MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordunpr Structured version   Visualization version   GIF version

Theorem ordunpr 7810
Description: The maximum of two ordinals is equal to one of them. (Contributed by Mario Carneiro, 25-Jun-2015.)
Assertion
Ref Expression
ordunpr ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵𝐶) ∈ {𝐵, 𝐶})

Proof of Theorem ordunpr
StepHypRef Expression
1 eloni 6367 . . . . 5 (𝐵 ∈ On → Ord 𝐵)
2 eloni 6367 . . . . 5 (𝐶 ∈ On → Ord 𝐶)
3 ordtri2or2 6456 . . . . 5 ((Ord 𝐵 ∧ Ord 𝐶) → (𝐵𝐶𝐶𝐵))
41, 2, 3syl2an 595 . . . 4 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵𝐶𝐶𝐵))
54orcomd 868 . . 3 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐶𝐵𝐵𝐶))
6 ssequn2 4178 . . . 4 (𝐶𝐵 ↔ (𝐵𝐶) = 𝐵)
7 ssequn1 4175 . . . 4 (𝐵𝐶 ↔ (𝐵𝐶) = 𝐶)
86, 7orbi12i 911 . . 3 ((𝐶𝐵𝐵𝐶) ↔ ((𝐵𝐶) = 𝐵 ∨ (𝐵𝐶) = 𝐶))
95, 8sylib 217 . 2 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐵𝐶) = 𝐵 ∨ (𝐵𝐶) = 𝐶))
10 unexg 7732 . . 3 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵𝐶) ∈ V)
11 elprg 4644 . . 3 ((𝐵𝐶) ∈ V → ((𝐵𝐶) ∈ {𝐵, 𝐶} ↔ ((𝐵𝐶) = 𝐵 ∨ (𝐵𝐶) = 𝐶)))
1210, 11syl 17 . 2 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐵𝐶) ∈ {𝐵, 𝐶} ↔ ((𝐵𝐶) = 𝐵 ∨ (𝐵𝐶) = 𝐶)))
139, 12mpbird 257 1 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵𝐶) ∈ {𝐵, 𝐶})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 844   = wceq 1533  wcel 2098  Vcvv 3468  cun 3941  wss 3943  {cpr 4625  Ord word 6356  Oncon0 6357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-tr 5259  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-ord 6360  df-on 6361
This theorem is referenced by:  ordunel  7811  r0weon  10006
  Copyright terms: Public domain W3C validator