MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnsubrg Structured version   Visualization version   GIF version

Theorem cnsubrg 21369
Description: There are no subrings of the complex numbers strictly between and . (Contributed by Mario Carneiro, 15-Oct-2015.)
Assertion
Ref Expression
cnsubrg ((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) → 𝑅 ∈ {ℝ, ℂ})

Proof of Theorem cnsubrg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssdif0 4325 . . . 4 (𝑅 ⊆ ℝ ↔ (𝑅 ∖ ℝ) = ∅)
2 simpr 484 . . . . . 6 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑅 ⊆ ℝ) → 𝑅 ⊆ ℝ)
3 simplr 768 . . . . . 6 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑅 ⊆ ℝ) → ℝ ⊆ 𝑅)
42, 3eqssd 3961 . . . . 5 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑅 ⊆ ℝ) → 𝑅 = ℝ)
54orcd 873 . . . 4 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑅 ⊆ ℝ) → (𝑅 = ℝ ∨ 𝑅 = ℂ))
61, 5sylan2br 595 . . 3 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ (𝑅 ∖ ℝ) = ∅) → (𝑅 = ℝ ∨ 𝑅 = ℂ))
7 n0 4312 . . . 4 ((𝑅 ∖ ℝ) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝑅 ∖ ℝ))
8 simpll 766 . . . . . . . . . 10 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → 𝑅 ∈ (SubRing‘ℂfld))
9 cnfldbas 21300 . . . . . . . . . . 11 ℂ = (Base‘ℂfld)
109subrgss 20492 . . . . . . . . . 10 (𝑅 ∈ (SubRing‘ℂfld) → 𝑅 ⊆ ℂ)
118, 10syl 17 . . . . . . . . 9 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → 𝑅 ⊆ ℂ)
12 replim 15058 . . . . . . . . . . . . 13 (𝑦 ∈ ℂ → 𝑦 = ((ℜ‘𝑦) + (i · (ℑ‘𝑦))))
1312ad2antll 729 . . . . . . . . . . . 12 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ (𝑥 ∈ (𝑅 ∖ ℝ) ∧ 𝑦 ∈ ℂ)) → 𝑦 = ((ℜ‘𝑦) + (i · (ℑ‘𝑦))))
14 simpll 766 . . . . . . . . . . . . 13 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ (𝑥 ∈ (𝑅 ∖ ℝ) ∧ 𝑦 ∈ ℂ)) → 𝑅 ∈ (SubRing‘ℂfld))
15 simplr 768 . . . . . . . . . . . . . 14 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ (𝑥 ∈ (𝑅 ∖ ℝ) ∧ 𝑦 ∈ ℂ)) → ℝ ⊆ 𝑅)
16 recl 15052 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℂ → (ℜ‘𝑦) ∈ ℝ)
1716ad2antll 729 . . . . . . . . . . . . . 14 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ (𝑥 ∈ (𝑅 ∖ ℝ) ∧ 𝑦 ∈ ℂ)) → (ℜ‘𝑦) ∈ ℝ)
1815, 17sseldd 3944 . . . . . . . . . . . . 13 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ (𝑥 ∈ (𝑅 ∖ ℝ) ∧ 𝑦 ∈ ℂ)) → (ℜ‘𝑦) ∈ 𝑅)
19 ax-icn 11103 . . . . . . . . . . . . . . . . . . 19 i ∈ ℂ
2019a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → i ∈ ℂ)
21 eldifi 4090 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ (𝑅 ∖ ℝ) → 𝑥𝑅)
2221adantl 481 . . . . . . . . . . . . . . . . . . . . 21 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → 𝑥𝑅)
2311, 22sseldd 3944 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → 𝑥 ∈ ℂ)
24 imcl 15053 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℂ → (ℑ‘𝑥) ∈ ℝ)
2523, 24syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → (ℑ‘𝑥) ∈ ℝ)
2625recnd 11178 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → (ℑ‘𝑥) ∈ ℂ)
27 eldifn 4091 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (𝑅 ∖ ℝ) → ¬ 𝑥 ∈ ℝ)
2827adantl 481 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → ¬ 𝑥 ∈ ℝ)
29 reim0b 15061 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ℂ → (𝑥 ∈ ℝ ↔ (ℑ‘𝑥) = 0))
