MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1egrvtxdg0 Structured version   Visualization version   GIF version

Theorem 1egrvtxdg0 29446
Description: The vertex degree of a one-edge graph, case 1: an edge between two vertices other than the given vertex contributes nothing to the vertex degree. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Alexander van der Vekens, 22-Dec-2017.) (Revised by AV, 21-Feb-2021.)
Hypotheses
Ref Expression
1egrvtxdg1.v (𝜑 → (Vtx‘𝐺) = 𝑉)
1egrvtxdg1.a (𝜑𝐴𝑋)
1egrvtxdg1.b (𝜑𝐵𝑉)
1egrvtxdg1.c (𝜑𝐶𝑉)
1egrvtxdg1.n (𝜑𝐵𝐶)
1egrvtxdg0.d (𝜑𝐷𝑉)
1egrvtxdg0.n (𝜑𝐶𝐷)
1egrvtxdg0.i (𝜑 → (iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐷}⟩})
Assertion
Ref Expression
1egrvtxdg0 (𝜑 → ((VtxDeg‘𝐺)‘𝐶) = 0)

Proof of Theorem 1egrvtxdg0
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 1egrvtxdg1.v . . . . 5 (𝜑 → (Vtx‘𝐺) = 𝑉)
21adantl 481 . . . 4 ((𝐵 = 𝐷𝜑) → (Vtx‘𝐺) = 𝑉)
3 1egrvtxdg1.a . . . . 5 (𝜑𝐴𝑋)
43adantl 481 . . . 4 ((𝐵 = 𝐷𝜑) → 𝐴𝑋)
5 1egrvtxdg1.b . . . . 5 (𝜑𝐵𝑉)
65adantl 481 . . . 4 ((𝐵 = 𝐷𝜑) → 𝐵𝑉)
7 1egrvtxdg0.i . . . . . 6 (𝜑 → (iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐷}⟩})
87adantl 481 . . . . 5 ((𝐵 = 𝐷𝜑) → (iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐷}⟩})
9 preq2 4701 . . . . . . . . . 10 (𝐷 = 𝐵 → {𝐵, 𝐷} = {𝐵, 𝐵})
109eqcoms 2738 . . . . . . . . 9 (𝐵 = 𝐷 → {𝐵, 𝐷} = {𝐵, 𝐵})
11 dfsn2 4605 . . . . . . . . 9 {𝐵} = {𝐵, 𝐵}
1210, 11eqtr4di 2783 . . . . . . . 8 (𝐵 = 𝐷 → {𝐵, 𝐷} = {𝐵})
1312adantr 480 . . . . . . 7 ((𝐵 = 𝐷𝜑) → {𝐵, 𝐷} = {𝐵})
1413opeq2d 4847 . . . . . 6 ((𝐵 = 𝐷𝜑) → ⟨𝐴, {𝐵, 𝐷}⟩ = ⟨𝐴, {𝐵}⟩)
1514sneqd 4604 . . . . 5 ((𝐵 = 𝐷𝜑) → {⟨𝐴, {𝐵, 𝐷}⟩} = {⟨𝐴, {𝐵}⟩})
168, 15eqtrd 2765 . . . 4 ((𝐵 = 𝐷𝜑) → (iEdg‘𝐺) = {⟨𝐴, {𝐵}⟩})
17 1egrvtxdg1.c . . . . . . 7 (𝜑𝐶𝑉)
18 1egrvtxdg1.n . . . . . . . 8 (𝜑𝐵𝐶)
1918necomd 2981 . . . . . . 7 (𝜑𝐶𝐵)
