MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnsubrg Structured version   Visualization version   GIF version

Theorem cnsubrg 20658
Description: There are no subrings of the complex numbers strictly between and . (Contributed by Mario Carneiro, 15-Oct-2015.)
Assertion
Ref Expression
cnsubrg ((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) → 𝑅 ∈ {ℝ, ℂ})

Proof of Theorem cnsubrg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssdif0 4297 . . . 4 (𝑅 ⊆ ℝ ↔ (𝑅 ∖ ℝ) = ∅)
2 simpr 485 . . . . . 6 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑅 ⊆ ℝ) → 𝑅 ⊆ ℝ)
3 simplr 766 . . . . . 6 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑅 ⊆ ℝ) → ℝ ⊆ 𝑅)
42, 3eqssd 3938 . . . . 5 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑅 ⊆ ℝ) → 𝑅 = ℝ)
54orcd 870 . . . 4 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑅 ⊆ ℝ) → (𝑅 = ℝ ∨ 𝑅 = ℂ))
61, 5sylan2br 595 . . 3 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ (𝑅 ∖ ℝ) = ∅) → (𝑅 = ℝ ∨ 𝑅 = ℂ))
7 n0 4280 . . . 4 ((𝑅 ∖ ℝ) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝑅 ∖ ℝ))
8 simpll 764 . . . . . . . . . 10 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → 𝑅 ∈ (SubRing‘ℂfld))
9 cnfldbas 20601 . . . . . . . . . . 11 ℂ = (Base‘ℂfld)
109subrgss 20025 . . . . . . . . . 10 (𝑅 ∈ (SubRing‘ℂfld) → 𝑅 ⊆ ℂ)
118, 10syl 17 . . . . . . . . 9 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → 𝑅 ⊆ ℂ)
12 replim 14827 . . . . . . . . . . . . 13 (𝑦 ∈ ℂ → 𝑦 = ((ℜ‘𝑦) + (i · (ℑ‘𝑦))))
1312ad2antll 726 . . . . . . . . . . . 12 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ (𝑥 ∈ (𝑅 ∖ ℝ) ∧ 𝑦 ∈ ℂ)) → 𝑦 = ((ℜ‘𝑦) + (i · (ℑ‘𝑦))))
14 simpll 764 . . . . . . . . . . . . 13 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ (𝑥 ∈ (𝑅 ∖ ℝ) ∧ 𝑦 ∈ ℂ)) → 𝑅 ∈ (SubRing‘ℂfld))
15 simplr 766 . . . . . . . . . . . . . 14 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ (𝑥 ∈ (𝑅 ∖ ℝ) ∧ 𝑦 ∈ ℂ)) → ℝ ⊆ 𝑅)
16 recl 14821 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℂ → (ℜ‘𝑦) ∈ ℝ)
1716ad2antll 726 . . . . . . . . . . . . . 14 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ (𝑥 ∈ (𝑅 ∖ ℝ) ∧ 𝑦 ∈ ℂ)) → (ℜ‘𝑦) ∈ ℝ)
1815, 17sseldd 3922 . . . . . . . . . . . . 13 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ (𝑥 ∈ (𝑅 ∖ ℝ) ∧ 𝑦 ∈ ℂ)) → (ℜ‘𝑦) ∈ 𝑅)
19 ax-icn 10930 . . . . . . . . . . . . . . . . . . 19 i ∈ ℂ
2019a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → i ∈ ℂ)
21 eldifi 4061 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ (𝑅 ∖ ℝ) → 𝑥𝑅)
2221adantl 482 . . . . . . . . . . . . . . . . . . . . 21 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → 𝑥𝑅)
2311, 22sseldd 3922 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → 𝑥 ∈ ℂ)
24 imcl 14822 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℂ → (ℑ‘𝑥) ∈ ℝ)
2523, 24syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → (ℑ‘𝑥) ∈ ℝ)
2625recnd 11003 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → (ℑ‘𝑥) ∈ ℂ)
27 eldifn 4062 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (𝑅 ∖ ℝ) → ¬ 𝑥 ∈ ℝ)
2827adantl 482 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → ¬ 𝑥 ∈ ℝ)
29 reim0b 14830 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ℂ → (𝑥 ∈ ℝ ↔ (ℑ‘𝑥) = 0))
3029necon3bbid 2981 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℂ → (¬ 𝑥 ∈ ℝ ↔ (ℑ‘𝑥) ≠ 0))
3123, 30syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → (¬ 𝑥 ∈ ℝ ↔ (ℑ‘𝑥) ≠ 0))
3228, 31mpbid 231 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → (ℑ‘𝑥) ≠ 0)
3320, 26, 32divcan4d 11757 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → ((i · (ℑ‘𝑥)) / (ℑ‘𝑥)) = i)
34 mulcl 10955 . . . . . . . . . . . . . . . . . . 19 ((i ∈ ℂ ∧ (ℑ‘𝑥) ∈ ℂ) → (i · (ℑ‘𝑥)) ∈ ℂ)
3519, 26, 34sylancr 587 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → (i · (ℑ‘𝑥)) ∈ ℂ)
3635, 26, 32divrecd 11754 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → ((i · (ℑ‘𝑥)) / (ℑ‘𝑥)) = ((i · (ℑ‘𝑥)) · (1 / (ℑ‘𝑥))))
3733, 36eqtr3d 2780 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → i = ((i · (ℑ‘𝑥)) · (1 / (ℑ‘𝑥))))
3823recld 14905 . . . . . . . . . . . . . . . . . . . . 21 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → (ℜ‘𝑥) ∈ ℝ)
3938recnd 11003 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → (ℜ‘𝑥) ∈ ℂ)
4023, 39negsubd 11338 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → (𝑥 + -(ℜ‘𝑥)) = (𝑥 − (ℜ‘𝑥)))
41 replim 14827 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ℂ → 𝑥 = ((ℜ‘𝑥) + (i · (ℑ‘𝑥))))
4223, 41syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → 𝑥 = ((ℜ‘𝑥) + (i · (ℑ‘𝑥))))
4342oveq1d 7290 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → (𝑥 − (ℜ‘𝑥)) = (((ℜ‘𝑥) + (i · (ℑ‘𝑥))) − (ℜ‘𝑥)))
4439, 35pncan2d 11334 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → (((ℜ‘𝑥) + (i · (ℑ‘𝑥))) − (ℜ‘𝑥)) = (i · (ℑ‘𝑥)))
4540, 43, 443eqtrd 2782 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → (𝑥 + -(ℜ‘𝑥)) = (i · (ℑ‘𝑥)))
46 simplr 766 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → ℝ ⊆ 𝑅)
4738renegcld 11402 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → -(ℜ‘𝑥) ∈ ℝ)
4846, 47sseldd 3922 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → -(ℜ‘𝑥) ∈ 𝑅)
49 cnfldadd 20602 . . . . . . . . . . . . . . . . . . . 20 + = (+g‘ℂfld)
5049subrgacl 20035 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ (SubRing‘ℂfld) ∧ 𝑥𝑅 ∧ -(ℜ‘𝑥) ∈ 𝑅) → (𝑥 + -(ℜ‘𝑥)) ∈ 𝑅)
518, 22, 48, 50syl3anc 1370 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → (𝑥 + -(ℜ‘𝑥)) ∈ 𝑅)
5245, 51eqeltrrd 2840 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → (i · (ℑ‘𝑥)) ∈ 𝑅)
5325, 32rereccld 11802 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → (1 / (ℑ‘𝑥)) ∈ ℝ)
5446, 53sseldd 3922 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → (1 / (ℑ‘𝑥)) ∈ 𝑅)
55 cnfldmul 20603 . . . . . . . . . . . . . . . . . 18 · = (.r‘ℂfld)
5655subrgmcl 20036 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ (SubRing‘ℂfld) ∧ (i · (ℑ‘𝑥)) ∈ 𝑅 ∧ (1 / (ℑ‘𝑥)) ∈ 𝑅) → ((i · (ℑ‘𝑥)) · (1 / (ℑ‘𝑥))) ∈ 𝑅)
578, 52, 54, 56syl3anc 1370 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → ((i · (ℑ‘𝑥)) · (1 / (ℑ‘𝑥))) ∈ 𝑅)
5837, 57eqeltrd 2839 . . . . . . . . . . . . . . 15 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → i ∈ 𝑅)
