MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnsubrg Structured version   Visualization version   GIF version

Theorem cnsubrg 21462
Description: There are no subrings of the complex numbers strictly between and . (Contributed by Mario Carneiro, 15-Oct-2015.)
Assertion
Ref Expression
cnsubrg ((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) → 𝑅 ∈ {ℝ, ℂ})

Proof of Theorem cnsubrg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssdif0 4371 . . . 4 (𝑅 ⊆ ℝ ↔ (𝑅 ∖ ℝ) = ∅)
2 simpr 484 . . . . . 6 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑅 ⊆ ℝ) → 𝑅 ⊆ ℝ)
3 simplr 769 . . . . . 6 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑅 ⊆ ℝ) → ℝ ⊆ 𝑅)
42, 3eqssd 4012 . . . . 5 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑅 ⊆ ℝ) → 𝑅 = ℝ)
54orcd 873 . . . 4 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑅 ⊆ ℝ) → (𝑅 = ℝ ∨ 𝑅 = ℂ))
61, 5sylan2br 595 . . 3 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ (𝑅 ∖ ℝ) = ∅) → (𝑅 = ℝ ∨ 𝑅 = ℂ))
7 n0 4358 . . . 4 ((𝑅 ∖ ℝ) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝑅 ∖ ℝ))
8 simpll 767 . . . . . . . . . 10 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → 𝑅 ∈ (SubRing‘ℂfld))
9 cnfldbas 21385 . . . . . . . . . . 11 ℂ = (Base‘ℂfld)
109subrgss 20588 . . . . . . . . . 10 (𝑅 ∈ (SubRing‘ℂfld) → 𝑅 ⊆ ℂ)
118, 10syl 17 . . . . . . . . 9 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → 𝑅 ⊆ ℂ)
12 replim 15151 . . . . . . . . . . . . 13 (𝑦 ∈ ℂ → 𝑦 = ((ℜ‘𝑦) + (i · (ℑ‘𝑦))))
1312ad2antll 729 . . . . . . . . . . . 12 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ (𝑥 ∈ (𝑅 ∖ ℝ) ∧ 𝑦 ∈ ℂ)) → 𝑦 = ((ℜ‘𝑦) + (i · (ℑ‘𝑦))))
14 simpll 767 . . . . . . . . . . . . 13 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ (𝑥 ∈ (𝑅 ∖ ℝ) ∧ 𝑦 ∈ ℂ)) → 𝑅 ∈ (SubRing‘ℂfld))
15 simplr 769 . . . . . . . . . . . . . 14 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ (𝑥 ∈ (𝑅 ∖ ℝ) ∧ 𝑦 ∈ ℂ)) → ℝ ⊆ 𝑅)
16 recl 15145 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℂ → (ℜ‘𝑦) ∈ ℝ)
1716ad2antll 729 . . . . . . . . . . . . . 14 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ (𝑥 ∈ (𝑅 ∖ ℝ) ∧ 𝑦 ∈ ℂ)) → (ℜ‘𝑦) ∈ ℝ)
1815, 17sseldd 3995 . . . . . . . . . . . . 13 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ (𝑥 ∈ (𝑅 ∖ ℝ) ∧ 𝑦 ∈ ℂ)) → (ℜ‘𝑦) ∈ 𝑅)
19 ax-icn 11211 . . . . . . . . . . . . . . . . . . 19 i ∈ ℂ
2019a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → i ∈ ℂ)
21 eldifi 4140 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ (𝑅 ∖ ℝ) → 𝑥𝑅)
2221adantl 481 . . . . . . . . . . . . . . . . . . . . 21 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → 𝑥𝑅)
2311, 22sseldd 3995 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → 𝑥 ∈ ℂ)
24 imcl 15146 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℂ → (ℑ‘𝑥) ∈ ℝ)
2523, 24syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → (ℑ‘𝑥) ∈ ℝ)
2625recnd 11286 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → (ℑ‘𝑥) ∈ ℂ)
27 eldifn 4141 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (𝑅 ∖ ℝ) → ¬ 𝑥 ∈ ℝ)
2827adantl 481 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → ¬ 𝑥 ∈ ℝ)
29 reim0b 15154 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ℂ → (𝑥 ∈ ℝ ↔ (ℑ‘𝑥) = 0))
