MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnsubrg Structured version   Visualization version   GIF version

Theorem cnsubrg 20079
Description: There are no subrings of the complex numbers strictly between and . (Contributed by Mario Carneiro, 15-Oct-2015.)
Assertion
Ref Expression
cnsubrg ((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) → 𝑅 ∈ {ℝ, ℂ})

Proof of Theorem cnsubrg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssdif0 4106 . . . 4 (𝑅 ⊆ ℝ ↔ (𝑅 ∖ ℝ) = ∅)
2 simpr 477 . . . . . 6 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑅 ⊆ ℝ) → 𝑅 ⊆ ℝ)
3 simplr 785 . . . . . 6 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑅 ⊆ ℝ) → ℝ ⊆ 𝑅)
42, 3eqssd 3778 . . . . 5 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑅 ⊆ ℝ) → 𝑅 = ℝ)
54orcd 899 . . . 4 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑅 ⊆ ℝ) → (𝑅 = ℝ ∨ 𝑅 = ℂ))
61, 5sylan2br 588 . . 3 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ (𝑅 ∖ ℝ) = ∅) → (𝑅 = ℝ ∨ 𝑅 = ℂ))
7 n0 4095 . . . 4 ((𝑅 ∖ ℝ) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝑅 ∖ ℝ))
8 simpll 783 . . . . . . . . . 10 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → 𝑅 ∈ (SubRing‘ℂfld))
9 cnfldbas 20023 . . . . . . . . . . 11 ℂ = (Base‘ℂfld)
109subrgss 19050 . . . . . . . . . 10 (𝑅 ∈ (SubRing‘ℂfld) → 𝑅 ⊆ ℂ)
118, 10syl 17 . . . . . . . . 9 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → 𝑅 ⊆ ℂ)
12 replim 14143 . . . . . . . . . . . . 13 (𝑦 ∈ ℂ → 𝑦 = ((ℜ‘𝑦) + (i · (ℑ‘𝑦))))
1312ad2antll 720 . . . . . . . . . . . 12 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ (𝑥 ∈ (𝑅 ∖ ℝ) ∧ 𝑦 ∈ ℂ)) → 𝑦 = ((ℜ‘𝑦) + (i · (ℑ‘𝑦))))
14 simpll 783 . . . . . . . . . . . . 13 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ (𝑥 ∈ (𝑅 ∖ ℝ) ∧ 𝑦 ∈ ℂ)) → 𝑅 ∈ (SubRing‘ℂfld))
15 simplr 785 . . . . . . . . . . . . . 14 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ (𝑥 ∈ (𝑅 ∖ ℝ) ∧ 𝑦 ∈ ℂ)) → ℝ ⊆ 𝑅)
16 recl 14137 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℂ → (ℜ‘𝑦) ∈ ℝ)
1716ad2antll 720 . . . . . . . . . . . . . 14 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ (𝑥 ∈ (𝑅 ∖ ℝ) ∧ 𝑦 ∈ ℂ)) → (ℜ‘𝑦) ∈ ℝ)
1815, 17sseldd 3762 . . . . . . . . . . . . 13 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ (𝑥 ∈ (𝑅 ∖ ℝ) ∧ 𝑦 ∈ ℂ)) → (ℜ‘𝑦) ∈ 𝑅)
19 ax-icn 10248 . . . . . . . . . . . . . . . . . . 19 i ∈ ℂ
2019a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → i ∈ ℂ)
21 eldifi 3894 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ (𝑅 ∖ ℝ) → 𝑥𝑅)
2221adantl 473 . . . . . . . . . . . . . . . . . . . . 21 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → 𝑥𝑅)
2311, 22sseldd 3762 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → 𝑥 ∈ ℂ)
24 imcl 14138 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℂ → (ℑ‘𝑥) ∈ ℝ)
2523, 24syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → (ℑ‘𝑥) ∈ ℝ)
2625recnd 10322 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → (ℑ‘𝑥) ∈ ℂ)
27 eldifn 3895 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (𝑅 ∖ ℝ) → ¬ 𝑥 ∈ ℝ)
2827adantl 473 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → ¬ 𝑥 ∈ ℝ)
29 reim0b 14146 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ℂ → (𝑥 ∈ ℝ ↔ (ℑ‘𝑥) = 0))
3029necon3bbid 2974 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℂ → (¬ 𝑥 ∈ ℝ ↔ (ℑ‘𝑥) ≠ 0))