5958adantrr 714 . . . . . . . . . . . . . 14 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ (𝑥 ∈ (𝑅 ∖ ℝ) ∧ 𝑦 ∈ ℂ)) → i ∈ 𝑅)
60 imcl 14822 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℂ → (ℑ‘𝑦) ∈ ℝ)
6160ad2antll 726 . . . . . . . . . . . . . . 15 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ (𝑥 ∈ (𝑅 ∖ ℝ) ∧ 𝑦 ∈ ℂ)) → (ℑ‘𝑦) ∈ ℝ)
6215, 61sseldd 3922 . . . . . . . . . . . . . 14 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ (𝑥 ∈ (𝑅 ∖ ℝ) ∧ 𝑦 ∈ ℂ)) → (ℑ‘𝑦) ∈ 𝑅)
6355subrgmcl 20036 . . . . . . . . . . . . . 14 ((𝑅 ∈ (SubRing‘ℂfld) ∧ i ∈ 𝑅 ∧ (ℑ‘𝑦) ∈ 𝑅) → (i · (ℑ‘𝑦)) ∈ 𝑅)
6414, 59, 62, 63syl3anc 1370 . . . . . . . . . . . . 13 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ (𝑥 ∈ (𝑅 ∖ ℝ) ∧ 𝑦 ∈ ℂ)) → (i · (ℑ‘𝑦)) ∈ 𝑅)
6549subrgacl 20035 . . . . . . . . . . . . 13 ((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℜ‘𝑦) ∈ 𝑅 ∧ (i · (ℑ‘𝑦)) ∈ 𝑅) → ((ℜ‘𝑦) + (i · (ℑ‘𝑦))) ∈ 𝑅)
6614, 18, 64, 65syl3anc 1370 . . . . . . . . . . . 12 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ (𝑥 ∈ (𝑅 ∖ ℝ) ∧ 𝑦 ∈ ℂ)) → ((ℜ‘𝑦) + (i · (ℑ‘𝑦))) ∈ 𝑅)
6713, 66eqeltrd 2839 . . . . . . . . . . 11 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ (𝑥 ∈ (𝑅 ∖ ℝ) ∧ 𝑦 ∈ ℂ)) → 𝑦𝑅)
6867expr 457 . . . . . . . . . 10 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → (𝑦 ∈ ℂ → 𝑦𝑅))
6968ssrdv 3927 . . . . . . . . 9 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → ℂ ⊆ 𝑅)
7011, 69eqssd 3938 . . . . . . . 8 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → 𝑅 = ℂ)
7170olcd 871 . . . . . . 7 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ 𝑥 ∈ (𝑅 ∖ ℝ)) → (𝑅 = ℝ ∨ 𝑅 = ℂ))
7271ex 413 . . . . . 6 ((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) → (𝑥 ∈ (𝑅 ∖ ℝ) → (𝑅 = ℝ ∨ 𝑅 = ℂ)))
7372exlimdv 1936 . . . . 5 ((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) → (∃𝑥 𝑥 ∈ (𝑅 ∖ ℝ) → (𝑅 = ℝ ∨ 𝑅 = ℂ)))
7473imp 407 . . . 4 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ ∃𝑥 𝑥 ∈ (𝑅 ∖ ℝ)) → (𝑅 = ℝ ∨ 𝑅 = ℂ))
757, 74sylan2b 594 . . 3 (((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) ∧ (𝑅 ∖ ℝ) ≠ ∅) → (𝑅 = ℝ ∨ 𝑅 = ℂ))
766, 75pm2.61dane 3032 . 2 ((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) → (𝑅 = ℝ ∨ 𝑅 = ℂ))
77 elprg 4582 . . 3 (𝑅 ∈ (SubRing‘ℂfld) → (𝑅 ∈ {ℝ, ℂ} ↔ (𝑅 = ℝ ∨ 𝑅 = ℂ)))
7877adantr 481 . 2 ((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) → (𝑅 ∈ {ℝ, ℂ} ↔ (𝑅 = ℝ ∨ 𝑅 = ℂ)))
7976, 78mpbird 256 1 ((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) → 𝑅 ∈ {ℝ, ℂ})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844   = wceq 1539  wex 1782  wcel 2106  wne 2943  cdif 3884  wss 3887  c0 4256  {cpr 4563  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871  1c1 10872  ici 10873   + caddc 10874   · cmul 10876  cmin 11205  -cneg 11206   / cdiv 11632  cre 14808  cim 14809  SubRingcsubrg 20020  fldccnfld 20597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-fz 13240  df-cj 14810  df-re 14811  df-im 14812  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-subg 18752  df-mgp 19721  df-ring 19785  df-subrg 20022  df-cnfld 20598
This theorem is referenced by:  cncdrg  24523
  Copyright terms: Public domain W3C validator