Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincsum Structured version   Visualization version   GIF version

Theorem lincsum 44838
Description: The sum of two linear combinations is a linear combination, see also the proof in [Lang] p. 129. (Contributed by AV, 4-Apr-2019.) (Revised by AV, 28-Jul-2019.)
Hypotheses
Ref Expression
lincsum.p + = (+g𝑀)
lincsum.x 𝑋 = (𝐴( linC ‘𝑀)𝑉)
lincsum.y 𝑌 = (𝐵( linC ‘𝑀)𝑉)
lincsum.s 𝑆 = (Scalar‘𝑀)
lincsum.r 𝑅 = (Base‘𝑆)
lincsum.b = (+g𝑆)
Assertion
Ref Expression
lincsum (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) ∧ (𝐴 finSupp (0g𝑆) ∧ 𝐵 finSupp (0g𝑆))) → (𝑋 + 𝑌) = ((𝐴f 𝐵)( linC ‘𝑀)𝑉))

Proof of Theorem lincsum
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2798 . . 3 (Base‘𝑀) = (Base‘𝑀)
2 eqid 2798 . . 3 (0g𝑀) = (0g𝑀)
3 lincsum.p . . 3 + = (+g𝑀)
4 lmodcmn 19675 . . . . 5 (𝑀 ∈ LMod → 𝑀 ∈ CMnd)
54adantr 484 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → 𝑀 ∈ CMnd)
653ad2ant1 1130 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) ∧ (𝐴 finSupp (0g𝑆) ∧ 𝐵 finSupp (0g𝑆))) → 𝑀 ∈ CMnd)
7 simpr 488 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → 𝑉 ∈ 𝒫 (Base‘𝑀))
873ad2ant1 1130 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) ∧ (𝐴 finSupp (0g𝑆) ∧ 𝐵 finSupp (0g𝑆))) → 𝑉 ∈ 𝒫 (Base‘𝑀))
9 simpl 486 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → 𝑀 ∈ LMod)
1093ad2ant1 1130 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) ∧ (𝐴 finSupp (0g𝑆) ∧ 𝐵 finSupp (0g𝑆))) → 𝑀 ∈ LMod)
1110adantr 484 . . . 4 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) ∧ (𝐴 finSupp (0g𝑆) ∧ 𝐵 finSupp (0g𝑆))) ∧ 𝑥𝑉) → 𝑀 ∈ LMod)
12 elmapi 8411 . . . . . . . 8 (𝐴 ∈ (𝑅m 𝑉) → 𝐴:𝑉𝑅)
13 ffvelrn 6826 . . . . . . . . 9 ((𝐴:𝑉𝑅𝑥𝑉) → (𝐴𝑥) ∈ 𝑅)
1413ex 416 . . . . . . . 8 (𝐴:𝑉𝑅 → (𝑥𝑉 → (𝐴𝑥) ∈ 𝑅))
1512, 14syl 17 . . . . . . 7 (𝐴 ∈ (𝑅m 𝑉) → (𝑥𝑉 → (𝐴𝑥) ∈ 𝑅))
1615adantr 484 . . . . . 6 ((𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) → (𝑥𝑉 → (𝐴𝑥) ∈ 𝑅))
17163ad2ant2 1131 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) ∧ (𝐴 finSupp (0g𝑆) ∧ 𝐵 finSupp (0g𝑆))) → (𝑥𝑉 → (𝐴𝑥) ∈ 𝑅))
1817imp 410 . . . 4 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) ∧ (𝐴 finSupp (0g𝑆) ∧ 𝐵 finSupp (0g𝑆))) ∧ 𝑥𝑉) → (𝐴𝑥) ∈ 𝑅)
19 elelpwi 4509 . . . . . . . 8 ((𝑥𝑉𝑉 ∈ 𝒫 (Base‘𝑀)) → 𝑥 ∈ (Base‘𝑀))
2019expcom 417 . . . . . . 7 (𝑉 ∈ 𝒫 (Base‘𝑀) → (𝑥𝑉𝑥 ∈ (Base‘𝑀)))