2017, 19jca 511 . . . . . 6 (𝜑 → (𝐶𝑉𝐶𝐵))
21 eldifsn 4753 . . . . . 6 (𝐶 ∈ (𝑉 ∖ {𝐵}) ↔ (𝐶𝑉𝐶𝐵))
2220, 21sylibr 234 . . . . 5 (𝜑𝐶 ∈ (𝑉 ∖ {𝐵}))
2322adantl 481 . . . 4 ((𝐵 = 𝐷𝜑) → 𝐶 ∈ (𝑉 ∖ {𝐵}))
242, 4, 6, 16, 231loopgrvd0 29439 . . 3 ((𝐵 = 𝐷𝜑) → ((VtxDeg‘𝐺)‘𝐶) = 0)
2524ex 412 . 2 (𝐵 = 𝐷 → (𝜑 → ((VtxDeg‘𝐺)‘𝐶) = 0))
26 necom 2979 . . . . . . . . . 10 (𝐵𝐶𝐶𝐵)
27 df-ne 2927 . . . . . . . . . 10 (𝐶𝐵 ↔ ¬ 𝐶 = 𝐵)
2826, 27sylbb 219 . . . . . . . . 9 (𝐵𝐶 → ¬ 𝐶 = 𝐵)
2918, 28syl 17 . . . . . . . 8 (𝜑 → ¬ 𝐶 = 𝐵)
30 1egrvtxdg0.n . . . . . . . . 9 (𝜑𝐶𝐷)
3130neneqd 2931 . . . . . . . 8 (𝜑 → ¬ 𝐶 = 𝐷)
3229, 31jca 511 . . . . . . 7 (𝜑 → (¬ 𝐶 = 𝐵 ∧ ¬ 𝐶 = 𝐷))
3332adantl 481 . . . . . 6 ((𝐵𝐷𝜑) → (¬ 𝐶 = 𝐵 ∧ ¬ 𝐶 = 𝐷))
34 ioran 985 . . . . . 6 (¬ (𝐶 = 𝐵𝐶 = 𝐷) ↔ (¬ 𝐶 = 𝐵 ∧ ¬ 𝐶 = 𝐷))
3533, 34sylibr 234 . . . . 5 ((𝐵𝐷𝜑) → ¬ (𝐶 = 𝐵𝐶 = 𝐷))
36 edgval 28983 . . . . . . . . 9 (Edg‘𝐺) = ran (iEdg‘𝐺)
377rneqd 5905 . . . . . . . . . 10 (𝜑 → ran (iEdg‘𝐺) = ran {⟨𝐴, {𝐵, 𝐷}⟩})
38 rnsnopg 6197 . . . . . . . . . . 11 (𝐴𝑋 → ran {⟨𝐴, {𝐵, 𝐷}⟩} = {{𝐵, 𝐷}})
393, 38syl 17 . . . . . . . . . 10 (𝜑 → ran {⟨𝐴, {𝐵, 𝐷}⟩} = {{𝐵, 𝐷}})
4037, 39eqtrd 2765 . . . . . . . . 9 (𝜑 → ran (iEdg‘𝐺) = {{𝐵, 𝐷}})
4136, 40eqtrid 2777 . . . . . . . 8 (𝜑 → (Edg‘𝐺) = {{𝐵, 𝐷}})
4241adantl 481 . . . . . . 7 ((𝐵𝐷𝜑) → (Edg‘𝐺) = {{𝐵, 𝐷}})
4342rexeqdv 3302 . . . . . 6 ((𝐵𝐷𝜑) → (∃𝑒 ∈ (Edg‘𝐺)𝐶𝑒 ↔ ∃𝑒 ∈ {{𝐵, 𝐷}}𝐶𝑒))
44 prex 5395 . . . . . . 7 {𝐵, 𝐷} ∈ V
45 eleq2 2818 . . . . . . . 8 (𝑒 = {𝐵, 𝐷} → (𝐶𝑒𝐶 ∈ {𝐵, 𝐷}))
4645rexsng 4643 . . . . . . 7 ({𝐵, 𝐷} ∈ V → (∃𝑒 ∈ {{𝐵, 𝐷}}𝐶𝑒𝐶 ∈ {𝐵, 𝐷}))
4744, 46mp1i 13 . . . . . 6 ((𝐵𝐷𝜑) → (∃𝑒 ∈ {{𝐵, 𝐷}}𝐶𝑒𝐶 ∈ {𝐵, 𝐷}))
48 elprg 4615 . . . . . . . 8 (𝐶𝑉 → (𝐶 ∈ {𝐵, 𝐷} ↔ (𝐶 = 𝐵𝐶 = 𝐷)))
4917, 48syl 17 . . . . . . 7 (𝜑 → (𝐶 ∈ {𝐵, 𝐷} ↔ (𝐶 = 𝐵𝐶 = 𝐷)))
5049adantl 481 . . . . . 6 ((𝐵𝐷𝜑) → (𝐶 ∈ {𝐵, 𝐷} ↔ (𝐶 = 𝐵𝐶 = 𝐷)))