3029necon3bbid 2975 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℂ → (¬ 𝑥 ∈ ℝ ↔ (ℑ‘𝑥) ≠ 0))
3123, 30syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → (¬ 𝑥 ∈ ℝ ↔ (ℑ‘𝑥) ≠ 0))
3228, 31mpbid 232 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → (ℑ‘𝑥) ≠ 0)
3320, 26, 32divcan4d 12046 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → ((i · (ℑ‘𝑥)) / (ℑ‘𝑥)) = i)
34 mulcl 11236 . . . . . . . . . . . . . . . . . . 19 ((i ∈ ℂ ∧ (ℑ‘𝑥) ∈ ℂ) → (i · (ℑ‘𝑥)) ∈ ℂ)
3519, 26, 34sylancr 587 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → (i · (ℑ‘𝑥)) ∈ ℂ)
3635, 26, 32divrecd 12043 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → ((i · (ℑ‘𝑥)) / (ℑ‘𝑥)) = ((i · (ℑ‘𝑥)) · (1 / (ℑ‘𝑥))))
3733, 36eqtr3d 2776 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → i = ((i · (ℑ‘𝑥)) · (1 / (ℑ‘𝑥))))
3823recld 15229 . . . . . . . . . . . . . . . . . . . . 21 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → (ℜ‘𝑥) ∈ ℝ)
3938recnd 11286 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → (ℜ‘𝑥) ∈ ℂ)
4023, 39negsubd 11623 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → (𝑥 + -(ℜ‘𝑥)) = (𝑥 − (ℜ‘𝑥)))
41 replim 15151 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ℂ → 𝑥 = ((ℜ‘𝑥) + (i · (ℑ‘𝑥))))
4223, 41syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → 𝑥 = ((ℜ‘𝑥) + (i · (ℑ‘𝑥))))
4342oveq1d 7445 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → (𝑥 − (ℜ‘𝑥)) = (((ℜ‘𝑥) + (i · (ℑ‘𝑥))) − (ℜ‘𝑥)))
4439, 35pncan2d 11619 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → (((ℜ‘𝑥) + (i · (ℑ‘𝑥))) − (ℜ‘𝑥)) = (i · (ℑ‘𝑥)))
4540, 43, 443eqtrd 2778 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → (𝑥 + -(ℜ‘𝑥)) = (i · (ℑ‘𝑥)))
46 simplr 769 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → ℝ ⊆ 𝑅)
4738renegcld 11687 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → -(ℜ‘𝑥) ∈ ℝ)
4846, 47sseldd 3995 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → -(ℜ‘𝑥) ∈ 𝑅)
49 cnfldadd 21387 . . . . . . . . . . . . . . . . . . . 20 + = (+g‘ℂfld)
5049subrgacl 20599 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ (SubRing‘ℂfld) ∧ 𝑥𝑅 ∧ -(ℜ‘𝑥) ∈ 𝑅) → (𝑥 + -(ℜ‘𝑥)) ∈ 𝑅)
518, 22, 48, 50syl3anc 1370 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → (𝑥 + -(ℜ‘𝑥)) ∈ 𝑅)
5245, 51eqeltrrd 2839 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → (i · (ℑ‘𝑥)) ∈ 𝑅)
5325, 32rereccld 12091 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → (1 / (ℑ‘𝑥)) ∈ ℝ)
5446, 53sseldd 3995 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → (1 / (ℑ‘𝑥)) ∈ 𝑅)
55 cnfldmul 21389 . . . . . . . . . . . . . . . . . 18 · = (.r‘ℂfld)
5655subrgmcl 20600 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ (SubRing‘ℂfld) ∧ (i · (ℑ‘𝑥)) ∈ 𝑅 ∧ (1 / (ℑ‘𝑥)) ∈ 𝑅) → ((i · (ℑ‘𝑥)) · (1 / (ℑ‘𝑥))) ∈ 𝑅)
578, 52, 54, 56syl3anc 1370 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → ((i · (ℑ‘𝑥)) · (1 / (ℑ‘𝑥))) ∈ 𝑅)
5837, 57eqeltrd 2838 . . . . . . . . . . . . . . 15 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → i ∈ 𝑅)
5958adantrr 717 . . . . . . . . . . . . . 14 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ (𝑥 ∈ (𝑅 ∖ ℝ) ∧ 𝑦 ∈ ℂ)) → i ∈ 𝑅)
60 imcl 15146 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℂ → (ℑ‘𝑦) ∈ ℝ)