2120adantl 485 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝑥𝑉𝑥 ∈ (Base‘𝑀)))
22213ad2ant1 1130 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) ∧ (𝐴 finSupp (0g𝑆) ∧ 𝐵 finSupp (0g𝑆))) → (𝑥𝑉𝑥 ∈ (Base‘𝑀)))
2322imp 410 . . . 4 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) ∧ (𝐴 finSupp (0g𝑆) ∧ 𝐵 finSupp (0g𝑆))) ∧ 𝑥𝑉) → 𝑥 ∈ (Base‘𝑀))
24 lincsum.s . . . . 5 𝑆 = (Scalar‘𝑀)
25 eqid 2798 . . . . 5 ( ·𝑠𝑀) = ( ·𝑠𝑀)
26 lincsum.r . . . . 5 𝑅 = (Base‘𝑆)
271, 24, 25, 26lmodvscl 19644 . . . 4 ((𝑀 ∈ LMod ∧ (𝐴𝑥) ∈ 𝑅𝑥 ∈ (Base‘𝑀)) → ((𝐴𝑥)( ·𝑠𝑀)𝑥) ∈ (Base‘𝑀))
2811, 18, 23, 27syl3anc 1368 . . 3 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) ∧ (𝐴 finSupp (0g𝑆) ∧ 𝐵 finSupp (0g𝑆))) ∧ 𝑥𝑉) → ((𝐴𝑥)( ·𝑠𝑀)𝑥) ∈ (Base‘𝑀))
29 elmapi 8411 . . . . . . . 8 (𝐵 ∈ (𝑅m 𝑉) → 𝐵:𝑉𝑅)
30 ffvelrn 6826 . . . . . . . . 9 ((𝐵:𝑉𝑅𝑥𝑉) → (𝐵𝑥) ∈ 𝑅)
3130ex 416 . . . . . . . 8 (𝐵:𝑉𝑅 → (𝑥𝑉 → (𝐵𝑥) ∈ 𝑅))
3229, 31syl 17 . . . . . . 7 (𝐵 ∈ (𝑅m 𝑉) → (𝑥𝑉 → (𝐵𝑥) ∈ 𝑅))
3332adantl 485 . . . . . 6 ((𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) → (𝑥𝑉 → (𝐵𝑥) ∈ 𝑅))
34333ad2ant2 1131 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) ∧ (𝐴 finSupp (0g𝑆) ∧ 𝐵 finSupp (0g𝑆))) → (𝑥𝑉 → (𝐵𝑥) ∈ 𝑅))
3534imp 410 . . . 4 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) ∧ (𝐴 finSupp (0g𝑆) ∧ 𝐵 finSupp (0g𝑆))) ∧ 𝑥𝑉) → (𝐵𝑥) ∈ 𝑅)
361, 24, 25, 26lmodvscl 19644 . . . 4 ((𝑀 ∈ LMod ∧ (𝐵𝑥) ∈ 𝑅𝑥 ∈ (Base‘𝑀)) → ((𝐵𝑥)( ·𝑠𝑀)𝑥) ∈ (Base‘𝑀))
3711, 35, 23, 36syl3anc 1368 . . 3 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) ∧ (𝐴 finSupp (0g𝑆) ∧ 𝐵 finSupp (0g𝑆))) ∧ 𝑥𝑉) → ((𝐵𝑥)( ·𝑠𝑀)𝑥) ∈ (Base‘𝑀))
38 eqidd 2799 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) ∧ (𝐴 finSupp (0g𝑆) ∧ 𝐵 finSupp (0g𝑆))) → (𝑥𝑉 ↦ ((𝐴𝑥)( ·𝑠𝑀)𝑥)) = (𝑥𝑉 ↦ ((𝐴𝑥)( ·𝑠𝑀)𝑥)))
39 eqidd 2799 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) ∧ (𝐴 finSupp (0g𝑆) ∧ 𝐵 finSupp (0g𝑆))) → (𝑥𝑉 ↦ ((𝐵𝑥)( ·𝑠𝑀)𝑥)) = (𝑥𝑉 ↦ ((𝐵𝑥)( ·𝑠𝑀)𝑥)))
40 id 22 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)))
41 simpl 486 . . . 4 ((𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) → 𝐴 ∈ (𝑅m 𝑉))
42 simpl 486 . . . 4 ((𝐴 finSupp (0g𝑆) ∧ 𝐵 finSupp (0g𝑆)) → 𝐴 finSupp (0g𝑆))
4324, 26scmfsupp 44780 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉) ∧ 𝐴 finSupp (0g𝑆)) → (𝑥𝑉 ↦ ((𝐴𝑥)( ·𝑠𝑀)𝑥)) finSupp (0g𝑀))
