MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordunpr Structured version   Visualization version   GIF version

Theorem ordunpr 7665
Description: The maximum of two ordinals is equal to one of them. (Contributed by Mario Carneiro, 25-Jun-2015.)
Assertion
Ref Expression
ordunpr ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵𝐶) ∈ {𝐵, 𝐶})

Proof of Theorem ordunpr
StepHypRef Expression
1 eloni 6274 . . . . 5 (𝐵 ∈ On → Ord 𝐵)
2 eloni 6274 . . . . 5 (𝐶 ∈ On → Ord 𝐶)
3 ordtri2or2 6360 . . . . 5 ((Ord 𝐵 ∧ Ord 𝐶) → (𝐵𝐶𝐶𝐵))
41, 2, 3syl2an 596 . . . 4 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵𝐶𝐶𝐵))
54orcomd 868 . . 3 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐶𝐵𝐵𝐶))
6 ssequn2 4122 . . . 4 (𝐶𝐵 ↔ (𝐵𝐶) = 𝐵)
7 ssequn1 4119 . . . 4 (𝐵𝐶 ↔ (𝐵𝐶) = 𝐶)
86, 7orbi12i 912 . . 3 ((𝐶𝐵𝐵𝐶) ↔ ((𝐵𝐶) = 𝐵 ∨ (𝐵𝐶) = 𝐶))
95, 8sylib 217 . 2 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐵𝐶) = 𝐵 ∨ (𝐵𝐶) = 𝐶))
10 unexg 7591 . . 3 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵𝐶) ∈ V)
11 elprg 4588 . . 3 ((𝐵𝐶) ∈ V → ((𝐵𝐶) ∈ {𝐵, 𝐶} ↔ ((𝐵𝐶) = 𝐵 ∨ (𝐵𝐶) = 𝐶)))
1210, 11syl 17 . 2 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐵𝐶) ∈ {𝐵, 𝐶} ↔ ((𝐵𝐶) = 𝐵 ∨ (𝐵𝐶) = 𝐶)))
139, 12mpbird 256 1 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵𝐶) ∈ {𝐵, 𝐶})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844   = wceq 1542  wcel 2110  Vcvv 3431  cun 3890  wss 3892  {cpr 4569  Ord word 6263  Oncon0 6264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-11 2158  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pr 5356  ax-un 7580
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-sb 2072  df-clab 2718  df-cleq 2732  df-clel 2818  df-ne 2946  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-br 5080  df-opab 5142  df-tr 5197  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-ord 6267  df-on 6268
This theorem is referenced by:  ordunel  7666  r0weon  9767
  Copyright terms: Public domain W3C validator