| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2737 |
. . 3
⊢
(Base‘𝑀) =
(Base‘𝑀) |
| 2 | | eqid 2737 |
. . 3
⊢
(0g‘𝑀) = (0g‘𝑀) |
| 3 | | lincsum.p |
. . 3
⊢ + =
(+g‘𝑀) |
| 4 | | lmodcmn 20908 |
. . . . 5
⊢ (𝑀 ∈ LMod → 𝑀 ∈ CMnd) |
| 5 | 4 | adantr 480 |
. . . 4
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀)) →
𝑀 ∈
CMnd) |
| 6 | 5 | 3ad2ant1 1134 |
. . 3
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀)) ∧
(𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉)) ∧ (𝐴 finSupp (0g‘𝑆) ∧ 𝐵 finSupp (0g‘𝑆))) → 𝑀 ∈ CMnd) |
| 7 | | simpr 484 |
. . . 4
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀)) →
𝑉 ∈ 𝒫
(Base‘𝑀)) |
| 8 | 7 | 3ad2ant1 1134 |
. . 3
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀)) ∧
(𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉)) ∧ (𝐴 finSupp (0g‘𝑆) ∧ 𝐵 finSupp (0g‘𝑆))) → 𝑉 ∈ 𝒫 (Base‘𝑀)) |
| 9 | | simpl 482 |
. . . . . 6
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀)) →
𝑀 ∈
LMod) |
| 10 | 9 | 3ad2ant1 1134 |
. . . . 5
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀)) ∧
(𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉)) ∧ (𝐴 finSupp (0g‘𝑆) ∧ 𝐵 finSupp (0g‘𝑆))) → 𝑀 ∈ LMod) |
| 11 | 10 | adantr 480 |
. . . 4
⊢ ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀)) ∧
(𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉)) ∧ (𝐴 finSupp (0g‘𝑆) ∧ 𝐵 finSupp (0g‘𝑆))) ∧ 𝑥 ∈ 𝑉) → 𝑀 ∈ LMod) |
| 12 | | elmapi 8889 |
. . . . . . . 8
⊢ (𝐴 ∈ (𝑅 ↑m 𝑉) → 𝐴:𝑉⟶𝑅) |
| 13 | | ffvelcdm 7101 |
. . . . . . . . 9
⊢ ((𝐴:𝑉⟶𝑅 ∧ 𝑥 ∈ 𝑉) → (𝐴‘𝑥) ∈ 𝑅) |
| 14 | 13 | ex 412 |
. . . . . . . 8
⊢ (𝐴:𝑉⟶𝑅 → (𝑥 ∈ 𝑉 → (𝐴‘𝑥) ∈ 𝑅)) |
| 15 | 12, 14 | syl 17 |
. . . . . . 7
⊢ (𝐴 ∈ (𝑅 ↑m 𝑉) → (𝑥 ∈ 𝑉 → (𝐴‘𝑥) ∈ 𝑅)) |
| 16 | 15 | adantr 480 |
. . . . . 6
⊢ ((𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉)) → (𝑥 ∈ 𝑉 → (𝐴‘𝑥) ∈ 𝑅)) |
| 17 | 16 | 3ad2ant2 1135 |
. . . . 5
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀)) ∧
(𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉)) ∧ (𝐴 finSupp (0g‘𝑆) ∧ 𝐵 finSupp (0g‘𝑆))) → (𝑥 ∈ 𝑉 → (𝐴‘𝑥) ∈ 𝑅)) |
| 18 | 17 | imp 406 |
. . . 4
⊢ ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀)) ∧
(𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉)) ∧ (𝐴 finSupp (0g‘𝑆) ∧ 𝐵 finSupp (0g‘𝑆))) ∧ 𝑥 ∈ 𝑉) → (𝐴‘𝑥) ∈ 𝑅) |
| 19 | | elelpwi 4610 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝑉 ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → 𝑥 ∈ (Base‘𝑀)) |
| 20 | 19 | expcom 413 |
. . . . . . 7
⊢ (𝑉 ∈ 𝒫
(Base‘𝑀) →
(𝑥 ∈ 𝑉 → 𝑥 ∈ (Base‘𝑀))) |
| 21 | 20 | adantl 481 |
. . . . . 6
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀)) →
(𝑥 ∈ 𝑉 → 𝑥 ∈ (Base‘𝑀))) |
| 22 | 21 | 3ad2ant1 1134 |
. . . . 5
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀)) ∧
(𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉)) ∧ (𝐴 finSupp (0g‘𝑆) ∧ 𝐵 finSupp (0g‘𝑆))) → (𝑥 ∈ 𝑉 → 𝑥 ∈ (Base‘𝑀))) |
| 23 | 22 | imp 406 |
. . . 4
⊢ ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀)) ∧
(𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉)) ∧ (𝐴 finSupp (0g‘𝑆) ∧ 𝐵 finSupp (0g‘𝑆))) ∧ 𝑥 ∈ 𝑉) → 𝑥 ∈ (Base‘𝑀)) |
| 24 | | lincsum.s |
. . . . 5
⊢ 𝑆 = (Scalar‘𝑀) |
| 25 | | eqid 2737 |
. . . . 5
⊢ (
·𝑠 ‘𝑀) = ( ·𝑠
‘𝑀) |
| 26 | | lincsum.r |
. . . . 5
⊢ 𝑅 = (Base‘𝑆) |
| 27 | 1, 24, 25, 26 | lmodvscl 20876 |
. . . 4
⊢ ((𝑀 ∈ LMod ∧ (𝐴‘𝑥) ∈ 𝑅 ∧ 𝑥 ∈ (Base‘𝑀)) → ((𝐴‘𝑥)( ·𝑠
‘𝑀)𝑥) ∈ (Base‘𝑀)) |
| 28 | 11, 18, 23, 27 | syl3anc 1373 |
. . 3
⊢ ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀)) ∧
(𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉)) ∧ (𝐴 finSupp (0g‘𝑆) ∧ 𝐵 finSupp (0g‘𝑆))) ∧ 𝑥 ∈ 𝑉) → ((𝐴‘𝑥)( ·𝑠
‘𝑀)𝑥) ∈ (Base‘𝑀)) |
| 29 | | elmapi 8889 |
. . . . . . . 8
⊢ (𝐵 ∈ (𝑅 ↑m 𝑉) → 𝐵:𝑉⟶𝑅) |
| 30 | | ffvelcdm 7101 |
. . . . . . . . 9
⊢ ((𝐵:𝑉⟶𝑅 ∧ 𝑥 ∈ 𝑉) → (𝐵‘𝑥) ∈ 𝑅) |
| 31 | 30 | ex 412 |
. . . . . . . 8
⊢ (𝐵:𝑉⟶𝑅 → (𝑥 ∈ 𝑉 → (𝐵‘𝑥) ∈ 𝑅)) |
| 32 | 29, 31 | syl 17 |
. . . . . . 7
⊢ (𝐵 ∈ (𝑅 ↑m 𝑉) → (𝑥 ∈ 𝑉 → (𝐵‘𝑥) ∈ 𝑅)) |
| 33 | 32 | adantl 481 |
. . . . . 6
⊢ ((𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉)) → (𝑥 ∈ 𝑉 → (𝐵‘𝑥) ∈ 𝑅)) |
| 34 | 33 | 3ad2ant2 1135 |
. . . . 5
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀)) ∧
(𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉)) ∧ (𝐴 finSupp (0g‘𝑆) ∧ 𝐵 finSupp (0g‘𝑆))) → (𝑥 ∈ 𝑉 → (𝐵‘𝑥) ∈ 𝑅)) |
| 35 | 34 | imp 406 |
. . . 4
⊢ ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀)) ∧
(𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉)) ∧ (𝐴 finSupp (0g‘𝑆) ∧ 𝐵 finSupp (0g‘𝑆))) ∧ 𝑥 ∈ 𝑉) → (𝐵‘𝑥) ∈ 𝑅) |
| 36 | 1, 24, 25, 26 | lmodvscl 20876 |
. . . 4
⊢ ((𝑀 ∈ LMod ∧ (𝐵‘𝑥) ∈ 𝑅 ∧ 𝑥 ∈ (Base‘𝑀)) → ((𝐵‘𝑥)( ·𝑠
‘𝑀)𝑥) ∈ (Base‘𝑀)) |
| 37 | 11, 35, 23, 36 | syl3anc 1373 |
. . 3
⊢ ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀)) ∧
(𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉)) ∧ (𝐴 finSupp (0g‘𝑆) ∧ 𝐵 finSupp (0g‘𝑆))) ∧ 𝑥 ∈ 𝑉) → ((𝐵‘𝑥)( ·𝑠
‘𝑀)𝑥) ∈ (Base‘𝑀)) |
| 38 | | eqidd 2738 |
. . 3
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀)) ∧
(𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉)) ∧ (𝐴 finSupp (0g‘𝑆) ∧ 𝐵 finSupp (0g‘𝑆))) → (𝑥 ∈ 𝑉 ↦ ((𝐴‘𝑥)( ·𝑠
‘𝑀)𝑥)) = (𝑥 ∈ 𝑉 ↦ ((𝐴‘𝑥)( ·𝑠
‘𝑀)𝑥))) |
| 39 | | eqidd 2738 |
. . 3
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀)) ∧
(𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉)) ∧ (𝐴 finSupp (0g‘𝑆) ∧ 𝐵 finSupp (0g‘𝑆))) → (𝑥 ∈ 𝑉 ↦ ((𝐵‘𝑥)( ·𝑠
‘𝑀)𝑥)) = (𝑥 ∈ 𝑉 ↦ ((𝐵‘𝑥)( ·𝑠
‘𝑀)𝑥))) |
| 40 | | id 22 |
. . . 4
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀)) →
(𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀))) |