4440, 41, 42, 43syl3an 1157 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) ∧ (𝐴 finSupp (0g𝑆) ∧ 𝐵 finSupp (0g𝑆))) → (𝑥𝑉 ↦ ((𝐴𝑥)( ·𝑠𝑀)𝑥)) finSupp (0g𝑀))
45 simpr 488 . . . 4 ((𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) → 𝐵 ∈ (𝑅m 𝑉))
46 simpr 488 . . . 4 ((𝐴 finSupp (0g𝑆) ∧ 𝐵 finSupp (0g𝑆)) → 𝐵 finSupp (0g𝑆))
4724, 26scmfsupp 44780 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐵 ∈ (𝑅m 𝑉) ∧ 𝐵 finSupp (0g𝑆)) → (𝑥𝑉 ↦ ((𝐵𝑥)( ·𝑠𝑀)𝑥)) finSupp (0g𝑀))
4840, 45, 46, 47syl3an 1157 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) ∧ (𝐴 finSupp (0g𝑆) ∧ 𝐵 finSupp (0g𝑆))) → (𝑥𝑉 ↦ ((𝐵𝑥)( ·𝑠𝑀)𝑥)) finSupp (0g𝑀))
491, 2, 3, 6, 8, 28, 37, 38, 39, 44, 48gsummptfsadd 19037 . 2 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) ∧ (𝐴 finSupp (0g𝑆) ∧ 𝐵 finSupp (0g𝑆))) → (𝑀 Σg (𝑥𝑉 ↦ (((𝐴𝑥)( ·𝑠𝑀)𝑥) + ((𝐵𝑥)( ·𝑠𝑀)𝑥)))) = ((𝑀 Σg (𝑥𝑉 ↦ ((𝐴𝑥)( ·𝑠𝑀)𝑥))) + (𝑀 Σg (𝑥𝑉 ↦ ((𝐵𝑥)( ·𝑠𝑀)𝑥)))))
507adantr 484 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → 𝑉 ∈ 𝒫 (Base‘𝑀))
51 elmapfn 8412 . . . . . . . 8 (𝐴 ∈ (𝑅m 𝑉) → 𝐴 Fn 𝑉)
5251ad2antrl 727 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → 𝐴 Fn 𝑉)
53 elmapfn 8412 . . . . . . . 8 (𝐵 ∈ (𝑅m 𝑉) → 𝐵 Fn 𝑉)
5453ad2antll 728 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → 𝐵 Fn 𝑉)
5550, 52, 54offvalfv 44744 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → (𝐴f 𝐵) = (𝑦𝑉 ↦ ((𝐴𝑦) (𝐵𝑦))))
56553adant3 1129 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) ∧ (𝐴 finSupp (0g𝑆) ∧ 𝐵 finSupp (0g𝑆))) → (𝐴f 𝐵) = (𝑦𝑉 ↦ ((𝐴𝑦) (𝐵𝑦))))
5724lmodfgrp 19636 . . . . . . . . . . 11 (𝑀 ∈ LMod → 𝑆 ∈ Grp)
58 grpmnd 18102 . . . . . . . . . . 11 (𝑆 ∈ Grp → 𝑆 ∈ Mnd)
5957, 58syl 17 . . . . . . . . . 10 (𝑀 ∈ LMod → 𝑆 ∈ Mnd)
6059ad3antrrr 729 . . . . . . . . 9 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) ∧ 𝑦𝑉) → 𝑆 ∈ Mnd)
61 ffvelrn 6826 . . . . . . . . . . . . . 14 ((𝐴:𝑉𝑅𝑦𝑉) → (𝐴𝑦) ∈ 𝑅)
6261ex 416 . . . . . . . . . . . . 13 (𝐴:𝑉𝑅 → (𝑦𝑉 → (𝐴𝑦) ∈ 𝑅))
6312, 62syl 17 . . . . . . . . . . . 12 (𝐴 ∈ (𝑅m 𝑉) → (𝑦𝑉 → (𝐴𝑦) ∈ 𝑅))
6463ad2antrl 727 . . . . . . . . . . 11 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → (𝑦𝑉 → (𝐴𝑦) ∈ 𝑅))
6564imp 410 . . . . . . . . . 10 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) ∧ 𝑦𝑉) → (𝐴𝑦) ∈ 𝑅)
6624fveq2i 6648 . . . . . . . . . . 11 (Base‘𝑆) = (Base‘(Scalar‘𝑀))
6726, 66eqtri 2821 . . . . . . . . . 10 𝑅 = (Base‘(Scalar‘𝑀))
