antrl 725 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → 𝐴 Fn 𝑉)
53 elmapfn 8865 . . . . . . . 8 (𝐵 ∈ (𝑅m 𝑉) → 𝐵 Fn 𝑉)
5453ad2antll 726 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → 𝐵 Fn 𝑉)
5550, 52, 54offvalfv 47181 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → (𝐴f 𝐵) = (𝑦𝑉 ↦ ((𝐴𝑦) (𝐵𝑦))))
56553adant3 1131 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) ∧ (𝐴 finSupp (0g𝑆) ∧ 𝐵 finSupp (0g𝑆))) → (𝐴f 𝐵) = (𝑦𝑉 ↦ ((𝐴𝑦) (𝐵𝑦))))
5724lmodfgrp 20711 . . . . . . . . . . 11 (𝑀 ∈ LMod → 𝑆 ∈ Grp)
5857grpmndd 18874 . . . . . . . . . 10 (𝑀 ∈ LMod → 𝑆 ∈ Mnd)
5958ad3antrrr 727 . . . . . . . . 9 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) ∧ 𝑦𝑉) → 𝑆 ∈ Mnd)
60 ffvelcdm 7083 . . . . . . . . . . . . . 14 ((𝐴:𝑉𝑅𝑦𝑉) → (𝐴𝑦) ∈ 𝑅)
6160ex 412 . . . . . . . . . . . . 13 (𝐴:𝑉𝑅 → (𝑦𝑉 → (𝐴𝑦) ∈ 𝑅))
6212, 61syl 17 . . . . . . . . . . . 12 (𝐴 ∈ (𝑅m 𝑉) → (𝑦𝑉 → (𝐴𝑦) ∈ 𝑅))
6362ad2antrl 725 . . . . . . . . . . 11 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → (𝑦𝑉 → (𝐴𝑦) ∈ 𝑅))
6463imp 406 . . . . . . . . . 10 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) ∧ 𝑦𝑉) → (𝐴𝑦) ∈ 𝑅)
6524fveq2i 6894 . . . . . . . . . . 11 (Base‘𝑆) = (Base‘(Scalar‘𝑀))
6626, 65eqtri 2759 . . . . . . . . . 10 𝑅 = (Base‘(Scalar‘𝑀))
6764, 66eleqtrdi 2842 . . . . . . . . 9 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) ∧ 𝑦𝑉) → (𝐴𝑦) ∈ (Base‘(Scalar‘𝑀)))
68 ffvelcdm 7083 . . . . . . . . . . . . . 14 ((𝐵:𝑉𝑅𝑦𝑉) → (𝐵𝑦) ∈ 𝑅)
6968, 66eleqtrdi 2842 . . . . . . . . . . . . 13 ((𝐵:𝑉𝑅𝑦𝑉) → (𝐵𝑦) ∈ (Base‘(Scalar‘𝑀)))
7069ex 412 . . . . . . . . . . . 12 (𝐵:𝑉𝑅 → (𝑦𝑉 → (𝐵𝑦) ∈ (Base‘(Scalar‘𝑀))))
7129, 70syl 17 . . . . . . . . . . 11 (𝐵 ∈ (𝑅m 𝑉) → (𝑦𝑉 → (𝐵𝑦) ∈ (Base‘(Scalar‘𝑀))))
7271ad2antll 726 . . . . . . . . . 10 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → (𝑦𝑉 → (𝐵𝑦) ∈ (Base‘(Scalar‘𝑀))))
7372imp 406 . . . . . . . . 9 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) ∧ 𝑦𝑉) → (𝐵𝑦) ∈ (Base‘(Scalar‘𝑀)))
7424eqcomi 2740 . . . . . . . . . . 11 (Scalar‘𝑀) = 𝑆
7574fveq2i 6894 . . . . . . . . . 10 (Base‘(Scalar‘𝑀)) = (Base‘𝑆)
76 lincsum.b . . . . . . . . . 10 = (+g𝑆)
7775, 76mndcl 18673 . . . . . . . . 9 ((𝑆 ∈ Mnd ∧ (𝐴𝑦) ∈ (Base‘(Scalar‘𝑀)) ∧ (𝐵𝑦) ∈ (Base‘(Scalar‘𝑀))) → ((𝐴𝑦) (𝐵𝑦)) ∈ (Base‘(Scalar‘𝑀)))
7859, 67, 73, 77syl3anc 1370 . . . . . . . 8 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) ∧ 𝑦𝑉) → ((𝐴𝑦) (𝐵𝑦)) ∈ (Base‘(Scalar‘𝑀)))
7978fmpttd 7116 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → (𝑦𝑉 ↦ ((𝐴𝑦) (𝐵𝑦))):𝑉⟶(Base‘(Scalar‘𝑀)))
80 fvex 6904 . . . . . . . 8 (Base‘(Scalar‘𝑀)) ∈ V
81 elmapg 8839 . . . . . . . 8 (((Base‘(Scalar‘𝑀)) ∈ V ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → ((𝑦𝑉 ↦ ((𝐴𝑦) (𝐵𝑦))) ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ↔ (𝑦𝑉 ↦ ((𝐴𝑦) (𝐵𝑦))):𝑉⟶(Base‘(Scalar‘𝑀))))
