![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ordunpr | Structured version Visualization version GIF version |
Description: The maximum of two ordinals is equal to one of them. (Contributed by Mario Carneiro, 25-Jun-2015.) |
Ref | Expression |
---|---|
ordunpr | ⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 ∪ 𝐶) ∈ {𝐵, 𝐶}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloni 6384 | . . . . 5 ⊢ (𝐵 ∈ On → Ord 𝐵) | |
2 | eloni 6384 | . . . . 5 ⊢ (𝐶 ∈ On → Ord 𝐶) | |
3 | ordtri2or2 6473 | . . . . 5 ⊢ ((Ord 𝐵 ∧ Ord 𝐶) → (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) | |
4 | 1, 2, 3 | syl2an 594 | . . . 4 ⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) |
5 | 4 | orcomd 869 | . . 3 ⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐶 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐶)) |
6 | ssequn2 4185 | . . . 4 ⊢ (𝐶 ⊆ 𝐵 ↔ (𝐵 ∪ 𝐶) = 𝐵) | |
7 | ssequn1 4182 | . . . 4 ⊢ (𝐵 ⊆ 𝐶 ↔ (𝐵 ∪ 𝐶) = 𝐶) | |
8 | 6, 7 | orbi12i 912 | . . 3 ⊢ ((𝐶 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐶) ↔ ((𝐵 ∪ 𝐶) = 𝐵 ∨ (𝐵 ∪ 𝐶) = 𝐶)) |
9 | 5, 8 | sylib 217 | . 2 ⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐵 ∪ 𝐶) = 𝐵 ∨ (𝐵 ∪ 𝐶) = 𝐶)) |
10 | unexg 7757 | . . 3 ⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 ∪ 𝐶) ∈ V) | |
11 | elprg 4654 | . . 3 ⊢ ((𝐵 ∪ 𝐶) ∈ V → ((𝐵 ∪ 𝐶) ∈ {𝐵, 𝐶} ↔ ((𝐵 ∪ 𝐶) = 𝐵 ∨ (𝐵 ∪ 𝐶) = 𝐶))) | |
12 | 10, 11 | syl 17 | . 2 ⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐵 ∪ 𝐶) ∈ {𝐵, 𝐶} ↔ ((𝐵 ∪ 𝐶) = 𝐵 ∨ (𝐵 ∪ 𝐶) = 𝐶))) |
13 | 9, 12 | mpbird 256 | 1 ⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 ∪ 𝐶) ∈ {𝐵, 𝐶}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∨ wo 845 = wceq 1533 ∈ wcel 2098 Vcvv 3473 ∪ cun 3947 ⊆ wss 3949 {cpr 4634 Ord word 6373 Oncon0 6374 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2706 df-cleq 2720 df-clel 2806 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-opab 5215 df-tr 5270 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-ord 6377 df-on 6378 |
This theorem is referenced by: ordunel 7836 r0weon 10043 |
Copyright terms: Public domain | W3C validator |