6865, 67eleqtrdi 2900 . . . . . . . . 9 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) ∧ 𝑦𝑉) → (𝐴𝑦) ∈ (Base‘(Scalar‘𝑀)))
69 ffvelrn 6826 . . . . . . . . . . . . . 14 ((𝐵:𝑉𝑅𝑦𝑉) → (𝐵𝑦) ∈ 𝑅)
7069, 67eleqtrdi 2900 . . . . . . . . . . . . 13 ((𝐵:𝑉𝑅𝑦𝑉) → (𝐵𝑦) ∈ (Base‘(Scalar‘𝑀)))
7170ex 416 . . . . . . . . . . . 12 (𝐵:𝑉𝑅 → (𝑦𝑉 → (𝐵𝑦) ∈ (Base‘(Scalar‘𝑀))))
7229, 71syl 17 . . . . . . . . . . 11 (𝐵 ∈ (𝑅m 𝑉) → (𝑦𝑉 → (𝐵𝑦) ∈ (Base‘(Scalar‘𝑀))))
7372ad2antll 728 . . . . . . . . . 10 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → (𝑦𝑉 → (𝐵𝑦) ∈ (Base‘(Scalar‘𝑀))))
7473imp 410 . . . . . . . . 9 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) ∧ 𝑦𝑉) → (𝐵𝑦) ∈ (Base‘(Scalar‘𝑀)))
7524eqcomi 2807 . . . . . . . . . . 11 (Scalar‘𝑀) = 𝑆
7675fveq2i 6648 . . . . . . . . . 10 (Base‘(Scalar‘𝑀)) = (Base‘𝑆)
77 lincsum.b . . . . . . . . . 10 = (+g𝑆)
7876, 77mndcl 17911 . . . . . . . . 9 ((𝑆 ∈ Mnd ∧ (𝐴𝑦) ∈ (Base‘(Scalar‘𝑀)) ∧ (𝐵𝑦) ∈ (Base‘(Scalar‘𝑀))) → ((𝐴𝑦) (𝐵𝑦)) ∈ (Base‘(Scalar‘𝑀)))
7960, 68, 74, 78syl3anc 1368 . . . . . . . 8 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) ∧ 𝑦𝑉) → ((𝐴𝑦) (𝐵𝑦)) ∈ (Base‘(Scalar‘𝑀)))
8079fmpttd 6856 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → (𝑦𝑉 ↦ ((𝐴𝑦) (𝐵𝑦))):𝑉⟶(Base‘(Scalar‘𝑀)))
81 fvex 6658 . . . . . . . 8 (Base‘(Scalar‘𝑀)) ∈ V
82 elmapg 8402 . . . . . . . 8 (((Base‘(Scalar‘𝑀)) ∈ V ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → ((𝑦𝑉 ↦ ((𝐴𝑦) (𝐵𝑦))) ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ↔ (𝑦𝑉 ↦ ((𝐴𝑦) (𝐵𝑦))):𝑉⟶(Base‘(Scalar‘𝑀))))
8381, 50, 82sylancr 590 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → ((𝑦𝑉 ↦ ((𝐴𝑦) (𝐵𝑦))) ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ↔ (𝑦𝑉 ↦ ((𝐴𝑦) (𝐵𝑦))):𝑉⟶(Base‘(Scalar‘𝑀))))
8480, 83mpbird 260 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → (𝑦𝑉 ↦ ((𝐴𝑦) (𝐵𝑦))) ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
85843adant3 1129 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) ∧ (𝐴 finSupp (0g𝑆) ∧ 𝐵 finSupp (0g𝑆))) → (𝑦𝑉 ↦ ((𝐴𝑦) (𝐵𝑦))) ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
8656, 85eqeltrd 2890 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) ∧ (𝐴 finSupp (0g𝑆) ∧ 𝐵 finSupp (0g𝑆))) → (𝐴f 𝐵) ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
87 lincval 44818 . . . 4 ((𝑀 ∈ LMod ∧ (𝐴f 𝐵) ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → ((𝐴f 𝐵)( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑥𝑉 ↦ (((𝐴f 𝐵)‘𝑥)( ·𝑠𝑀)𝑥))))