8280, 50, 81sylancr 586 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → ((𝑦𝑉 ↦ ((𝐴𝑦) (𝐵𝑦))) ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ↔ (𝑦𝑉 ↦ ((𝐴𝑦) (𝐵𝑦))):𝑉⟶(Base‘(Scalar‘𝑀))))
8379, 82mpbird 257 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → (𝑦𝑉 ↦ ((𝐴𝑦) (𝐵𝑦))) ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
84833adant3 1131 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) ∧ (𝐴 finSupp (0g𝑆) ∧ 𝐵 finSupp (0g𝑆))) → (𝑦𝑉 ↦ ((𝐴𝑦) (𝐵𝑦))) ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
8556, 84eqeltrd 2832 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) ∧ (𝐴 finSupp (0g𝑆) ∧ 𝐵 finSupp (0g𝑆))) → (𝐴f 𝐵) ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
86 lincval 47252 . . . 4 ((𝑀 ∈ LMod ∧ (𝐴f 𝐵) ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → ((𝐴f 𝐵)( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑥𝑉 ↦ (((𝐴f 𝐵)‘𝑥)( ·𝑠𝑀)𝑥))))
8710, 85, 8, 86syl3anc 1370 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) ∧ (𝐴 finSupp (0g𝑆) ∧ 𝐵 finSupp (0g𝑆))) → ((𝐴f 𝐵)( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑥𝑉 ↦ (((𝐴f 𝐵)‘𝑥)( ·𝑠𝑀)𝑥))))
8851, 53anim12i 612 . . . . . . . . . . . 12 ((𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) → (𝐴 Fn 𝑉𝐵 Fn 𝑉))
8988adantl 481 . . . . . . . . . . 11 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → (𝐴 Fn 𝑉𝐵 Fn 𝑉))
9089adantr 480 . . . . . . . . . 10 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) ∧ 𝑥𝑉) → (𝐴 Fn 𝑉𝐵 Fn 𝑉))
9150anim1i 614 . . . . . . . . . 10 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) ∧ 𝑥𝑉) → (𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝑥𝑉))
92 fnfvof 7691 . . . . . . . . . 10 (((𝐴 Fn 𝑉𝐵 Fn 𝑉) ∧ (𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝑥𝑉)) → ((𝐴f 𝐵)‘𝑥) = ((𝐴𝑥) (𝐵𝑥)))
9390, 91, 92syl2anc 583 . . . . . . . . 9 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) ∧ 𝑥𝑉) → ((𝐴f 𝐵)‘𝑥) = ((𝐴𝑥) (𝐵𝑥)))
9476a1i 11 . . . . . . . . . 10 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) ∧ 𝑥𝑉) → = (+g𝑆))
9594oveqd 7429 . . . . . . . . 9 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) ∧ 𝑥𝑉) → ((𝐴𝑥) (𝐵𝑥)) = ((𝐴𝑥)(+g𝑆)(𝐵𝑥)))
9693, 95eqtrd 2771 . . . . . . . 8 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) ∧ 𝑥𝑉) → ((𝐴f 𝐵)‘𝑥) = ((𝐴𝑥)(+g𝑆)(𝐵𝑥)))
9796oveq1d 7427 . . . . . . 7 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) ∧ 𝑥𝑉) → (((𝐴f 𝐵)‘𝑥)( ·𝑠𝑀)𝑥) = (((𝐴𝑥)(+g𝑆)(𝐵𝑥))( ·𝑠𝑀)𝑥))
989adantr 480 . . . . . . . . 9 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → 𝑀 ∈ LMod)
9998adantr 480 . . . . . . . 8 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) ∧ 𝑥𝑉) → 𝑀 ∈ LMod)
10015ad2antrl 725 . . . . . . . . 9 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → (𝑥𝑉 → (𝐴𝑥) ∈ 𝑅))
