MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordunpr Structured version   Visualization version   GIF version

Theorem ordunpr 7853
Description: The maximum of two ordinals is equal to one of them. (Contributed by Mario Carneiro, 25-Jun-2015.)
Assertion
Ref Expression
ordunpr ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵𝐶) ∈ {𝐵, 𝐶})

Proof of Theorem ordunpr
StepHypRef Expression
1 eloni 6402 . . . . 5 (𝐵 ∈ On → Ord 𝐵)
2 eloni 6402 . . . . 5 (𝐶 ∈ On → Ord 𝐶)
3 ordtri2or2 6491 . . . . 5 ((Ord 𝐵 ∧ Ord 𝐶) → (𝐵𝐶𝐶𝐵))
41, 2, 3syl2an 596 . . . 4 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵𝐶𝐶𝐵))
54orcomd 872 . . 3 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐶𝐵𝐵𝐶))
6 ssequn2 4202 . . . 4 (𝐶𝐵 ↔ (𝐵𝐶) = 𝐵)
7 ssequn1 4199 . . . 4 (𝐵𝐶 ↔ (𝐵𝐶) = 𝐶)
86, 7orbi12i 915 . . 3 ((𝐶𝐵𝐵𝐶) ↔ ((𝐵𝐶) = 𝐵 ∨ (𝐵𝐶) = 𝐶))
95, 8sylib 218 . 2 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐵𝐶) = 𝐵 ∨ (𝐵𝐶) = 𝐶))
10 unexg 7769 . . 3 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵𝐶) ∈ V)
11 elprg 4656 . . 3 ((𝐵𝐶) ∈ V → ((𝐵𝐶) ∈ {𝐵, 𝐶} ↔ ((𝐵𝐶) = 𝐵 ∨ (𝐵𝐶) = 𝐶)))
1210, 11syl 17 . 2 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐵𝐶) ∈ {𝐵, 𝐶} ↔ ((𝐵𝐶) = 𝐵 ∨ (𝐵𝐶) = 𝐶)))
139, 12mpbird 257 1 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵𝐶) ∈ {𝐵, 𝐶})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 848   = wceq 1539  wcel 2108  Vcvv 3481  cun 3964  wss 3966  {cpr 4636  Ord word 6391  Oncon0 6392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pr 5441  ax-un 7761
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-pss 3986  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-br 5152  df-opab 5214  df-tr 5269  df-eprel 5593  df-po 5601  df-so 5602  df-fr 5645  df-we 5647  df-ord 6395  df-on 6396
This theorem is referenced by:  ordunel  7854  r0weon  10059
  Copyright terms: Public domain W3C validator