| 41 | | simpl 482 |
. . . 4
⊢ ((𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉)) → 𝐴 ∈ (𝑅 ↑m 𝑉)) |
| 42 | | simpl 482 |
. . . 4
⊢ ((𝐴 finSupp
(0g‘𝑆)
∧ 𝐵 finSupp
(0g‘𝑆))
→ 𝐴 finSupp
(0g‘𝑆)) |
| 43 | 24, 26 | scmfsupp 48291 |
. . . 4
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐴 finSupp (0g‘𝑆)) → (𝑥 ∈ 𝑉 ↦ ((𝐴‘𝑥)( ·𝑠
‘𝑀)𝑥)) finSupp (0g‘𝑀)) |
| 44 | 40, 41, 42, 43 | syl3an 1161 |
. . 3
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀)) ∧
(𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉)) ∧ (𝐴 finSupp (0g‘𝑆) ∧ 𝐵 finSupp (0g‘𝑆))) → (𝑥 ∈ 𝑉 ↦ ((𝐴‘𝑥)( ·𝑠
‘𝑀)𝑥)) finSupp (0g‘𝑀)) |
| 45 | | simpr 484 |
. . . 4
⊢ ((𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉)) → 𝐵 ∈ (𝑅 ↑m 𝑉)) |
| 46 | | simpr 484 |
. . . 4
⊢ ((𝐴 finSupp
(0g‘𝑆)
∧ 𝐵 finSupp
(0g‘𝑆))
→ 𝐵 finSupp
(0g‘𝑆)) |
| 47 | 24, 26 | scmfsupp 48291 |
. . . 4
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀)) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 finSupp (0g‘𝑆)) → (𝑥 ∈ 𝑉 ↦ ((𝐵‘𝑥)( ·𝑠
‘𝑀)𝑥)) finSupp (0g‘𝑀)) |
| 48 | 40, 45, 46, 47 | syl3an 1161 |
. . 3
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀)) ∧
(𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉)) ∧ (𝐴 finSupp (0g‘𝑆) ∧ 𝐵 finSupp (0g‘𝑆))) → (𝑥 ∈ 𝑉 ↦ ((𝐵‘𝑥)( ·𝑠
‘𝑀)𝑥)) finSupp (0g‘𝑀)) |
| 49 | 1, 2, 3, 6, 8, 28,
37, 38, 39, 44, 48 | gsummptfsadd 19942 |
. 2
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀)) ∧
(𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉)) ∧ (𝐴 finSupp (0g‘𝑆) ∧ 𝐵 finSupp (0g‘𝑆))) → (𝑀 Σg (𝑥 ∈ 𝑉 ↦ (((𝐴‘𝑥)( ·𝑠
‘𝑀)𝑥) + ((𝐵‘𝑥)( ·𝑠
‘𝑀)𝑥)))) = ((𝑀 Σg (𝑥 ∈ 𝑉 ↦ ((𝐴‘𝑥)( ·𝑠
‘𝑀)𝑥))) + (𝑀 Σg (𝑥 ∈ 𝑉 ↦ ((𝐵‘𝑥)( ·𝑠
‘𝑀)𝑥))))) |
| 50 | 7 | adantr 480 |
. . . . . . 7
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀)) ∧
(𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉))) → 𝑉 ∈ 𝒫 (Base‘𝑀)) |
| 51 | | elmapfn 8905 |
. . . . . . . 8
⊢ (𝐴 ∈ (𝑅 ↑m 𝑉) → 𝐴 Fn 𝑉) |
| 52 | 51 | ad2antrl 728 |
. . . . . . 7
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀)) ∧
(𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉))) → 𝐴 Fn 𝑉) |
| 53 | | elmapfn 8905 |
. . . . . . . 8
⊢ (𝐵 ∈ (𝑅 ↑m 𝑉) → 𝐵 Fn 𝑉) |
| 54 | 53 | ad2antll 729 |
. . . . . . 7
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀)) ∧
(𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉))) → 𝐵 Fn 𝑉) |
| 55 | 50, 52, 54 | offvalfv 7719 |
. . . . . 6
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀)) ∧
(𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉))) → (𝐴 ∘f ✚ 𝐵) = (𝑦 ∈ 𝑉 ↦ ((𝐴‘𝑦) ✚ (𝐵‘𝑦)))) |
| 56 | 55 | 3adant3 1133 |
. . . . 5
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀)) ∧
(𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉)) ∧ (𝐴 finSupp (0g‘𝑆) ∧ 𝐵 finSupp (0g‘𝑆))) → (𝐴 ∘f ✚ 𝐵) = (𝑦 ∈ 𝑉 ↦ ((𝐴‘𝑦) ✚ (𝐵‘𝑦)))) |