3123, 30syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → (¬ 𝑥 ∈ ℝ ↔ (ℑ‘𝑥) ≠ 0))
3228, 31mpbid 223 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → (ℑ‘𝑥) ≠ 0)
3320, 26, 32divcan4d 11061 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → ((i · (ℑ‘𝑥)) / (ℑ‘𝑥)) = i)
34 mulcl 10273 . . . . . . . . . . . . . . . . . . 19 ((i ∈ ℂ ∧ (ℑ‘𝑥) ∈ ℂ) → (i · (ℑ‘𝑥)) ∈ ℂ)
3519, 26, 34sylancr 581 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → (i · (ℑ‘𝑥)) ∈ ℂ)
3635, 26, 32divrecd 11058 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → ((i · (ℑ‘𝑥)) / (ℑ‘𝑥)) = ((i · (ℑ‘𝑥)) · (1 / (ℑ‘𝑥))))
3733, 36eqtr3d 2801 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → i = ((i · (ℑ‘𝑥)) · (1 / (ℑ‘𝑥))))
3823recld 14221 . . . . . . . . . . . . . . . . . . . . 21 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → (ℜ‘𝑥) ∈ ℝ)
3938recnd 10322 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → (ℜ‘𝑥) ∈ ℂ)
4023, 39negsubd 10652 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → (𝑥 + -(ℜ‘𝑥)) = (𝑥 − (ℜ‘𝑥)))
41 replim 14143 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ℂ → 𝑥 = ((ℜ‘𝑥) + (i · (ℑ‘𝑥))))
4223, 41syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → 𝑥 = ((ℜ‘𝑥) + (i · (ℑ‘𝑥))))
4342oveq1d 6857 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → (𝑥 − (ℜ‘𝑥)) = (((ℜ‘𝑥) + (i · (ℑ‘𝑥))) − (ℜ‘𝑥)))
4439, 35pncan2d 10648 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → (((ℜ‘𝑥) + (i · (ℑ‘𝑥))) − (ℜ‘𝑥)) = (i · (ℑ‘𝑥)))
4540, 43, 443eqtrd 2803 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → (𝑥 + -(ℜ‘𝑥)) = (i · (ℑ‘𝑥)))
46 simplr 785 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → ℝ ⊆ 𝑅)
4738renegcld 10711 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → -(ℜ‘𝑥) ∈ ℝ)
4846, 47sseldd 3762 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → -(ℜ‘𝑥) ∈ 𝑅)
49 cnfldadd 20024 . . . . . . . . . . . . . . . . . . . 20 + = (+g‘ℂfld)
5049subrgacl 19060 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ (SubRing‘ℂfld) ∧ 𝑥𝑅 ∧ -(ℜ‘𝑥) ∈ 𝑅) → (𝑥 + -(ℜ‘𝑥)) ∈ 𝑅)
518, 22, 48, 50syl3anc 1490 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → (𝑥 + -(ℜ‘𝑥)) ∈ 𝑅)
5245, 51eqeltrrd 2845 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → (i · (ℑ‘𝑥)) ∈ 𝑅)
5325, 32rereccld 11106 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → (1 / (ℑ‘𝑥)) ∈ ℝ)
5446, 53sseldd 3762 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → (1 / (ℑ‘𝑥)) ∈ 𝑅)
55 cnfldmul 20025 . . . . . . . . . . . . . . . . . 18 · = (.r‘ℂfld)
5655subrgmcl 19061 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ (SubRing‘ℂfld) ∧ (i · (ℑ‘𝑥)) ∈ 𝑅 ∧ (1 / (ℑ‘𝑥)) ∈ 𝑅) → ((i · (ℑ‘𝑥)) · (1 / (ℑ‘𝑥))) ∈ 𝑅)
578, 52, 54, 56syl3anc 1490 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → ((i · (ℑ‘𝑥)) · (1 / (ℑ‘𝑥))) ∈ 𝑅)
5837, 57eqeltrd 2844 . . . . . . . . . . . . . . 15 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → i ∈ 𝑅)
5958adantrr 708 . . . . . . . . . . . . . 14 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ (𝑥 ∈ (𝑅 ∖ ℝ) ∧ 𝑦 ∈ ℂ)) → i ∈ 𝑅)
60 imcl 14138 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℂ → (ℑ‘𝑦) ∈ ℝ)
6160ad2antll 720 . . . . . . . . . . . . . . 15 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ (𝑥 ∈ (𝑅 ∖ ℝ) ∧ 𝑦 ∈ ℂ)) → (ℑ‘𝑦) ∈ ℝ)