101100imp 406 . . . . . . . 8 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) ∧ 𝑥𝑉) → (𝐴𝑥) ∈ 𝑅)
10232ad2antll 726 . . . . . . . . 9 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → (𝑥𝑉 → (𝐵𝑥) ∈ 𝑅))
103102imp 406 . . . . . . . 8 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) ∧ 𝑥𝑉) → (𝐵𝑥) ∈ 𝑅)
10421adantr 480 . . . . . . . . 9 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → (𝑥𝑉𝑥 ∈ (Base‘𝑀)))
105104imp 406 . . . . . . . 8 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) ∧ 𝑥𝑉) → 𝑥 ∈ (Base‘𝑀))
106 eqid 2731 . . . . . . . . 9 (Scalar‘𝑀) = (Scalar‘𝑀)
10724fveq2i 6894 . . . . . . . . 9 (+g𝑆) = (+g‘(Scalar‘𝑀))
1081, 3, 106, 25, 66, 107lmodvsdir 20728 . . . . . . . 8 ((𝑀 ∈ LMod ∧ ((𝐴𝑥) ∈ 𝑅 ∧ (𝐵𝑥) ∈ 𝑅𝑥 ∈ (Base‘𝑀))) → (((𝐴𝑥)(+g𝑆)(𝐵𝑥))( ·𝑠𝑀)𝑥) = (((𝐴𝑥)( ·𝑠𝑀)𝑥) + ((𝐵𝑥)( ·𝑠𝑀)𝑥)))
10999, 101, 103, 105, 108syl13anc 1371 . . . . . . 7 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) ∧ 𝑥𝑉) → (((𝐴𝑥)(+g𝑆)(𝐵𝑥))( ·𝑠𝑀)𝑥) = (((𝐴𝑥)( ·𝑠𝑀)𝑥) + ((𝐵𝑥)( ·𝑠𝑀)𝑥)))
11097, 109eqtrd 2771 . . . . . 6 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) ∧ 𝑥𝑉) → (((𝐴f 𝐵)‘𝑥)( ·𝑠𝑀)𝑥) = (((𝐴𝑥)( ·𝑠𝑀)𝑥) + ((𝐵𝑥)( ·𝑠𝑀)𝑥)))
111110mpteq2dva 5248 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → (𝑥𝑉 ↦ (((𝐴f 𝐵)‘𝑥)( ·𝑠𝑀)𝑥)) = (𝑥𝑉 ↦ (((𝐴𝑥)( ·𝑠𝑀)𝑥) + ((𝐵𝑥)( ·𝑠𝑀)𝑥))))
112111oveq2d 7428 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → (𝑀 Σg (𝑥𝑉 ↦ (((𝐴f 𝐵)‘𝑥)( ·𝑠𝑀)𝑥))) = (𝑀 Σg (𝑥𝑉 ↦ (((𝐴𝑥)( ·𝑠𝑀)𝑥) + ((𝐵𝑥)( ·𝑠𝑀)𝑥)))))
1131123adant3 1131 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) ∧ (𝐴 finSupp (0g𝑆) ∧ 𝐵 finSupp (0g𝑆))) → (𝑀 Σg (𝑥𝑉 ↦ (((𝐴f 𝐵)‘𝑥)( ·𝑠𝑀)𝑥))) = (𝑀 Σg (𝑥𝑉 ↦ (((𝐴𝑥)( ·𝑠𝑀)𝑥) + ((𝐵𝑥)( ·𝑠𝑀)𝑥)))))
11487, 113eqtrd 2771 . 2 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) ∧ (𝐴 finSupp (0g𝑆) ∧ 𝐵 finSupp (0g𝑆))) → ((𝐴f 𝐵)( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑥𝑉 ↦ (((𝐴𝑥)( ·𝑠𝑀)𝑥) + ((𝐵𝑥)( ·𝑠𝑀)𝑥)))))
115 lincsum.x . . . 4 𝑋 = (𝐴( linC ‘𝑀)𝑉)
116 lincsum.y . . . 4 𝑌 = (𝐵( linC ‘𝑀)𝑉)
117115, 116oveq12i 7424 . . 3 (𝑋 + 𝑌) = ((𝐴( linC ‘𝑀)𝑉) + (𝐵( linC ‘𝑀)𝑉))
11866oveq1i 7422 . . . . . . . . 9 (𝑅m 𝑉) = ((Base‘(Scalar‘𝑀)) ↑m 𝑉)
119118eleq2i 2824 . . . . . . . 8 (𝐴 ∈ (𝑅m 𝑉) ↔ 𝐴 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
120119biimpi 215 . . . . . . 7 (𝐴 ∈ (𝑅m 𝑉) → 𝐴 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
121120ad2antrl 725 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → 𝐴 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
122 lincval 47252 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝐴 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝐴( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑥𝑉 ↦ ((𝐴𝑥)( ·𝑠𝑀)𝑥))))
12398, 121, 50, 122syl3anc 1370 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → (𝐴( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑥𝑉 ↦ ((𝐴𝑥)( ·𝑠𝑀)𝑥))))
