![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ordunpr | Structured version Visualization version GIF version |
Description: The maximum of two ordinals is equal to one of them. (Contributed by Mario Carneiro, 25-Jun-2015.) |
Ref | Expression |
---|---|
ordunpr | ⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 ∪ 𝐶) ∈ {𝐵, 𝐶}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloni 6371 | . . . . 5 ⊢ (𝐵 ∈ On → Ord 𝐵) | |
2 | eloni 6371 | . . . . 5 ⊢ (𝐶 ∈ On → Ord 𝐶) | |
3 | ordtri2or2 6460 | . . . . 5 ⊢ ((Ord 𝐵 ∧ Ord 𝐶) → (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) | |
4 | 1, 2, 3 | syl2an 596 | . . . 4 ⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) |
5 | 4 | orcomd 869 | . . 3 ⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐶 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐶)) |
6 | ssequn2 4182 | . . . 4 ⊢ (𝐶 ⊆ 𝐵 ↔ (𝐵 ∪ 𝐶) = 𝐵) | |
7 | ssequn1 4179 | . . . 4 ⊢ (𝐵 ⊆ 𝐶 ↔ (𝐵 ∪ 𝐶) = 𝐶) | |
8 | 6, 7 | orbi12i 913 | . . 3 ⊢ ((𝐶 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐶) ↔ ((𝐵 ∪ 𝐶) = 𝐵 ∨ (𝐵 ∪ 𝐶) = 𝐶)) |
9 | 5, 8 | sylib 217 | . 2 ⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐵 ∪ 𝐶) = 𝐵 ∨ (𝐵 ∪ 𝐶) = 𝐶)) |
10 | unexg 7732 | . . 3 ⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 ∪ 𝐶) ∈ V) | |
11 | elprg 4648 | . . 3 ⊢ ((𝐵 ∪ 𝐶) ∈ V → ((𝐵 ∪ 𝐶) ∈ {𝐵, 𝐶} ↔ ((𝐵 ∪ 𝐶) = 𝐵 ∨ (𝐵 ∪ 𝐶) = 𝐶))) | |
12 | 10, 11 | syl 17 | . 2 ⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐵 ∪ 𝐶) ∈ {𝐵, 𝐶} ↔ ((𝐵 ∪ 𝐶) = 𝐵 ∨ (𝐵 ∪ 𝐶) = 𝐶))) |
13 | 9, 12 | mpbird 256 | 1 ⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 ∪ 𝐶) ∈ {𝐵, 𝐶}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 845 = wceq 1541 ∈ wcel 2106 Vcvv 3474 ∪ cun 3945 ⊆ wss 3947 {cpr 4629 Ord word 6360 Oncon0 6361 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-tr 5265 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-ord 6364 df-on 6365 |
This theorem is referenced by: ordunel 7811 r0weon 10003 |
Copyright terms: Public domain | W3C validator |