8810, 86, 8, 87syl3anc 1368 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) ∧ (𝐴 finSupp (0g𝑆) ∧ 𝐵 finSupp (0g𝑆))) → ((𝐴f 𝐵)( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑥𝑉 ↦ (((𝐴f 𝐵)‘𝑥)( ·𝑠𝑀)𝑥))))
8951, 53anim12i 615 . . . . . . . . . . . 12 ((𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) → (𝐴 Fn 𝑉𝐵 Fn 𝑉))
9089adantl 485 . . . . . . . . . . 11 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → (𝐴 Fn 𝑉𝐵 Fn 𝑉))
9190adantr 484 . . . . . . . . . 10 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) ∧ 𝑥𝑉) → (𝐴 Fn 𝑉𝐵 Fn 𝑉))
9250anim1i 617 . . . . . . . . . 10 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) ∧ 𝑥𝑉) → (𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝑥𝑉))
93 fnfvof 7403 . . . . . . . . . 10 (((𝐴 Fn 𝑉𝐵 Fn 𝑉) ∧ (𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝑥𝑉)) → ((𝐴f 𝐵)‘𝑥) = ((𝐴𝑥) (𝐵𝑥)))
9491, 92, 93syl2anc 587 . . . . . . . . 9 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) ∧ 𝑥𝑉) → ((𝐴f 𝐵)‘𝑥) = ((𝐴𝑥) (𝐵𝑥)))
9577a1i 11 . . . . . . . . . 10 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) ∧ 𝑥𝑉) → = (+g𝑆))
9695oveqd 7152 . . . . . . . . 9 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) ∧ 𝑥𝑉) → ((𝐴𝑥) (𝐵𝑥)) = ((𝐴𝑥)(+g𝑆)(𝐵𝑥)))
9794, 96eqtrd 2833 . . . . . . . 8 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) ∧ 𝑥𝑉) → ((𝐴f 𝐵)‘𝑥) = ((𝐴𝑥)(+g𝑆)(𝐵𝑥)))
9897oveq1d 7150 . . . . . . 7 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) ∧ 𝑥𝑉) → (((𝐴f 𝐵)‘𝑥)( ·𝑠𝑀)𝑥) = (((𝐴𝑥)(+g𝑆)(𝐵𝑥))( ·𝑠𝑀)𝑥))
999adantr 484 . . . . . . . . 9 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → 𝑀 ∈ LMod)
10099adantr 484 . . . . . . . 8 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) ∧ 𝑥𝑉) → 𝑀 ∈ LMod)
10115ad2antrl 727 . . . . . . . . 9 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → (𝑥𝑉 → (𝐴𝑥) ∈ 𝑅))
102101imp 410 . . . . . . . 8 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) ∧ 𝑥𝑉) → (𝐴𝑥) ∈ 𝑅)
10332ad2antll 728 . . . . . . . . 9 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → (𝑥𝑉 → (𝐵𝑥) ∈ 𝑅))
104103imp 410 . . . . . . . 8 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) ∧ 𝑥𝑉) → (𝐵𝑥) ∈ 𝑅)
10521adantr 484 . . . . . . . . 9 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → (𝑥𝑉𝑥 ∈ (Base‘𝑀)))