124118eleq2i 2824 . . . . . . . 8 (𝐵 ∈ (𝑅m 𝑉) ↔ 𝐵 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
125124biimpi 215 . . . . . . 7 (𝐵 ∈ (𝑅m 𝑉) → 𝐵 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
126125ad2antll 726 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → 𝐵 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
127 lincval 47252 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝐵 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝐵( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑥𝑉 ↦ ((𝐵𝑥)( ·𝑠𝑀)𝑥))))
12898, 126, 50, 127syl3anc 1370 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → (𝐵( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑥𝑉 ↦ ((𝐵𝑥)( ·𝑠𝑀)𝑥))))
129123, 128oveq12d 7430 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → ((𝐴( linC ‘𝑀)𝑉) + (𝐵( linC ‘𝑀)𝑉)) = ((𝑀 Σg (𝑥𝑉 ↦ ((𝐴𝑥)( ·𝑠𝑀)𝑥))) + (𝑀 Σg (𝑥𝑉 ↦ ((𝐵𝑥)( ·𝑠𝑀)𝑥)))))
1301293adant3 1131 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) ∧ (𝐴 finSupp (0g𝑆) ∧ 𝐵 finSupp (0g𝑆))) → ((𝐴( linC ‘𝑀)𝑉) + (𝐵( linC ‘𝑀)𝑉)) = ((𝑀 Σg (𝑥𝑉 ↦ ((𝐴𝑥)( ·𝑠𝑀)𝑥))) + (𝑀 Σg (𝑥𝑉 ↦ ((𝐵𝑥)( ·𝑠𝑀)𝑥)))))
131117, 130eqtrid 2783 . 2 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) ∧ (𝐴 finSupp (0g𝑆) ∧ 𝐵 finSupp (0g𝑆))) → (𝑋 + 𝑌) = ((𝑀 Σg (𝑥𝑉 ↦ ((𝐴𝑥)( ·𝑠𝑀)𝑥))) + (𝑀 Σg (𝑥𝑉 ↦ ((𝐵𝑥)( ·𝑠𝑀)𝑥)))))
13249, 114, 1313eqtr4rd 2782 1 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) ∧ (𝐴 finSupp (0g𝑆) ∧ 𝐵 finSupp (0g𝑆))) → (𝑋 + 𝑌) = ((𝐴f 𝐵)( linC ‘𝑀)𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1086   = wceq 1540  wcel 2105  Vcvv 3473  𝒫 cpw 4602   class class class wbr 5148  cmpt 5231   Fn wfn 6538  wf 6539  cfv 6543  (class class class)co 7412  f cof 7672  m cmap 8826   finSupp cfsupp 9367  Basecbs 17151  +gcplusg 17204  Scalarcsca 17207   ·𝑠 cvsca 17208  0gc0g 17392   Σg cgsu 17393  Mndcmnd 18665  CMndccmn 19696  LModclmod 20702   linC clinc 47247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-of 7674  df-om 7860  df-1st 7979  df-2nd 7980  df-supp 8152  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-1o 8472  df-er 8709  df-map 8828  df-en 8946  df-dom 8947  df-sdom 8948  df-fin 8949  df-fsupp 9368  df-oi 9511  df-card 9940  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-nn 12220  df-2 12282  df-n0 12480  df-z 12566  df-uz 12830  df-fz 13492  df-fzo 13635  df-seq 13974  df-hash 14298  df-sets 17104  df-slot 17122  df-ndx 17134  df-base 17152  df-ress 17181  df-plusg 17217  df-0g 17394  df-gsum 17395  df-mgm 18571  df-sgrp 18650  df-mnd 18666  df-submnd 18712  df-grp 18864  df-minusg 18865  df-cntz 19229  df-cmn 19698  df-abl 19699  df-mgp 20036  df-ur 20083  df-ring 20136  df-lmod 20704  df-linc 47249
This theorem is referenced by:  lincsumcl  47274
  Copyright terms: Public domain W3C validator