6160ad2antll 729 . . . . . . . . . . . . . . 15 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ (𝑥 ∈ (𝑅 ∖ ℝ) ∧ 𝑦 ∈ ℂ)) → (ℑ‘𝑦) ∈ ℝ)
6215, 61sseldd 3995 . . . . . . . . . . . . . 14 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ (𝑥 ∈ (𝑅 ∖ ℝ) ∧ 𝑦 ∈ ℂ)) → (ℑ‘𝑦) ∈ 𝑅)
6355subrgmcl 20600 . . . . . . . . . . . . . 14 ((𝑅 ∈ (SubRing‘ℂfld) ∧ i ∈ 𝑅 ∧ (ℑ‘𝑦) ∈ 𝑅) → (i · (ℑ‘𝑦)) ∈ 𝑅)
6414, 59, 62, 63syl3anc 1370 . . . . . . . . . . . . 13 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ (𝑥 ∈ (𝑅 ∖ ℝ) ∧ 𝑦 ∈ ℂ)) → (i · (ℑ‘𝑦)) ∈ 𝑅)
6549subrgacl 20599 . . . . . . . . . . . . 13 ((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℜ‘𝑦) ∈ 𝑅 ∧ (i · (ℑ‘𝑦)) ∈ 𝑅) → ((ℜ‘𝑦) + (i · (ℑ‘𝑦))) ∈ 𝑅)
6614, 18, 64, 65syl3anc 1370 . . . . . . . . . . . 12 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ (𝑥 ∈ (𝑅 ∖ ℝ) ∧ 𝑦 ∈ ℂ)) → ((ℜ‘𝑦) + (i · (ℑ‘𝑦))) ∈ 𝑅)
6713, 66eqeltrd 2838 . . . . . . . . . . 11 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ (𝑥 ∈ (𝑅 ∖ ℝ) ∧ 𝑦 ∈ ℂ)) → 𝑦𝑅)
6867expr 456 . . . . . . . . . 10 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → (𝑦 ∈ ℂ → 𝑦𝑅))
6968ssrdv 4000 . . . . . . . . 9 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → ℂ ⊆ 𝑅)
7011, 69eqssd 4012 . . . . . . . 8 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → 𝑅 = ℂ)
7170olcd 874 . . . . . . 7 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → (𝑅 = ℝ ∨ 𝑅 = ℂ))
7271ex 412 . . . . . 6 ((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) → (𝑥 ∈ (𝑅 ∖ ℝ) → (𝑅 = ℝ ∨ 𝑅 = ℂ)))
7372exlimdv 1930 . . . . 5 ((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) → (∃𝑥 𝑥 ∈ (𝑅 ∖ ℝ) → (𝑅 = ℝ ∨ 𝑅 = ℂ)))
7473imp 406 . . . 4 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ ∃𝑥 𝑥 ∈ (𝑅 ∖ ℝ)) → (𝑅 = ℝ ∨ 𝑅 = ℂ))
757, 74sylan2b 594 . . 3 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ (𝑅 ∖ ℝ) ≠ ∅) → (𝑅 = ℝ ∨ 𝑅 = ℂ))
766, 75pm2.61dane 3026 . 2 ((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) → (𝑅 = ℝ ∨ 𝑅 = ℂ))
77 elprg 4652 . . 3 (𝑅 ∈ (SubRing‘ℂfld) → (𝑅 ∈ {ℝ, ℂ} ↔ (𝑅 = ℝ ∨ 𝑅 = ℂ)))
7877adantr 480 . 2 ((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) → (𝑅 ∈ {ℝ, ℂ} ↔ (𝑅 = ℝ ∨ 𝑅 = ℂ)))
7976, 78mpbird 257 1 ((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) → 𝑅 ∈ {ℝ, ℂ})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1536  wex 1775  wcel 2105  wne 2937  cdif 3959  wss 3962  c0 4338  {cpr 4632  cfv 6562  (class class class)co 7430  cc 11150  cr 11151  0cc0 11152  1c1 11153  ici 11154   + caddc 11155   · cmul 11157  cmin 11489  -cneg 11490   / cdiv 11917  cre 15132  cim 15133  SubRingcsubrg 20585  fldccnfld 21381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-addf 11231  ax-mulf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-dec 12731  df-uz 12876  df-fz 13544  df-cj 15134  df-re 15135  df-im 15136  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-starv 17312  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-0g 17487  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-grp 18966  df-minusg 18967  df-subg 19153  df-cmn 19814  df-abl 19815  df-mgp 20152  df-rng 20170  df-ur 20199  df-ring 20252  df-subrng 20562  df-subrg 20586  df-cnfld 21382
This theorem is referenced by:  cncdrg  25406
  Copyright terms: Public domain W3C validator