MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordunpr Structured version   Visualization version   GIF version

Theorem ordunpr 7781
Description: The maximum of two ordinals is equal to one of them. (Contributed by Mario Carneiro, 25-Jun-2015.)
Assertion
Ref Expression
ordunpr ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵𝐶) ∈ {𝐵, 𝐶})

Proof of Theorem ordunpr
StepHypRef Expression
1 eloni 6330 . . . . 5 (𝐵 ∈ On → Ord 𝐵)
2 eloni 6330 . . . . 5 (𝐶 ∈ On → Ord 𝐶)
3 ordtri2or2 6421 . . . . 5 ((Ord 𝐵 ∧ Ord 𝐶) → (𝐵𝐶𝐶𝐵))
41, 2, 3syl2an 596 . . . 4 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵𝐶𝐶𝐵))
54orcomd 871 . . 3 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐶𝐵𝐵𝐶))
6 ssequn2 4148 . . . 4 (𝐶𝐵 ↔ (𝐵𝐶) = 𝐵)
7 ssequn1 4145 . . . 4 (𝐵𝐶 ↔ (𝐵𝐶) = 𝐶)
86, 7orbi12i 914 . . 3 ((𝐶𝐵𝐵𝐶) ↔ ((𝐵𝐶) = 𝐵 ∨ (𝐵𝐶) = 𝐶))
95, 8sylib 218 . 2 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐵𝐶) = 𝐵 ∨ (𝐵𝐶) = 𝐶))
10 unexg 7699 . . 3 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵𝐶) ∈ V)
11 elprg 4608 . . 3 ((𝐵𝐶) ∈ V → ((𝐵𝐶) ∈ {𝐵, 𝐶} ↔ ((𝐵𝐶) = 𝐵 ∨ (𝐵𝐶) = 𝐶)))
1210, 11syl 17 . 2 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐵𝐶) ∈ {𝐵, 𝐶} ↔ ((𝐵𝐶) = 𝐵 ∨ (𝐵𝐶) = 𝐶)))
139, 12mpbird 257 1 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵𝐶) ∈ {𝐵, 𝐶})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  Vcvv 3444  cun 3909  wss 3911  {cpr 4587  Ord word 6319  Oncon0 6320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-tr 5210  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-ord 6323  df-on 6324
This theorem is referenced by:  ordunel  7782  r0weon  9941
  Copyright terms: Public domain W3C validator