106105imp 410 . . . . . . . 8 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) ∧ 𝑥𝑉) → 𝑥 ∈ (Base‘𝑀))
107 eqid 2798 . . . . . . . . 9 (Scalar‘𝑀) = (Scalar‘𝑀)
10824fveq2i 6648 . . . . . . . . 9 (+g𝑆) = (+g‘(Scalar‘𝑀))
1091, 3, 107, 25, 67, 108lmodvsdir 19651 . . . . . . . 8 ((𝑀 ∈ LMod ∧ ((𝐴𝑥) ∈ 𝑅 ∧ (𝐵𝑥) ∈ 𝑅𝑥 ∈ (Base‘𝑀))) → (((𝐴𝑥)(+g𝑆)(𝐵𝑥))( ·𝑠𝑀)𝑥) = (((𝐴𝑥)( ·𝑠𝑀)𝑥) + ((𝐵𝑥)( ·𝑠𝑀)𝑥)))
110100, 102, 104, 106, 109syl13anc 1369 . . . . . . 7 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) ∧ 𝑥𝑉) → (((𝐴𝑥)(+g𝑆)(𝐵𝑥))( ·𝑠𝑀)𝑥) = (((𝐴𝑥)( ·𝑠𝑀)𝑥) + ((𝐵𝑥)( ·𝑠𝑀)𝑥)))
11198, 110eqtrd 2833 . . . . . 6 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) ∧ 𝑥𝑉) → (((𝐴f 𝐵)‘𝑥)( ·𝑠𝑀)𝑥) = (((𝐴𝑥)( ·𝑠𝑀)𝑥) + ((𝐵𝑥)( ·𝑠𝑀)𝑥)))
112111mpteq2dva 5125 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → (𝑥𝑉 ↦ (((𝐴f 𝐵)‘𝑥)( ·𝑠𝑀)𝑥)) = (𝑥𝑉 ↦ (((𝐴𝑥)( ·𝑠𝑀)𝑥) + ((𝐵𝑥)( ·𝑠𝑀)𝑥))))
113112oveq2d 7151 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → (𝑀 Σg (𝑥𝑉 ↦ (((𝐴f 𝐵)‘𝑥)( ·𝑠𝑀)𝑥))) = (𝑀 Σg (𝑥𝑉 ↦ (((𝐴𝑥)( ·𝑠𝑀)𝑥) + ((𝐵𝑥)( ·𝑠𝑀)𝑥)))))
1141133adant3 1129 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) ∧ (𝐴 finSupp (0g𝑆) ∧ 𝐵 finSupp (0g𝑆))) → (𝑀 Σg (𝑥𝑉 ↦ (((𝐴f 𝐵)‘𝑥)( ·𝑠𝑀)𝑥))) = (𝑀 Σg (𝑥𝑉 ↦ (((𝐴𝑥)( ·𝑠𝑀)𝑥) + ((𝐵𝑥)( ·𝑠𝑀)𝑥)))))
11588, 114eqtrd 2833 . 2 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) ∧ (𝐴 finSupp (0g𝑆) ∧ 𝐵 finSupp (0g𝑆))) → ((𝐴f 𝐵)( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑥𝑉 ↦ (((𝐴𝑥)( ·𝑠𝑀)𝑥) + ((𝐵𝑥)( ·𝑠𝑀)𝑥)))))
116 lincsum.x . . . 4 𝑋 = (𝐴( linC ‘𝑀)𝑉)
117 lincsum.y . . . 4 𝑌 = (𝐵( linC ‘𝑀)𝑉)
118116, 117oveq12i 7147 . . 3 (𝑋 + 𝑌) = ((𝐴( linC ‘𝑀)𝑉) + (𝐵( linC ‘𝑀)𝑉))
11967oveq1i 7145 . . . . . . . . 9 (𝑅m 𝑉) = ((Base‘(Scalar‘𝑀)) ↑m 𝑉)
120119eleq2i 2881 . . . . . . . 8 (𝐴 ∈ (𝑅m 𝑉) ↔ 𝐴 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
121120biimpi 219 . . . . . . 7 (𝐴 ∈ (𝑅m 𝑉) → 𝐴 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
122121ad2antrl 727 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → 𝐴 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
123 lincval 44818 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝐴 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝐴( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑥𝑉 ↦ ((𝐴𝑥)( ·𝑠𝑀)𝑥))))
12499, 122, 50, 123syl3anc 1368 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → (𝐴( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑥𝑉 ↦ ((𝐴𝑥)( ·𝑠𝑀)𝑥))))