3029necon3bbid 2962 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℂ → (¬ 𝑥 ∈ ℝ ↔ (ℑ‘𝑥) ≠ 0))
3123, 30syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → (¬ 𝑥 ∈ ℝ ↔ (ℑ‘𝑥) ≠ 0))
3228, 31mpbid 232 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → (ℑ‘𝑥) ≠ 0)
3320, 26, 32divcan4d 11940 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → ((i · (ℑ‘𝑥)) / (ℑ‘𝑥)) = i)
34 mulcl 11128 . . . . . . . . . . . . . . . . . . 19 ((i ∈ ℂ ∧ (ℑ‘𝑥) ∈ ℂ) → (i · (ℑ‘𝑥)) ∈ ℂ)
3519, 26, 34sylancr 587 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → (i · (ℑ‘𝑥)) ∈ ℂ)
3635, 26, 32divrecd 11937 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → ((i · (ℑ‘𝑥)) / (ℑ‘𝑥)) = ((i · (ℑ‘𝑥)) · (1 / (ℑ‘𝑥))))
3733, 36eqtr3d 2766 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → i = ((i · (ℑ‘𝑥)) · (1 / (ℑ‘𝑥))))
3823recld 15136 . . . . . . . . . . . . . . . . . . . . 21 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → (ℜ‘𝑥) ∈ ℝ)
3938recnd 11178 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → (ℜ‘𝑥) ∈ ℂ)
4023, 39negsubd 11515 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → (𝑥 + -(ℜ‘𝑥)) = (𝑥 − (ℜ‘𝑥)))
41 replim 15058 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ℂ → 𝑥 = ((ℜ‘𝑥) + (i · (ℑ‘𝑥))))
4223, 41syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → 𝑥 = ((ℜ‘𝑥) + (i · (ℑ‘𝑥))))
4342oveq1d 7384 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → (𝑥 − (ℜ‘𝑥)) = (((ℜ‘𝑥) + (i · (ℑ‘𝑥))) − (ℜ‘𝑥)))
4439, 35pncan2d 11511 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → (((ℜ‘𝑥) + (i · (ℑ‘𝑥))) − (ℜ‘𝑥)) = (i · (ℑ‘𝑥)))
4540, 43, 443eqtrd 2768 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → (𝑥 + -(ℜ‘𝑥)) = (i · (ℑ‘𝑥)))
46 simplr 768 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → ℝ ⊆ 𝑅)
4738renegcld 11581 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → -(ℜ‘𝑥) ∈ ℝ)
4846, 47sseldd 3944 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → -(ℜ‘𝑥) ∈ 𝑅)
49 cnfldadd 21302 . . . . . . . . . . . . . . . . . . . 20 + = (+g‘ℂfld)
5049subrgacl 20503 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ (SubRing‘ℂfld) ∧ 𝑥𝑅 ∧ -(ℜ‘𝑥) ∈ 𝑅) → (𝑥 + -(ℜ‘𝑥)) ∈ 𝑅)
518, 22, 48, 50syl3anc 1373 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → (𝑥 + -(ℜ‘𝑥)) ∈ 𝑅)
5245, 51eqeltrrd 2829 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → (i · (ℑ‘𝑥)) ∈ 𝑅)
5325, 32rereccld 11985 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → (1 / (ℑ‘𝑥)) ∈ ℝ)
5446, 53sseldd 3944 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → (1 / (ℑ‘𝑥)) ∈ 𝑅)
55 cnfldmul 21304 . . . . . . . . . . . . . . . . . 18 · = (.r‘ℂfld)
5655subrgmcl 20504 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ (SubRing‘ℂfld) ∧ (i · (ℑ‘𝑥)) ∈ 𝑅 ∧ (1 / (ℑ‘𝑥)) ∈ 𝑅) → ((i · (ℑ‘𝑥)) · (1 / (ℑ‘𝑥))) ∈ 𝑅)
578, 52, 54, 56syl3anc 1373 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → ((i · (ℑ‘𝑥)) · (1 / (ℑ‘𝑥))) ∈ 𝑅)
5837, 57eqeltrd 2828 . . . . . . . . . . . . . . 15 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → i ∈ 𝑅)
5958adantrr 717 . . . . . . . . . . . . . 14 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ (𝑥 ∈ (𝑅 ∖ ℝ) ∧ 𝑦 ∈ ℂ)) → i ∈ 𝑅)