6215, 61sseldd 3762 . . . . . . . . . . . . . 14 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ (𝑥 ∈ (𝑅 ∖ ℝ) ∧ 𝑦 ∈ ℂ)) → (ℑ‘𝑦) ∈ 𝑅)
6355subrgmcl 19061 . . . . . . . . . . . . . 14 ((𝑅 ∈ (SubRing‘ℂfld) ∧ i ∈ 𝑅 ∧ (ℑ‘𝑦) ∈ 𝑅) → (i · (ℑ‘𝑦)) ∈ 𝑅)
6414, 59, 62, 63syl3anc 1490 . . . . . . . . . . . . 13 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ (𝑥 ∈ (𝑅 ∖ ℝ) ∧ 𝑦 ∈ ℂ)) → (i · (ℑ‘𝑦)) ∈ 𝑅)
6549subrgacl 19060 . . . . . . . . . . . . 13 ((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℜ‘𝑦) ∈ 𝑅 ∧ (i · (ℑ‘𝑦)) ∈ 𝑅) → ((ℜ‘𝑦) + (i · (ℑ‘𝑦))) ∈ 𝑅)
6614, 18, 64, 65syl3anc 1490 . . . . . . . . . . . 12 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ (𝑥 ∈ (𝑅 ∖ ℝ) ∧ 𝑦 ∈ ℂ)) → ((ℜ‘𝑦) + (i · (ℑ‘𝑦))) ∈ 𝑅)
6713, 66eqeltrd 2844 . . . . . . . . . . 11 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ (𝑥 ∈ (𝑅 ∖ ℝ) ∧ 𝑦 ∈ ℂ)) → 𝑦𝑅)
6867expr 448 . . . . . . . . . 10 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → (𝑦 ∈ ℂ → 𝑦𝑅))
6968ssrdv 3767 . . . . . . . . 9 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → ℂ ⊆ 𝑅)
7011, 69eqssd 3778 . . . . . . . 8 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → 𝑅 = ℂ)
7170olcd 900 . . . . . . 7 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → (𝑅 = ℝ ∨ 𝑅 = ℂ))
7271ex 401 . . . . . 6 ((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) → (𝑥 ∈ (𝑅 ∖ ℝ) → (𝑅 = ℝ ∨ 𝑅 = ℂ)))
7372exlimdv 2028 . . . . 5 ((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) → (∃𝑥 𝑥 ∈ (𝑅 ∖ ℝ) → (𝑅 = ℝ ∨ 𝑅 = ℂ)))
7473imp 395 . . . 4 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ ∃𝑥 𝑥 ∈ (𝑅 ∖ ℝ)) → (𝑅 = ℝ ∨ 𝑅 = ℂ))
757, 74sylan2b 587 . . 3 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ (𝑅 ∖ ℝ) ≠ ∅) → (𝑅 = ℝ ∨ 𝑅 = ℂ))
766, 75pm2.61dane 3024 . 2 ((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) → (𝑅 = ℝ ∨ 𝑅 = ℂ))
77 elprg 4355 . . 3 (𝑅 ∈ (SubRing‘ℂfld) → (𝑅 ∈ {ℝ, ℂ} ↔ (𝑅 = ℝ ∨ 𝑅 = ℂ)))
7877adantr 472 . 2 ((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) → (𝑅 ∈ {ℝ, ℂ} ↔ (𝑅 = ℝ ∨ 𝑅 = ℂ)))
7976, 78mpbird 248 1 ((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) → 𝑅 ∈ {ℝ, ℂ})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  wo 873   = wceq 1652  wex 1874  wcel 2155  wne 2937  cdif 3729  wss 3732  c0 4079  {cpr 4336  cfv 6068  (class class class)co 6842  cc 10187  cr 10188  0cc0 10189  1c1 10190  ici 10191   + caddc 10192   · cmul 10194  cmin 10520  -cneg 10521   / cdiv 10938  cre 14124  cim 14125  SubRingcsubrg 19045  fldccnfld 20019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-addf 10268  ax-mulf 10269
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-oadd 7768  df-er 7947  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-4 11337  df-5 11338  df-6 11339  df-7 11340  df-8 11341  df-9 11342  df-n0 11539  df-z 11625  df-dec 11741  df-uz 11887  df-fz 12534  df-cj 14126  df-re 14127  df-im 14128  df-struct 16134  df-ndx 16135  df-slot 16136  df-base 16138  df-sets 16139  df-ress 16140  df-plusg 16229  df-mulr 16230  df-starv 16231  df-tset 16235  df-ple 16236  df-ds 16238  df-unif 16239  df-mgm 17510  df-sgrp 17552  df-mnd 17563  df-grp 17694  df-subg 17857  df-mgp 18757  df-ring 18816  df-subrg 19047  df-cnfld 20020
This theorem is referenced by:  cncdrg  23436
  Copyright terms: Public domain W3C validator