| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordunpr | Structured version Visualization version GIF version | ||
| Description: The maximum of two ordinals is equal to one of them. (Contributed by Mario Carneiro, 25-Jun-2015.) |
| Ref | Expression |
|---|---|
| ordunpr | ⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 ∪ 𝐶) ∈ {𝐵, 𝐶}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloni 6312 | . . . . 5 ⊢ (𝐵 ∈ On → Ord 𝐵) | |
| 2 | eloni 6312 | . . . . 5 ⊢ (𝐶 ∈ On → Ord 𝐶) | |
| 3 | ordtri2or2 6403 | . . . . 5 ⊢ ((Ord 𝐵 ∧ Ord 𝐶) → (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) | |
| 4 | 1, 2, 3 | syl2an 596 | . . . 4 ⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) |
| 5 | 4 | orcomd 871 | . . 3 ⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐶 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐶)) |
| 6 | ssequn2 4137 | . . . 4 ⊢ (𝐶 ⊆ 𝐵 ↔ (𝐵 ∪ 𝐶) = 𝐵) | |
| 7 | ssequn1 4134 | . . . 4 ⊢ (𝐵 ⊆ 𝐶 ↔ (𝐵 ∪ 𝐶) = 𝐶) | |
| 8 | 6, 7 | orbi12i 914 | . . 3 ⊢ ((𝐶 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐶) ↔ ((𝐵 ∪ 𝐶) = 𝐵 ∨ (𝐵 ∪ 𝐶) = 𝐶)) |
| 9 | 5, 8 | sylib 218 | . 2 ⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐵 ∪ 𝐶) = 𝐵 ∨ (𝐵 ∪ 𝐶) = 𝐶)) |
| 10 | unexg 7671 | . . 3 ⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 ∪ 𝐶) ∈ V) | |
| 11 | elprg 4597 | . . 3 ⊢ ((𝐵 ∪ 𝐶) ∈ V → ((𝐵 ∪ 𝐶) ∈ {𝐵, 𝐶} ↔ ((𝐵 ∪ 𝐶) = 𝐵 ∨ (𝐵 ∪ 𝐶) = 𝐶))) | |
| 12 | 10, 11 | syl 17 | . 2 ⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐵 ∪ 𝐶) ∈ {𝐵, 𝐶} ↔ ((𝐵 ∪ 𝐶) = 𝐵 ∨ (𝐵 ∪ 𝐶) = 𝐶))) |
| 13 | 9, 12 | mpbird 257 | 1 ⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 ∪ 𝐶) ∈ {𝐵, 𝐶}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2110 Vcvv 3434 ∪ cun 3898 ⊆ wss 3900 {cpr 4576 Ord word 6301 Oncon0 6302 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-opab 5152 df-tr 5197 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-ord 6305 df-on 6306 |
| This theorem is referenced by: ordunel 7752 r0weon 9895 |
| Copyright terms: Public domain | W3C validator |