Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ordunpr | Structured version Visualization version GIF version |
Description: The maximum of two ordinals is equal to one of them. (Contributed by Mario Carneiro, 25-Jun-2015.) |
Ref | Expression |
---|---|
ordunpr | ⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 ∪ 𝐶) ∈ {𝐵, 𝐶}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloni 6274 | . . . . 5 ⊢ (𝐵 ∈ On → Ord 𝐵) | |
2 | eloni 6274 | . . . . 5 ⊢ (𝐶 ∈ On → Ord 𝐶) | |
3 | ordtri2or2 6360 | . . . . 5 ⊢ ((Ord 𝐵 ∧ Ord 𝐶) → (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) | |
4 | 1, 2, 3 | syl2an 596 | . . . 4 ⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) |
5 | 4 | orcomd 868 | . . 3 ⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐶 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐶)) |
6 | ssequn2 4122 | . . . 4 ⊢ (𝐶 ⊆ 𝐵 ↔ (𝐵 ∪ 𝐶) = 𝐵) | |
7 | ssequn1 4119 | . . . 4 ⊢ (𝐵 ⊆ 𝐶 ↔ (𝐵 ∪ 𝐶) = 𝐶) | |
8 | 6, 7 | orbi12i 912 | . . 3 ⊢ ((𝐶 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐶) ↔ ((𝐵 ∪ 𝐶) = 𝐵 ∨ (𝐵 ∪ 𝐶) = 𝐶)) |
9 | 5, 8 | sylib 217 | . 2 ⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐵 ∪ 𝐶) = 𝐵 ∨ (𝐵 ∪ 𝐶) = 𝐶)) |
10 | unexg 7591 | . . 3 ⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 ∪ 𝐶) ∈ V) | |
11 | elprg 4588 | . . 3 ⊢ ((𝐵 ∪ 𝐶) ∈ V → ((𝐵 ∪ 𝐶) ∈ {𝐵, 𝐶} ↔ ((𝐵 ∪ 𝐶) = 𝐵 ∨ (𝐵 ∪ 𝐶) = 𝐶))) | |
12 | 10, 11 | syl 17 | . 2 ⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐵 ∪ 𝐶) ∈ {𝐵, 𝐶} ↔ ((𝐵 ∪ 𝐶) = 𝐵 ∨ (𝐵 ∪ 𝐶) = 𝐶))) |
13 | 9, 12 | mpbird 256 | 1 ⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 ∪ 𝐶) ∈ {𝐵, 𝐶}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 844 = wceq 1542 ∈ wcel 2110 Vcvv 3431 ∪ cun 3890 ⊆ wss 3892 {cpr 4569 Ord word 6263 Oncon0 6264 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-11 2158 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 ax-un 7580 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-ne 2946 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-tr 5197 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-ord 6267 df-on 6268 |
This theorem is referenced by: ordunel 7666 r0weon 9767 |
Copyright terms: Public domain | W3C validator |