| 57 | 24 | lmodfgrp 20867 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ LMod → 𝑆 ∈ Grp) |
| 58 | 57 | grpmndd 18964 |
. . . . . . . . . 10
⊢ (𝑀 ∈ LMod → 𝑆 ∈ Mnd) |
| 59 | 58 | ad3antrrr 730 |
. . . . . . . . 9
⊢ ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀)) ∧
(𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉))) ∧ 𝑦 ∈ 𝑉) → 𝑆 ∈ Mnd) |
| 60 | | ffvelcdm 7101 |
. . . . . . . . . . . . . 14
⊢ ((𝐴:𝑉⟶𝑅 ∧ 𝑦 ∈ 𝑉) → (𝐴‘𝑦) ∈ 𝑅) |
| 61 | 60 | ex 412 |
. . . . . . . . . . . . 13
⊢ (𝐴:𝑉⟶𝑅 → (𝑦 ∈ 𝑉 → (𝐴‘𝑦) ∈ 𝑅)) |
| 62 | 12, 61 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ (𝑅 ↑m 𝑉) → (𝑦 ∈ 𝑉 → (𝐴‘𝑦) ∈ 𝑅)) |
| 63 | 62 | ad2antrl 728 |
. . . . . . . . . . 11
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀)) ∧
(𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉))) → (𝑦 ∈ 𝑉 → (𝐴‘𝑦) ∈ 𝑅)) |
| 64 | 63 | imp 406 |
. . . . . . . . . 10
⊢ ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀)) ∧
(𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉))) ∧ 𝑦 ∈ 𝑉) → (𝐴‘𝑦) ∈ 𝑅) |
| 65 | 24 | fveq2i 6909 |
. . . . . . . . . . 11
⊢
(Base‘𝑆) =
(Base‘(Scalar‘𝑀)) |
| 66 | 26, 65 | eqtri 2765 |
. . . . . . . . . 10
⊢ 𝑅 =
(Base‘(Scalar‘𝑀)) |
| 67 | 64, 66 | eleqtrdi 2851 |
. . . . . . . . 9
⊢ ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀)) ∧
(𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉))) ∧ 𝑦 ∈ 𝑉) → (𝐴‘𝑦) ∈ (Base‘(Scalar‘𝑀))) |
| 68 | | ffvelcdm 7101 |
. . . . . . . . . . . . . 14
⊢ ((𝐵:𝑉⟶𝑅 ∧ 𝑦 ∈ 𝑉) → (𝐵‘𝑦) ∈ 𝑅) |
| 69 | 68, 66 | eleqtrdi 2851 |
. . . . . . . . . . . . 13
⊢ ((𝐵:𝑉⟶𝑅 ∧ 𝑦 ∈ 𝑉) → (𝐵‘𝑦) ∈ (Base‘(Scalar‘𝑀))) |
| 70 | 69 | ex 412 |
. . . . . . . . . . . 12
⊢ (𝐵:𝑉⟶𝑅 → (𝑦 ∈ 𝑉 → (𝐵‘𝑦) ∈ (Base‘(Scalar‘𝑀)))) |
| 71 | 29, 70 | syl 17 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ (𝑅 ↑m 𝑉) → (𝑦 ∈ 𝑉 → (𝐵‘𝑦) ∈ (Base‘(Scalar‘𝑀)))) |
| 72 | 71 | ad2antll 729 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀)) ∧
(𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉))) → (𝑦 ∈ 𝑉 → (𝐵‘𝑦) ∈ (Base‘(Scalar‘𝑀)))) |
| 73 | 72 | imp 406 |
. . . . . . . . 9
⊢ ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀)) ∧
(𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉))) ∧ 𝑦 ∈ 𝑉) → (𝐵‘𝑦) ∈ (Base‘(Scalar‘𝑀))) |
| 74 | 24 | eqcomi 2746 |
. . . . . . . . . . 11
⊢
(Scalar‘𝑀) =
𝑆 |
| 75 | 74 | fveq2i 6909 |
. . . . . . . . . 10
⊢
(Base‘(Scalar‘𝑀)) = (Base‘𝑆) |
| 76 | | lincsum.b |
. . . . . . . . . 10
⊢ ✚ =
(+g‘𝑆) |
| 77 | 75, 76 | mndcl 18755 |
. . . . . . . . 9
⊢ ((𝑆 ∈ Mnd ∧ (𝐴‘𝑦) ∈ (Base‘(Scalar‘𝑀)) ∧ (𝐵‘𝑦) ∈ (Base‘(Scalar‘𝑀))) → ((𝐴‘𝑦) ✚ (𝐵‘𝑦)) ∈ (Base‘(Scalar‘𝑀))) |
| 78 | 59, 67, 73, 77 | syl3anc 1373 |
. . . . . . . 8
⊢ ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀)) ∧
(𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉))) ∧ 𝑦 ∈ 𝑉) → ((𝐴‘𝑦) ✚ (𝐵‘𝑦)) ∈ (Base‘(Scalar‘𝑀))) |
| 79 | 78 | fmpttd 7135 |
. . . . . . 7
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀)) ∧
(𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉))) → (𝑦 ∈ 𝑉 ↦ ((𝐴‘𝑦) ✚ (𝐵‘𝑦))):𝑉⟶(Base‘(Scalar‘𝑀))) |
| 80 | | fvex 6919 |
. . . . . . . 8
⊢
(Base‘(Scalar‘𝑀)) ∈ V |
| 81 | | elmapg 8879 |
. . . . . . . 8
⊢
(((Base‘(Scalar‘𝑀)) ∈ V ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → ((𝑦 ∈ 𝑉 ↦ ((𝐴‘𝑦) ✚ (𝐵‘𝑦))) ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ↔ (𝑦 ∈ 𝑉 ↦ ((𝐴‘𝑦) ✚ (𝐵‘𝑦))):𝑉⟶(Base‘(Scalar‘𝑀)))) |
| 82 | 80, 50, 81 | sylancr 587 |
. . . . . . 7
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀)) ∧
(𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉))) → ((𝑦 ∈ 𝑉 ↦ ((𝐴‘𝑦) ✚ (𝐵‘𝑦))) ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ↔ (𝑦 ∈ 𝑉 ↦ ((𝐴‘𝑦) ✚ (𝐵‘𝑦))):𝑉⟶(Base‘(Scalar‘𝑀)))) |
| 83 | 79, 82 | mpbird 257 |
. . . . . 6
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀)) ∧
(𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉))) → (𝑦 ∈ 𝑉 ↦ ((𝐴‘𝑦) ✚ (𝐵‘𝑦))) ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)) |
| 84 | 83 | 3adant3 1133 |
. . . . 5
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀)) ∧
(𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉)) ∧ (𝐴 finSupp (0g‘𝑆) ∧ 𝐵 finSupp (0g‘𝑆))) → (𝑦 ∈ 𝑉 ↦ ((𝐴‘𝑦) ✚ (𝐵‘𝑦))) ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)) |
| 85 | 56, 84 | eqeltrd 2841 |
. . . 4
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀)) ∧
(𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉)) ∧ (𝐴 finSupp (0g‘𝑆) ∧ 𝐵 finSupp (0g‘𝑆))) → (𝐴 ∘f ✚ 𝐵) ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)) |
| 86 | | lincval 48326 |
. . . 4
⊢ ((𝑀 ∈ LMod ∧ (𝐴 ∘f ✚ 𝐵) ∈
((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → ((𝐴 ∘f ✚ 𝐵)( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑥 ∈ 𝑉 ↦ (((𝐴 ∘f ✚ 𝐵)‘𝑥)( ·𝑠
‘𝑀)𝑥)))) |
| 87 | 10, 85, 8, 86 | syl3anc 1373 |
. . 3
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀)) ∧
(𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉)) ∧ (𝐴 finSupp (0g‘𝑆) ∧ 𝐵 finSupp (0g‘𝑆))) → ((𝐴 ∘f ✚ 𝐵)( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑥 ∈ 𝑉 ↦ (((𝐴 ∘f ✚ 𝐵)‘𝑥)( ·𝑠
‘𝑀)𝑥)))) |
| 88 | 51, 53 | anim12i 613 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉)) → (𝐴 Fn 𝑉 ∧ 𝐵 Fn 𝑉)) |
| 89 | 88 | adantl 481 |
. . . . . . . . . . 11
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀)) ∧
(𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉))) → (𝐴 Fn 𝑉 ∧ 𝐵 Fn 𝑉)) |
| 90 | 89 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀)) ∧
(𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉))) ∧ 𝑥 ∈ 𝑉) → (𝐴 Fn 𝑉 ∧ 𝐵 Fn 𝑉)) |
| 91 | 50 | anim1i 615 |