5143, 47, 503bitrd 305 . . . . 5 ((𝐵𝐷𝜑) → (∃𝑒 ∈ (Edg‘𝐺)𝐶𝑒 ↔ (𝐶 = 𝐵𝐶 = 𝐷)))
5235, 51mtbird 325 . . . 4 ((𝐵𝐷𝜑) → ¬ ∃𝑒 ∈ (Edg‘𝐺)𝐶𝑒)
53 eqid 2730 . . . . . 6 (Vtx‘𝐺) = (Vtx‘𝐺)
543adantl 481 . . . . . 6 ((𝐵𝐷𝜑) → 𝐴𝑋)
555, 1eleqtrrd 2832 . . . . . . 7 (𝜑𝐵 ∈ (Vtx‘𝐺))
5655adantl 481 . . . . . 6 ((𝐵𝐷𝜑) → 𝐵 ∈ (Vtx‘𝐺))
57 1egrvtxdg0.d . . . . . . . 8 (𝜑𝐷𝑉)
5857, 1eleqtrrd 2832 . . . . . . 7 (𝜑𝐷 ∈ (Vtx‘𝐺))
5958adantl 481 . . . . . 6 ((𝐵𝐷𝜑) → 𝐷 ∈ (Vtx‘𝐺))
607adantl 481 . . . . . 6 ((𝐵𝐷𝜑) → (iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐷}⟩})
61 simpl 482 . . . . . 6 ((𝐵𝐷𝜑) → 𝐵𝐷)
6253, 54, 56, 59, 60, 61usgr1e 29179 . . . . 5 ((𝐵𝐷𝜑) → 𝐺 ∈ USGraph)
6317, 1eleqtrrd 2832 . . . . . 6 (𝜑𝐶 ∈ (Vtx‘𝐺))
6463adantl 481 . . . . 5 ((𝐵𝐷𝜑) → 𝐶 ∈ (Vtx‘𝐺))
65 eqid 2730 . . . . . 6 (Edg‘𝐺) = (Edg‘𝐺)
66 eqid 2730 . . . . . 6 (VtxDeg‘𝐺) = (VtxDeg‘𝐺)
6753, 65, 66vtxdusgr0edgnel 29430 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝐶 ∈ (Vtx‘𝐺)) → (((VtxDeg‘𝐺)‘𝐶) = 0 ↔ ¬ ∃𝑒 ∈ (Edg‘𝐺)𝐶𝑒))
6862, 64, 67syl2anc 584 . . . 4 ((𝐵𝐷𝜑) → (((VtxDeg‘𝐺)‘𝐶) = 0 ↔ ¬ ∃𝑒 ∈ (Edg‘𝐺)𝐶𝑒))
6952, 68mpbird 257 . . 3 ((𝐵𝐷𝜑) → ((VtxDeg‘𝐺)‘𝐶) = 0)
7069ex 412 . 2 (𝐵𝐷 → (𝜑 → ((VtxDeg‘𝐺)‘𝐶) = 0))
7125, 70pm2.61ine 3009 1 (𝜑 → ((VtxDeg‘𝐺)‘𝐶) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2926  wrex 3054  Vcvv 3450  cdif 3914  {csn 4592  {cpr 4594  cop 4598  ran crn 5642  cfv 6514  0cc0 11075  Vtxcvtx 28930  iEdgciedg 28931  Edgcedg 28981  USGraphcusgr 29083  VtxDegcvtxdg 29400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-oadd 8441  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-n0 12450  df-xnn0 12523  df-z 12537  df-uz 12801  df-xadd 13080  df-fz 13476  df-hash 14303  df-edg 28982  df-uhgr 28992  df-upgr 29016  df-uspgr 29084  df-usgr 29085  df-vtxdg 29401
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator