MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnsubrg Structured version   Visualization version   GIF version

Theorem cnsubrg 20997
Description: There are no subrings of the complex numbers strictly between ℝ and β„‚. (Contributed by Mario Carneiro, 15-Oct-2015.)
Assertion
Ref Expression
cnsubrg ((𝑅 ∈ (SubRingβ€˜β„‚fld) ∧ ℝ βŠ† 𝑅) β†’ 𝑅 ∈ {ℝ, β„‚})

Proof of Theorem cnsubrg
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssdif0 4362 . . . 4 (𝑅 βŠ† ℝ ↔ (𝑅 βˆ– ℝ) = βˆ…)
2 simpr 485 . . . . . 6 (((𝑅 ∈ (SubRingβ€˜β„‚fld) ∧ ℝ βŠ† 𝑅) ∧ 𝑅 βŠ† ℝ) β†’ 𝑅 βŠ† ℝ)
3 simplr 767 . . . . . 6 (((𝑅 ∈ (SubRingβ€˜β„‚fld) ∧ ℝ βŠ† 𝑅) ∧ 𝑅 βŠ† ℝ) β†’ ℝ βŠ† 𝑅)
42, 3eqssd 3998 . . . . 5 (((𝑅 ∈ (SubRingβ€˜β„‚fld) ∧ ℝ βŠ† 𝑅) ∧ 𝑅 βŠ† ℝ) β†’ 𝑅 = ℝ)
54orcd 871 . . . 4 (((𝑅 ∈ (SubRingβ€˜β„‚fld) ∧ ℝ βŠ† 𝑅) ∧ 𝑅 βŠ† ℝ) β†’ (𝑅 = ℝ ∨ 𝑅 = β„‚))
61, 5sylan2br 595 . . 3 (((𝑅 ∈ (SubRingβ€˜β„‚fld) ∧ ℝ βŠ† 𝑅) ∧ (𝑅 βˆ– ℝ) = βˆ…) β†’ (𝑅 = ℝ ∨ 𝑅 = β„‚))
7 n0 4345 . . . 4 ((𝑅 βˆ– ℝ) β‰  βˆ… ↔ βˆƒπ‘₯ π‘₯ ∈ (𝑅 βˆ– ℝ))
8 simpll 765 . . . . . . . . . 10 (((𝑅 ∈ (SubRingβ€˜β„‚fld) ∧ ℝ βŠ† 𝑅) ∧ π‘₯ ∈ (𝑅 βˆ– ℝ)) β†’ 𝑅 ∈ (SubRingβ€˜β„‚fld))
9 cnfldbas 20940 . . . . . . . . . . 11 β„‚ = (Baseβ€˜β„‚fld)
109subrgss 20356 . . . . . . . . . 10 (𝑅 ∈ (SubRingβ€˜β„‚fld) β†’ 𝑅 βŠ† β„‚)
118, 10syl 17 . . . . . . . . 9 (((𝑅 ∈ (SubRingβ€˜β„‚fld) ∧ ℝ βŠ† 𝑅) ∧ π‘₯ ∈ (𝑅 βˆ– ℝ)) β†’ 𝑅 βŠ† β„‚)
12 replim 15059 . . . . . . . . . . . . 13 (𝑦 ∈ β„‚ β†’ 𝑦 = ((β„œβ€˜π‘¦) + (i Β· (β„‘β€˜π‘¦))))
1312ad2antll 727 . . . . . . . . . . . 12 (((𝑅 ∈ (SubRingβ€˜β„‚fld) ∧ ℝ βŠ† 𝑅) ∧ (π‘₯ ∈ (𝑅 βˆ– ℝ) ∧ 𝑦 ∈ β„‚)) β†’ 𝑦 = ((β„œβ€˜π‘¦) + (i Β· (β„‘β€˜π‘¦))))
14 simpll 765 . . . . . . . . . . . . 13 (((𝑅 ∈ (SubRingβ€˜β„‚fld) ∧ ℝ βŠ† 𝑅) ∧ (π‘₯ ∈ (𝑅 βˆ– ℝ) ∧ 𝑦 ∈ β„‚)) β†’ 𝑅 ∈ (SubRingβ€˜β„‚fld))
15 simplr 767 . . . . . . . . . . . . . 14 (((𝑅 ∈ (SubRingβ€˜β„‚fld) ∧ ℝ βŠ† 𝑅) ∧ (π‘₯ ∈ (𝑅 βˆ– ℝ) ∧ 𝑦 ∈ β„‚)) β†’ ℝ βŠ† 𝑅)
16 recl 15053 . . . . . . . . . . . . . . 15 (𝑦 ∈ β„‚ β†’ (β„œβ€˜π‘¦) ∈ ℝ)
1716ad2antll 727 . . . . . . . . . . . . . 14 (((𝑅 ∈ (SubRingβ€˜β„‚fld) ∧ ℝ βŠ† 𝑅) ∧ (π‘₯ ∈ (𝑅 βˆ– ℝ) ∧ 𝑦 ∈ β„‚)) β†’ (β„œβ€˜π‘¦) ∈ ℝ)
1815, 17sseldd 3982 . . . . . . . . . . . . 13 (((𝑅 ∈ (SubRingβ€˜β„‚fld) ∧ ℝ βŠ† 𝑅) ∧ (π‘₯ ∈ (𝑅 βˆ– ℝ) ∧ 𝑦 ∈ β„‚)) β†’ (β„œβ€˜π‘¦) ∈ 𝑅)
19 ax-icn 11165 . . . . . . . . . . . . . . . . . . 19 i ∈ β„‚
2019a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ (SubRingβ€˜β„‚fld) ∧ ℝ βŠ† 𝑅) ∧ π‘₯ ∈ (𝑅 βˆ– ℝ)) β†’ i ∈ β„‚)
21 eldifi 4125 . . . . . . . . . . . . . . . . . . . . . 22 (π‘₯ ∈ (𝑅 βˆ– ℝ) β†’ π‘₯ ∈ 𝑅)
2221adantl 482 . . . . . . . . . . . . . . . . . . . . 21 (((𝑅 ∈ (SubRingβ€˜β„‚fld) ∧ ℝ βŠ† 𝑅) ∧ π‘₯ ∈ (𝑅 βˆ– ℝ)) β†’ π‘₯ ∈ 𝑅)
2311, 22sseldd 3982 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ (SubRingβ€˜β„‚fld) ∧ ℝ βŠ† 𝑅) ∧ π‘₯ ∈ (𝑅 βˆ– ℝ)) β†’ π‘₯ ∈ β„‚)
24 imcl 15054 . . . . . . . . . . . . . . . . . . . 20 (π‘₯ ∈ β„‚ β†’ (β„‘β€˜π‘₯) ∈ ℝ)
2523, 24syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ (SubRingβ€˜β„‚fld) ∧ ℝ βŠ† 𝑅) ∧ π‘₯ ∈ (𝑅 βˆ– ℝ)) β†’ (β„‘β€˜π‘₯) ∈ ℝ)
2625recnd 11238 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ (SubRingβ€˜β„‚fld) ∧ ℝ βŠ† 𝑅) ∧ π‘₯ ∈ (𝑅 βˆ– ℝ)) β†’ (β„‘β€˜π‘₯) ∈ β„‚)
27 eldifn 4126 . . . . . . . . . . . . . . . . . . . 20 (π‘₯ ∈ (𝑅 βˆ– ℝ) β†’ Β¬ π‘₯ ∈ ℝ)
2827adantl 482 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ (SubRingβ€˜β„‚fld) ∧ ℝ βŠ† 𝑅) ∧ π‘₯ ∈ (𝑅 βˆ– ℝ)) β†’ Β¬ π‘₯ ∈ ℝ)
29 reim0b 15062 . . . . . . . . . . . . . . . . . . . . 21 (π‘₯ ∈ β„‚ β†’ (π‘₯ ∈ ℝ ↔ (β„‘β€˜π‘₯) = 0))
3029necon3bbid 2978 . . . . . . . . . . . . . . . . . . . 20 (π‘₯ ∈ β„‚ β†’ (Β¬ π‘₯ ∈ ℝ ↔ (β„‘β€˜π‘₯) β‰  0))
3123, 30syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ (SubRingβ€˜β„‚fld) ∧ ℝ βŠ† 𝑅) ∧ π‘₯ ∈ (𝑅 βˆ– ℝ)) β†’ (Β¬ π‘₯ ∈ ℝ ↔ (β„‘β€˜π‘₯) β‰  0))
3228, 31mpbid 231 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ (SubRingβ€˜β„‚fld) ∧ ℝ βŠ† 𝑅) ∧ π‘₯ ∈ (𝑅 βˆ– ℝ)) β†’ (β„‘β€˜π‘₯) β‰  0)
3320, 26, 32divcan4d 11992 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ (SubRingβ€˜β„‚fld) ∧ ℝ βŠ† 𝑅) ∧ π‘₯ ∈ (𝑅 βˆ– ℝ)) β†’ ((i Β· (β„‘β€˜π‘₯)) / (β„‘β€˜π‘₯)) = i)
34 mulcl 11190 . . . . . . . . . . . . . . . . . . 19 ((i ∈ β„‚ ∧ (β„‘β€˜π‘₯) ∈ β„‚) β†’ (i Β· (β„‘β€˜π‘₯)) ∈ β„‚)
3519, 26, 34sylancr 587 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ (SubRingβ€˜β„‚fld) ∧ ℝ βŠ† 𝑅) ∧ π‘₯ ∈ (𝑅 βˆ– ℝ)) β†’ (i Β· (β„‘β€˜π‘₯)) ∈ β„‚)
3635, 26, 32divrecd 11989 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ (SubRingβ€˜β„‚fld) ∧ ℝ βŠ† 𝑅) ∧ π‘₯ ∈ (𝑅 βˆ– ℝ)) β†’ ((i Β· (β„‘β€˜π‘₯)) / (β„‘β€˜π‘₯)) = ((i Β· (β„‘β€˜π‘₯)) Β· (1 / (β„‘β€˜π‘₯))))
3733, 36eqtr3d 2774 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ (SubRingβ€˜β„‚fld) ∧ ℝ βŠ† 𝑅) ∧ π‘₯ ∈ (𝑅 βˆ– ℝ)) β†’ i = ((i Β· (β„‘β€˜π‘₯)) Β· (1 / (β„‘β€˜π‘₯))))
3823recld 15137 . . . . . . . . . . . . . . . . . . . . 21 (((𝑅 ∈ (SubRingβ€˜β„‚fld) ∧ ℝ βŠ† 𝑅) ∧ π‘₯ ∈ (𝑅 βˆ– ℝ)) β†’ (β„œβ€˜π‘₯) ∈ ℝ)
3938recnd 11238 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ (SubRingβ€˜β„‚fld) ∧ ℝ βŠ† 𝑅) ∧ π‘₯ ∈ (𝑅 βˆ– ℝ)) β†’ (β„œβ€˜π‘₯) ∈ β„‚)
4023, 39negsubd 11573 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ (SubRingβ€˜β„‚fld) ∧ ℝ βŠ† 𝑅) ∧ π‘₯ ∈ (𝑅 βˆ– ℝ)) β†’ (π‘₯ + -(β„œβ€˜π‘₯)) = (π‘₯ βˆ’ (β„œβ€˜π‘₯)))
41 replim 15059 . . . . . . . . . . . . . . . . . . . . 21 (π‘₯ ∈ β„‚ β†’ π‘₯ = ((β„œβ€˜π‘₯) + (i Β· (β„‘β€˜π‘₯))))
4223, 41syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ (SubRingβ€˜β„‚fld) ∧ ℝ βŠ† 𝑅) ∧ π‘₯ ∈ (𝑅 βˆ– ℝ)) β†’ π‘₯ = ((β„œβ€˜π‘₯) + (i Β· (β„‘β€˜π‘₯))))
4342oveq1d 7420 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ (SubRingβ€˜β„‚fld) ∧ ℝ βŠ† 𝑅) ∧ π‘₯ ∈ (𝑅 βˆ– ℝ)) β†’ (π‘₯ βˆ’ (β„œβ€˜π‘₯)) = (((β„œβ€˜π‘₯) + (i Β· (β„‘β€˜π‘₯))) βˆ’ (β„œβ€˜π‘₯)))