. . . . . . . . . 10
⊢ ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀)) ∧
(𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉))) ∧ 𝑥 ∈ 𝑉) → (𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝑥 ∈ 𝑉)) |
| 92 | | fnfvof 7714 |
. . . . . . . . . 10
⊢ (((𝐴 Fn 𝑉 ∧ 𝐵 Fn 𝑉) ∧ (𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝑥 ∈ 𝑉)) → ((𝐴 ∘f ✚ 𝐵)‘𝑥) = ((𝐴‘𝑥) ✚ (𝐵‘𝑥))) |
| 93 | 90, 91, 92 | syl2anc 584 |
. . . . . . . . 9
⊢ ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀)) ∧
(𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉))) ∧ 𝑥 ∈ 𝑉) → ((𝐴 ∘f ✚ 𝐵)‘𝑥) = ((𝐴‘𝑥) ✚ (𝐵‘𝑥))) |
| 94 | 76 | a1i 11 |
. . . . . . . . . 10
⊢ ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀)) ∧
(𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉))) ∧ 𝑥 ∈ 𝑉) → ✚ =
(+g‘𝑆)) |
| 95 | 94 | oveqd 7448 |
. . . . . . . . 9
⊢ ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀)) ∧
(𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉))) ∧ 𝑥 ∈ 𝑉) → ((𝐴‘𝑥) ✚ (𝐵‘𝑥)) = ((𝐴‘𝑥)(+g‘𝑆)(𝐵‘𝑥))) |
| 96 | 93, 95 | eqtrd 2777 |
. . . . . . . 8
⊢ ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀)) ∧
(𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉))) ∧ 𝑥 ∈ 𝑉) → ((𝐴 ∘f ✚ 𝐵)‘𝑥) = ((𝐴‘𝑥)(+g‘𝑆)(𝐵‘𝑥))) |
| 97 | 96 | oveq1d 7446 |
. . . . . . 7
⊢ ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀)) ∧
(𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉))) ∧ 𝑥 ∈ 𝑉) → (((𝐴 ∘f ✚ 𝐵)‘𝑥)( ·𝑠
‘𝑀)𝑥) = (((𝐴‘𝑥)(+g‘𝑆)(𝐵‘𝑥))( ·𝑠
‘𝑀)𝑥)) |
| 98 | 9 | adantr 480 |
. . . . . . . . 9
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀)) ∧
(𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉))) → 𝑀 ∈ LMod) |
| 99 | 98 | adantr 480 |
. . . . . . . 8
⊢ ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀)) ∧
(𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉))) ∧ 𝑥 ∈ 𝑉) → 𝑀 ∈ LMod) |
| 100 | 15 | ad2antrl 728 |
. . . . . . . . 9
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀)) ∧
(𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉))) → (𝑥 ∈ 𝑉 → (𝐴‘𝑥) ∈ 𝑅)) |
| 101 | 100 | imp 406 |
. . . . . . . 8
⊢ ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀)) ∧
(𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉))) ∧ 𝑥 ∈ 𝑉) → (𝐴‘𝑥) ∈ 𝑅) |
| 102 | 32 | ad2antll 729 |
. . . . . . . . 9
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀)) ∧
(𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉))) → (𝑥 ∈ 𝑉 → (𝐵‘𝑥) ∈ 𝑅)) |
| 103 | 102 | imp 406 |
. . . . . . . 8
⊢ ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀)) ∧
(𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉))) ∧ 𝑥 ∈ 𝑉) → (𝐵‘𝑥) ∈ 𝑅) |
| 104 | 21 | adantr 480 |
. . . . . . . . 9
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀)) ∧
(𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉))) → (𝑥 ∈ 𝑉 → 𝑥 ∈ (Base‘𝑀))) |
| 105 | 104 | imp 406 |
. . . . . . . 8
⊢ ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀)) ∧
(𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉))) ∧ 𝑥 ∈ 𝑉) → 𝑥 ∈ (Base‘𝑀)) |
| 106 | | eqid 2737 |
. . . . . . . . 9
⊢
(Scalar‘𝑀) =
(Scalar‘𝑀) |
| 107 | 24 | fveq2i 6909 |
. . . . . . . . 9
⊢
(+g‘𝑆) = (+g‘(Scalar‘𝑀)) |
| 108 | 1, 3, 106, 25, 66, 107 | lmodvsdir 20884 |
. . . . . . . 8
⊢ ((𝑀 ∈ LMod ∧ ((𝐴‘𝑥) ∈ 𝑅 ∧ (𝐵‘𝑥) ∈ 𝑅 ∧ 𝑥 ∈ (Base‘𝑀))) → (((𝐴‘𝑥)(+g‘𝑆)(𝐵‘𝑥))( ·𝑠
‘𝑀)𝑥) = (((𝐴‘𝑥)( ·𝑠
‘𝑀)𝑥) + ((𝐵‘𝑥)( ·𝑠
‘𝑀)𝑥))) |
| 109 | 99, 101, 103, 105, 108 | syl13anc 1374 |
. . . . . . 7
⊢ ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀)) ∧
(𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉))) ∧ 𝑥 ∈ 𝑉) → (((𝐴‘𝑥)(+g‘𝑆)(𝐵‘𝑥))( ·𝑠
‘𝑀)𝑥) = (((𝐴‘𝑥)( ·𝑠
‘𝑀)𝑥) + ((𝐵‘𝑥)( ·𝑠
‘𝑀)𝑥))) |
| 110 | 97, 109 | eqtrd 2777 |
. . . . . 6
⊢ ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀)) ∧
(𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉))) ∧ 𝑥 ∈ 𝑉) → (((𝐴 ∘f ✚ 𝐵)‘𝑥)( ·𝑠
‘𝑀)𝑥) = (((𝐴‘𝑥)( ·𝑠
‘𝑀)𝑥) + ((𝐵‘𝑥)( ·𝑠
‘𝑀)𝑥))) |
| 111 | 110 | mpteq2dva 5242 |
. . . . 5
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀)) ∧
(𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉))) → (𝑥 ∈ 𝑉 ↦ (((𝐴 ∘f ✚ 𝐵)‘𝑥)( ·𝑠
‘𝑀)𝑥)) = (𝑥 ∈ 𝑉 ↦ (((𝐴‘𝑥)( ·𝑠
‘𝑀)𝑥) + ((𝐵‘𝑥)( ·𝑠
‘𝑀)𝑥)))) |
| 112 | 111 | oveq2d 7447 |
. . . 4
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀)) ∧
(𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉))) → (𝑀 Σg (𝑥 ∈ 𝑉 ↦ (((𝐴 ∘f ✚ 𝐵)‘𝑥)( ·𝑠
‘𝑀)𝑥))) = (𝑀 Σg (𝑥 ∈ 𝑉 ↦ (((𝐴‘𝑥)( ·𝑠
‘𝑀)𝑥) + ((𝐵‘𝑥)( ·𝑠
‘𝑀)𝑥))))) |
| 113 | 112 | 3adant3 1133 |
. . 3
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀)) ∧
(𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉)) ∧ (𝐴 finSupp (0g‘𝑆) ∧ 𝐵 finSupp (0g‘𝑆))) → (𝑀 Σg (𝑥 ∈ 𝑉 ↦ (((𝐴 ∘f ✚ 𝐵)‘𝑥)( ·𝑠
‘𝑀)𝑥))) = (𝑀 Σg (𝑥 ∈ 𝑉 ↦ (((𝐴‘𝑥)( ·𝑠
‘𝑀)𝑥) + ((𝐵‘𝑥)( ·𝑠
‘𝑀)𝑥))))) |
| 114 | 87, 113 | eqtrd 2777 |
. 2
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀)) ∧
(𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉)) ∧ (𝐴 finSupp (0g‘𝑆) ∧ 𝐵 finSupp (0g‘𝑆))) → ((𝐴 ∘f ✚ 𝐵)( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑥 ∈ 𝑉 ↦ (((𝐴‘𝑥)( ·𝑠
‘𝑀)𝑥) + ((𝐵‘𝑥)( ·𝑠
‘𝑀)𝑥))))) |
| 115 | | lincsum.x |
. . . 4
⊢ 𝑋 = (𝐴( linC ‘𝑀)𝑉) |
| 116 | | lincsum.y |
. . . 4
⊢ 𝑌 = (𝐵( linC ‘𝑀)𝑉) |
| 117 | 115, 116 | oveq12i 7443 |
. . 3
⊢ (𝑋 + 𝑌) = ((𝐴( linC ‘𝑀)𝑉) + (𝐵( linC ‘𝑀)𝑉)) |
| 118 | 66 | oveq1i 7441 |
. . . . . . . . 9
⊢ (𝑅 ↑m 𝑉) =
((Base‘(Scalar‘𝑀)) ↑m 𝑉) |
| 119 | 118 | eleq2i 2833 |
. . . . . . . 8
⊢ (𝐴 ∈ (𝑅 ↑m 𝑉) ↔ 𝐴 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)) |
| 120 | 119 | biimpi 216 |
. . . . . . 7
⊢ (𝐴 ∈ (𝑅 ↑m 𝑉) → 𝐴 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)) |