60 imcl 15053 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℂ → (ℑ‘𝑦) ∈ ℝ)
6160ad2antll 729 . . . . . . . . . . . . . . 15 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ (𝑥 ∈ (𝑅 ∖ ℝ) ∧ 𝑦 ∈ ℂ)) → (ℑ‘𝑦) ∈ ℝ)
6215, 61sseldd 3944 . . . . . . . . . . . . . 14 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ (𝑥 ∈ (𝑅 ∖ ℝ) ∧ 𝑦 ∈ ℂ)) → (ℑ‘𝑦) ∈ 𝑅)
6355subrgmcl 20504 . . . . . . . . . . . . . 14 ((𝑅 ∈ (SubRing‘ℂfld) ∧ i ∈ 𝑅 ∧ (ℑ‘𝑦) ∈ 𝑅) → (i · (ℑ‘𝑦)) ∈ 𝑅)
6414, 59, 62, 63syl3anc 1373 . . . . . . . . . . . . 13 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ (𝑥 ∈ (𝑅 ∖ ℝ) ∧ 𝑦 ∈ ℂ)) → (i · (ℑ‘𝑦)) ∈ 𝑅)
6549subrgacl 20503 . . . . . . . . . . . . 13 ((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℜ‘𝑦) ∈ 𝑅 ∧ (i · (ℑ‘𝑦)) ∈ 𝑅) → ((ℜ‘𝑦) + (i · (ℑ‘𝑦))) ∈ 𝑅)
6614, 18, 64, 65syl3anc 1373 . . . . . . . . . . . 12 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ (𝑥 ∈ (𝑅 ∖ ℝ) ∧ 𝑦 ∈ ℂ)) → ((ℜ‘𝑦) + (i · (ℑ‘𝑦))) ∈ 𝑅)
6713, 66eqeltrd 2828 . . . . . . . . . . 11 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ (𝑥 ∈ (𝑅 ∖ ℝ) ∧ 𝑦 ∈ ℂ)) → 𝑦𝑅)
6867expr 456 . . . . . . . . . 10 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → (𝑦 ∈ ℂ → 𝑦𝑅))
6968ssrdv 3949 . . . . . . . . 9 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → ℂ ⊆ 𝑅)
7011, 69eqssd 3961 . . . . . . . 8 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → 𝑅 = ℂ)
7170olcd 874 . . . . . . 7 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → (𝑅 = ℝ ∨ 𝑅 = ℂ))
7271ex 412 . . . . . 6 ((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) → (𝑥 ∈ (𝑅 ∖ ℝ) → (𝑅 = ℝ ∨ 𝑅 = ℂ)))
7372exlimdv 1933 . . . . 5 ((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) → (∃𝑥 𝑥 ∈ (𝑅 ∖ ℝ) → (𝑅 = ℝ ∨ 𝑅 = ℂ)))
7473imp 406 . . . 4 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ ∃𝑥 𝑥 ∈ (𝑅 ∖ ℝ)) → (𝑅 = ℝ ∨ 𝑅 = ℂ))
757, 74sylan2b 594 . . 3 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ (𝑅 ∖ ℝ) ≠ ∅) → (𝑅 = ℝ ∨ 𝑅 = ℂ))
766, 75pm2.61dane 3012 . 2 ((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) → (𝑅 = ℝ ∨ 𝑅 = ℂ))
77 elprg 4608 . . 3 (𝑅 ∈ (SubRing‘ℂfld) → (𝑅 ∈ {ℝ, ℂ} ↔ (𝑅 = ℝ ∨ 𝑅 = ℂ)))
7877adantr 480 . 2 ((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) → (𝑅 ∈ {ℝ, ℂ} ↔ (𝑅 = ℝ ∨ 𝑅 = ℂ)))
7976, 78mpbird 257 1 ((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) → 𝑅 ∈ {ℝ, ℂ})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wex 1779  wcel 2109  wne 2925  cdif 3908  wss 3911  c0 4292  {cpr 4587  cfv 6499  (class class class)co 7369  cc 11042  cr 11043  0cc0 11044  1c1 11045  ici 11046   + caddc 11047   · cmul 11049  cmin 11381  -cneg 11382   / cdiv 11811  cre 15039  cim 15040  SubRingcsubrg 20489  fldccnfld 21296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-addf 11123  ax-mulf 11124
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-cj 15041  df-re 15042  df-im 15043  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-0g 17380  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-grp 18850  df-minusg 18851  df-subg 19037  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-subrng 20466  df-subrg 20490  df-cnfld 21297
This theorem is referenced by:  cncdrg  25292
  Copyright terms: Public domain W3C validator