4439, 35pncan2d 11569 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ (SubRingβ€˜β„‚fld) ∧ ℝ βŠ† 𝑅) ∧ π‘₯ ∈ (𝑅 βˆ– ℝ)) β†’ (((β„œβ€˜π‘₯) + (i Β· (β„‘β€˜π‘₯))) βˆ’ (β„œβ€˜π‘₯)) = (i Β· (β„‘β€˜π‘₯)))
4540, 43, 443eqtrd 2776 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ (SubRingβ€˜β„‚fld) ∧ ℝ βŠ† 𝑅) ∧ π‘₯ ∈ (𝑅 βˆ– ℝ)) β†’ (π‘₯ + -(β„œβ€˜π‘₯)) = (i Β· (β„‘β€˜π‘₯)))
46 simplr 767 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ (SubRingβ€˜β„‚fld) ∧ ℝ βŠ† 𝑅) ∧ π‘₯ ∈ (𝑅 βˆ– ℝ)) β†’ ℝ βŠ† 𝑅)
4738renegcld 11637 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ (SubRingβ€˜β„‚fld) ∧ ℝ βŠ† 𝑅) ∧ π‘₯ ∈ (𝑅 βˆ– ℝ)) β†’ -(β„œβ€˜π‘₯) ∈ ℝ)
4846, 47sseldd 3982 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ (SubRingβ€˜β„‚fld) ∧ ℝ βŠ† 𝑅) ∧ π‘₯ ∈ (𝑅 βˆ– ℝ)) β†’ -(β„œβ€˜π‘₯) ∈ 𝑅)
49 cnfldadd 20941 . . . . . . . . . . . . . . . . . . . 20 + = (+gβ€˜β„‚fld)
5049subrgacl 20366 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ (SubRingβ€˜β„‚fld) ∧ π‘₯ ∈ 𝑅 ∧ -(β„œβ€˜π‘₯) ∈ 𝑅) β†’ (π‘₯ + -(β„œβ€˜π‘₯)) ∈ 𝑅)
518, 22, 48, 50syl3anc 1371 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ (SubRingβ€˜β„‚fld) ∧ ℝ βŠ† 𝑅) ∧ π‘₯ ∈ (𝑅 βˆ– ℝ)) β†’ (π‘₯ + -(β„œβ€˜π‘₯)) ∈ 𝑅)
5245, 51eqeltrrd 2834 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ (SubRingβ€˜β„‚fld) ∧ ℝ βŠ† 𝑅) ∧ π‘₯ ∈ (𝑅 βˆ– ℝ)) β†’ (i Β· (β„‘β€˜π‘₯)) ∈ 𝑅)
5325, 32rereccld 12037 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ (SubRingβ€˜β„‚fld) ∧ ℝ βŠ† 𝑅) ∧ π‘₯ ∈ (𝑅 βˆ– ℝ)) β†’ (1 / (β„‘β€˜π‘₯)) ∈ ℝ)
5446, 53sseldd 3982 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ (SubRingβ€˜β„‚fld) ∧ ℝ βŠ† 𝑅) ∧ π‘₯ ∈ (𝑅 βˆ– ℝ)) β†’ (1 / (β„‘β€˜π‘₯)) ∈ 𝑅)
55 cnfldmul 20942 . . . . . . . . . . . . . . . . . 18 Β· = (.rβ€˜β„‚fld)
5655subrgmcl 20367 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ (SubRingβ€˜β„‚fld) ∧ (i Β· (β„‘β€˜π‘₯)) ∈ 𝑅 ∧ (1 / (β„‘β€˜π‘₯)) ∈ 𝑅) β†’ ((i Β· (β„‘β€˜π‘₯)) Β· (1 / (β„‘β€˜π‘₯))) ∈ 𝑅)