| 121 | 120 | ad2antrl 728 |
. . . . . 6
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀)) ∧
(𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉))) → 𝐴 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)) |
| 122 | | lincval 48326 |
. . . . . 6
⊢ ((𝑀 ∈ LMod ∧ 𝐴 ∈
((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝐴( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑥 ∈ 𝑉 ↦ ((𝐴‘𝑥)( ·𝑠
‘𝑀)𝑥)))) |
| 123 | 98, 121, 50, 122 | syl3anc 1373 |
. . . . 5
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀)) ∧
(𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉))) → (𝐴( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑥 ∈ 𝑉 ↦ ((𝐴‘𝑥)( ·𝑠
‘𝑀)𝑥)))) |
| 124 | 118 | eleq2i 2833 |
. . . . . . . 8
⊢ (𝐵 ∈ (𝑅 ↑m 𝑉) ↔ 𝐵 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)) |
| 125 | 124 | biimpi 216 |
. . . . . . 7
⊢ (𝐵 ∈ (𝑅 ↑m 𝑉) → 𝐵 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)) |
| 126 | 125 | ad2antll 729 |
. . . . . 6
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀)) ∧
(𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉))) → 𝐵 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)) |
| 127 | | lincval 48326 |
. . . . . 6
⊢ ((𝑀 ∈ LMod ∧ 𝐵 ∈
((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝐵( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑥 ∈ 𝑉 ↦ ((𝐵‘𝑥)( ·𝑠
‘𝑀)𝑥)))) |
| 128 | 98, 126, 50, 127 | syl3anc 1373 |
. . . . 5
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀)) ∧
(𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉))) → (𝐵( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑥 ∈ 𝑉 ↦ ((𝐵‘𝑥)( ·𝑠
‘𝑀)𝑥)))) |
| 129 | 123, 128 | oveq12d 7449 |
. . . 4
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀)) ∧
(𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉))) → ((𝐴( linC ‘𝑀)𝑉) + (𝐵( linC ‘𝑀)𝑉)) = ((𝑀 Σg (𝑥 ∈ 𝑉 ↦ ((𝐴‘𝑥)( ·𝑠
‘𝑀)𝑥))) + (𝑀 Σg (𝑥 ∈ 𝑉 ↦ ((𝐵‘𝑥)( ·𝑠
‘𝑀)𝑥))))) |
| 130 | 129 | 3adant3 1133 |
. . 3
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀)) ∧
(𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉)) ∧ (𝐴 finSupp (0g‘𝑆) ∧ 𝐵 finSupp (0g‘𝑆))) → ((𝐴( linC ‘𝑀)𝑉) + (𝐵( linC ‘𝑀)𝑉)) = ((𝑀 Σg (𝑥 ∈ 𝑉 ↦ ((𝐴‘𝑥)( ·𝑠
‘𝑀)𝑥))) + (𝑀 Σg (𝑥 ∈ 𝑉 ↦ ((𝐵‘𝑥)( ·𝑠
‘𝑀)𝑥))))) |
| 131 | 117, 130 | eqtrid 2789 |
. 2
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀)) ∧
(𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉)) ∧ (𝐴 finSupp (0g‘𝑆) ∧ 𝐵 finSupp (0g‘𝑆))) → (𝑋 + 𝑌) = ((𝑀 Σg (𝑥 ∈ 𝑉 ↦ ((𝐴‘𝑥)( ·𝑠
‘𝑀)𝑥))) + (𝑀 Σg (𝑥 ∈ 𝑉 ↦ ((𝐵‘𝑥)( ·𝑠
‘𝑀)𝑥))))) |
| 132 | 49, 114, 131 | 3eqtr4rd 2788 |
1
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀)) ∧
(𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉)) ∧ (𝐴 finSupp (0g‘𝑆) ∧ 𝐵 finSupp (0g‘𝑆))) → (𝑋 + 𝑌) = ((𝐴 ∘f ✚ 𝐵)( linC ‘𝑀)𝑉)) |