![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ordunpr | Structured version Visualization version GIF version |
Description: The maximum of two ordinals is equal to one of them. (Contributed by Mario Carneiro, 25-Jun-2015.) |
Ref | Expression |
---|---|
ordunpr | ⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 ∪ 𝐶) ∈ {𝐵, 𝐶}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloni 6402 | . . . . 5 ⊢ (𝐵 ∈ On → Ord 𝐵) | |
2 | eloni 6402 | . . . . 5 ⊢ (𝐶 ∈ On → Ord 𝐶) | |
3 | ordtri2or2 6491 | . . . . 5 ⊢ ((Ord 𝐵 ∧ Ord 𝐶) → (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) | |
4 | 1, 2, 3 | syl2an 596 | . . . 4 ⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) |
5 | 4 | orcomd 872 | . . 3 ⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐶 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐶)) |
6 | ssequn2 4202 | . . . 4 ⊢ (𝐶 ⊆ 𝐵 ↔ (𝐵 ∪ 𝐶) = 𝐵) | |
7 | ssequn1 4199 | . . . 4 ⊢ (𝐵 ⊆ 𝐶 ↔ (𝐵 ∪ 𝐶) = 𝐶) | |
8 | 6, 7 | orbi12i 915 | . . 3 ⊢ ((𝐶 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐶) ↔ ((𝐵 ∪ 𝐶) = 𝐵 ∨ (𝐵 ∪ 𝐶) = 𝐶)) |
9 | 5, 8 | sylib 218 | . 2 ⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐵 ∪ 𝐶) = 𝐵 ∨ (𝐵 ∪ 𝐶) = 𝐶)) |
10 | unexg 7769 | . . 3 ⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 ∪ 𝐶) ∈ V) | |
11 | elprg 4656 | . . 3 ⊢ ((𝐵 ∪ 𝐶) ∈ V → ((𝐵 ∪ 𝐶) ∈ {𝐵, 𝐶} ↔ ((𝐵 ∪ 𝐶) = 𝐵 ∨ (𝐵 ∪ 𝐶) = 𝐶))) | |
12 | 10, 11 | syl 17 | . 2 ⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐵 ∪ 𝐶) ∈ {𝐵, 𝐶} ↔ ((𝐵 ∪ 𝐶) = 𝐵 ∨ (𝐵 ∪ 𝐶) = 𝐶))) |
13 | 9, 12 | mpbird 257 | 1 ⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 ∪ 𝐶) ∈ {𝐵, 𝐶}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 848 = wceq 1539 ∈ wcel 2108 Vcvv 3481 ∪ cun 3964 ⊆ wss 3966 {cpr 4636 Ord word 6391 Oncon0 6392 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-opab 5214 df-tr 5269 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-ord 6395 df-on 6396 |
This theorem is referenced by: ordunel 7854 r0weon 10059 |
Copyright terms: Public domain | W3C validator |