578, 52, 54, 56syl3anc 1371 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ (SubRingβ€˜β„‚fld) ∧ ℝ βŠ† 𝑅) ∧ π‘₯ ∈ (𝑅 βˆ– ℝ)) β†’ ((i Β· (β„‘β€˜π‘₯)) Β· (1 / (β„‘β€˜π‘₯))) ∈ 𝑅)
5837, 57eqeltrd 2833 . . . . . . . . . . . . . . 15 (((𝑅 ∈ (SubRingβ€˜β„‚fld) ∧ ℝ βŠ† 𝑅) ∧ π‘₯ ∈ (𝑅 βˆ– ℝ)) β†’ i ∈ 𝑅)
5958adantrr 715 . . . . . . . . . . . . . 14 (((𝑅 ∈ (SubRingβ€˜β„‚fld) ∧ ℝ βŠ† 𝑅) ∧ (π‘₯ ∈ (𝑅 βˆ– ℝ) ∧ 𝑦 ∈ β„‚)) β†’ i ∈ 𝑅)
60 imcl 15054 . . . . . . . . . . . . . . . 16 (𝑦 ∈ β„‚ β†’ (β„‘β€˜π‘¦) ∈ ℝ)
6160ad2antll 727 . . . . . . . . . . . . . . 15 (((𝑅 ∈ (SubRingβ€˜β„‚fld) ∧ ℝ βŠ† 𝑅) ∧ (π‘₯ ∈ (𝑅 βˆ– ℝ) ∧ 𝑦 ∈ β„‚)) β†’ (β„‘β€˜π‘¦) ∈ ℝ)
6215, 61sseldd 3982 . . . . . . . . . . . . . 14 (((𝑅 ∈ (SubRingβ€˜β„‚fld) ∧ ℝ βŠ† 𝑅) ∧ (π‘₯ ∈ (𝑅 βˆ– ℝ) ∧ 𝑦 ∈ β„‚)) β†’ (β„‘β€˜π‘¦) ∈ 𝑅)
6355subrgmcl 20367 . . . . . . . . . . . . . 14 ((𝑅 ∈ (SubRingβ€˜β„‚fld) ∧ i ∈ 𝑅 ∧ (β„‘β€˜π‘¦) ∈ 𝑅) β†’ (i Β· (β„‘β€˜π‘¦)) ∈ 𝑅)
6414, 59, 62, 63syl3anc 1371 . . . . . . . . . . . . 13 (((𝑅 ∈ (SubRingβ€˜β„‚fld) ∧ ℝ βŠ† 𝑅) ∧ (π‘₯ ∈ (𝑅 βˆ– ℝ) ∧ 𝑦 ∈ β„‚)) β†’ (i Β· (β„‘β€˜π‘¦)) ∈ 𝑅)
6549subrgacl 20366 . . . . . . . . . . . . 13 ((𝑅 ∈ (SubRingβ€˜β„‚fld) ∧ (β„œβ€˜π‘¦) ∈ 𝑅 ∧ (i Β· (β„‘β€˜π‘¦)) ∈ 𝑅) β†’ ((β„œβ€˜π‘¦) + (i Β· (β„‘β€˜π‘¦))) ∈ 𝑅)
6614, 18, 64, 65syl3anc 1371 . . . . . . . . . . . 12 (((𝑅 ∈ (SubRingβ€˜β„‚fld) ∧ ℝ βŠ† 𝑅) ∧ (π‘₯ ∈ (𝑅 βˆ– ℝ) ∧ 𝑦 ∈ β„‚)) β†’ ((β„œβ€˜π‘¦) + (i Β· (β„‘β€˜π‘¦))) ∈ 𝑅)
6713, 66eqeltrd 2833 . . . . . . . . . . 11 (((𝑅 ∈ (SubRingβ€˜β„‚fld) ∧ ℝ βŠ† 𝑅) ∧ (π‘₯ ∈ (𝑅 βˆ– ℝ) ∧ 𝑦 ∈ β„‚)) β†’ 𝑦 ∈ 𝑅)
6867expr 457 . . . . . . . . . 10 (((𝑅 ∈ (SubRingβ€˜β„‚fld) ∧ ℝ βŠ† 𝑅) ∧ π‘₯ ∈ (𝑅 βˆ– ℝ)) β†’ (𝑦 ∈ β„‚ β†’ 𝑦 ∈ 𝑅))
6968ssrdv 3987 . . . . . . . . 9 (((𝑅 ∈ (SubRingβ€˜β„‚fld) ∧ ℝ βŠ† 𝑅) ∧ π‘₯ ∈ (𝑅 βˆ– ℝ)) β†’ β„‚ βŠ† 𝑅)
7011, 69eqssd 3998 . . . . . . . 8 (((𝑅 ∈ (SubRingβ€˜β„‚fld) ∧ ℝ βŠ† 𝑅) ∧ π‘₯ ∈ (𝑅 βˆ– ℝ)) β†’ 𝑅 = β„‚)