125119eleq2i 2881 . . . . . . . 8 (𝐵 ∈ (𝑅m 𝑉) ↔ 𝐵 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
126125biimpi 219 . . . . . . 7 (𝐵 ∈ (𝑅m 𝑉) → 𝐵 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
127126ad2antll 728 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → 𝐵 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
128 lincval 44818 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝐵 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝐵( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑥𝑉 ↦ ((𝐵𝑥)( ·𝑠𝑀)𝑥))))
12999, 127, 50, 128syl3anc 1368 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → (𝐵( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑥𝑉 ↦ ((𝐵𝑥)( ·𝑠𝑀)𝑥))))
130124, 129oveq12d 7153 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → ((𝐴( linC ‘𝑀)𝑉) + (𝐵( linC ‘𝑀)𝑉)) = ((𝑀 Σg (𝑥𝑉 ↦ ((𝐴𝑥)( ·𝑠𝑀)𝑥))) + (𝑀 Σg (𝑥𝑉 ↦ ((𝐵𝑥)( ·𝑠𝑀)𝑥)))))
1311303adant3 1129 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) ∧ (𝐴 finSupp (0g𝑆) ∧ 𝐵 finSupp (0g𝑆))) → ((𝐴( linC ‘𝑀)𝑉) + (𝐵( linC ‘𝑀)𝑉)) = ((𝑀 Σg (𝑥𝑉 ↦ ((𝐴𝑥)( ·𝑠𝑀)𝑥))) + (𝑀 Σg (𝑥𝑉 ↦ ((𝐵𝑥)( ·𝑠𝑀)𝑥)))))
132118, 131syl5eq 2845 . 2 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) ∧ (𝐴 finSupp (0g𝑆) ∧ 𝐵 finSupp (0g𝑆))) → (𝑋 + 𝑌) = ((𝑀 Σg (𝑥𝑉 ↦ ((𝐴𝑥)( ·𝑠𝑀)𝑥))) + (𝑀 Σg (𝑥𝑉 ↦ ((𝐵𝑥)( ·𝑠𝑀)𝑥)))))
13349, 115, 1323eqtr4rd 2844 1 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) ∧ (𝐴 finSupp (0g𝑆) ∧ 𝐵 finSupp (0g𝑆))) → (𝑋 + 𝑌) = ((𝐴f 𝐵)( linC ‘𝑀)𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  Vcvv 3441  𝒫 cpw 4497   class class class wbr 5030  cmpt 5110   Fn wfn 6319  wf 6320  cfv 6324  (class class class)co 7135  f cof 7387  m cmap 8389   finSupp cfsupp 8817  Basecbs 16475  +gcplusg 16557  Scalarcsca 16560   ·𝑠 cvsca 16561  0gc0g 16705   Σg cgsu 16706  Mndcmnd 17903  Grpcgrp 18095  CMndccmn 18898  LModclmod 19627   linC clinc 44813
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-fzo 13029  df-seq 13365  df-hash 13687  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-0g 16707  df-gsum 16708  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-grp 18098  df-minusg 18099  df-cntz 18439  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-ring 19292  df-lmod 19629  df-linc 44815
This theorem is referenced by:  lincsumcl  44840
  Copyright terms: Public domain W3C validator