7170olcd 872 . . . . . . 7 (((𝑅 ∈ (SubRingβ€˜β„‚fld) ∧ ℝ βŠ† 𝑅) ∧ π‘₯ ∈ (𝑅 βˆ– ℝ)) β†’ (𝑅 = ℝ ∨ 𝑅 = β„‚))
7271ex 413 . . . . . 6 ((𝑅 ∈ (SubRingβ€˜β„‚fld) ∧ ℝ βŠ† 𝑅) β†’ (π‘₯ ∈ (𝑅 βˆ– ℝ) β†’ (𝑅 = ℝ ∨ 𝑅 = β„‚)))
7372exlimdv 1936 . . . . 5 ((𝑅 ∈ (SubRingβ€˜β„‚fld) ∧ ℝ βŠ† 𝑅) β†’ (βˆƒπ‘₯ π‘₯ ∈ (𝑅 βˆ– ℝ) β†’ (𝑅 = ℝ ∨ 𝑅 = β„‚)))
7473imp 407 . . . 4 (((𝑅 ∈ (SubRingβ€˜β„‚fld) ∧ ℝ βŠ† 𝑅) ∧ βˆƒπ‘₯ π‘₯ ∈ (𝑅 βˆ– ℝ)) β†’ (𝑅 = ℝ ∨ 𝑅 = β„‚))
757, 74sylan2b 594 . . 3 (((𝑅 ∈ (SubRingβ€˜β„‚fld) ∧ ℝ βŠ† 𝑅) ∧ (𝑅 βˆ– ℝ) β‰  βˆ…) β†’ (𝑅 = ℝ ∨ 𝑅 = β„‚))
766, 75pm2.61dane 3029 . 2 ((𝑅 ∈ (SubRingβ€˜β„‚fld) ∧ ℝ βŠ† 𝑅) β†’ (𝑅 = ℝ ∨ 𝑅 = β„‚))
77 elprg 4648 . . 3 (𝑅 ∈ (SubRingβ€˜β„‚fld) β†’ (𝑅 ∈ {ℝ, β„‚} ↔ (𝑅 = ℝ ∨ 𝑅 = β„‚)))
7877adantr 481 . 2 ((𝑅 ∈ (SubRingβ€˜β„‚fld) ∧ ℝ βŠ† 𝑅) β†’ (𝑅 ∈ {ℝ, β„‚} ↔ (𝑅 = ℝ ∨ 𝑅 = β„‚)))
7976, 78mpbird 256 1 ((𝑅 ∈ (SubRingβ€˜β„‚fld) ∧ ℝ βŠ† 𝑅) β†’ 𝑅 ∈ {ℝ, β„‚})
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∨ wo 845   = wceq 1541  βˆƒwex 1781   ∈ wcel 2106   β‰  wne 2940   βˆ– cdif 3944   βŠ† wss 3947  βˆ…c0 4321  {cpr 4629  β€˜cfv 6540  (class class class)co 7405  β„‚cc 11104  β„cr 11105  0cc0 11106  1c1 11107  ici 11108   + caddc 11109   Β· cmul 11111   βˆ’ cmin 11440  -cneg 11441   / cdiv 11867  β„œcre 15040  β„‘cim 15041  SubRingcsubrg 20351  β„‚fldccnfld 20936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-addf 11185  ax-mulf 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-fz 13481  df-cj 15042  df-re 15043  df-im 15044  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-starv 17208  df-tset 17212  df-ple 17213  df-ds 17215  df-unif 17216  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-grp 18818  df-subg 18997  df-mgp 19982  df-ring 20051  df-subrg 20353  df-cnfld 20937
This theorem is referenced by:  cncdrg  24867
  Copyright terms: Public domain W3C validator