MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1egrvtxdg0 Structured version   Visualization version   GIF version

Theorem 1egrvtxdg0 27453
Description: The vertex degree of a one-edge graph, case 1: an edge between two vertices other than the given vertex contributes nothing to the vertex degree. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Alexander van der Vekens, 22-Dec-2017.) (Revised by AV, 21-Feb-2021.)
Hypotheses
Ref Expression
1egrvtxdg1.v (𝜑 → (Vtx‘𝐺) = 𝑉)
1egrvtxdg1.a (𝜑𝐴𝑋)
1egrvtxdg1.b (𝜑𝐵𝑉)
1egrvtxdg1.c (𝜑𝐶𝑉)
1egrvtxdg1.n (𝜑𝐵𝐶)
1egrvtxdg0.d (𝜑𝐷𝑉)
1egrvtxdg0.n (𝜑𝐶𝐷)
1egrvtxdg0.i (𝜑 → (iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐷}⟩})
Assertion
Ref Expression
1egrvtxdg0 (𝜑 → ((VtxDeg‘𝐺)‘𝐶) = 0)

Proof of Theorem 1egrvtxdg0
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 1egrvtxdg1.v . . . . 5 (𝜑 → (Vtx‘𝐺) = 𝑉)
21adantl 485 . . . 4 ((𝐵 = 𝐷𝜑) → (Vtx‘𝐺) = 𝑉)
3 1egrvtxdg1.a . . . . 5 (𝜑𝐴𝑋)
43adantl 485 . . . 4 ((𝐵 = 𝐷𝜑) → 𝐴𝑋)
5 1egrvtxdg1.b . . . . 5 (𝜑𝐵𝑉)
65adantl 485 . . . 4 ((𝐵 = 𝐷𝜑) → 𝐵𝑉)
7 1egrvtxdg0.i . . . . . 6 (𝜑 → (iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐷}⟩})
87adantl 485 . . . . 5 ((𝐵 = 𝐷𝜑) → (iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐷}⟩})
9 preq2 4626 . . . . . . . . . 10 (𝐷 = 𝐵 → {𝐵, 𝐷} = {𝐵, 𝐵})
109eqcoms 2746 . . . . . . . . 9 (𝐵 = 𝐷 → {𝐵, 𝐷} = {𝐵, 𝐵})
11 dfsn2 4530 . . . . . . . . 9 {𝐵} = {𝐵, 𝐵}
1210, 11eqtr4di 2791 . . . . . . . 8 (𝐵 = 𝐷 → {𝐵, 𝐷} = {𝐵})
1312adantr 484 . . . . . . 7 ((𝐵 = 𝐷𝜑) → {𝐵, 𝐷} = {𝐵})
1413opeq2d 4769 . . . . . 6 ((𝐵 = 𝐷𝜑) → ⟨𝐴, {𝐵, 𝐷}⟩ = ⟨𝐴, {𝐵}⟩)
1514sneqd 4529 . . . . 5 ((𝐵 = 𝐷𝜑) → {⟨𝐴, {𝐵, 𝐷}⟩} = {⟨𝐴, {𝐵}⟩})
168, 15eqtrd 2773 . . . 4 ((𝐵 = 𝐷𝜑) → (iEdg‘𝐺) = {⟨𝐴, {𝐵}⟩})
17 1egrvtxdg1.c . . . . . . 7 (𝜑𝐶𝑉)
18 1egrvtxdg1.n . . . . . . . 8 (𝜑𝐵𝐶)
1918necomd 2989 . . . . . . 7 (𝜑𝐶𝐵)
2017, 19jca 515 . . . . . 6 (𝜑 → (𝐶𝑉𝐶𝐵))
21 eldifsn 4676 . . . . . 6 (𝐶 ∈ (𝑉 ∖ {𝐵}) ↔ (𝐶𝑉𝐶𝐵))
2220, 21sylibr 237 . . . . 5 (𝜑𝐶 ∈ (𝑉 ∖ {𝐵}))
2322adantl 485 . . . 4 ((𝐵 = 𝐷𝜑) → 𝐶 ∈ (𝑉 ∖ {𝐵}))
242, 4, 6, 16, 231loopgrvd0 27446 . . 3 ((𝐵 = 𝐷𝜑) → ((VtxDeg‘𝐺)‘𝐶) = 0)
2524ex 416 . 2 (𝐵 = 𝐷 → (𝜑 → ((VtxDeg‘𝐺)‘𝐶) = 0))
26 necom 2987 . . . . . . . . . 10 (𝐵𝐶𝐶𝐵)
27 df-ne 2935 . . . . . . . . . 10 (𝐶𝐵 ↔ ¬ 𝐶 = 𝐵)
2826, 27sylbb 222 . . . . . . . . 9 (𝐵𝐶 → ¬ 𝐶 = 𝐵)
2918, 28syl 17 . . . . . . . 8 (𝜑 → ¬ 𝐶 = 𝐵)
30 1egrvtxdg0.n . . . . . . . . 9 (𝜑𝐶𝐷)
3130neneqd 2939 . . . . . . . 8 (𝜑 → ¬ 𝐶 = 𝐷)
3229, 31jca 515 . . . . . . 7 (𝜑 → (¬ 𝐶 = 𝐵 ∧ ¬ 𝐶 = 𝐷))
3332adantl 485 . . . . . 6 ((𝐵𝐷𝜑) → (¬ 𝐶 = 𝐵 ∧ ¬ 𝐶 = 𝐷))
34 ioran 983 . . . . . 6 (¬ (𝐶 = 𝐵𝐶 = 𝐷) ↔ (¬ 𝐶 = 𝐵 ∧ ¬ 𝐶 = 𝐷))
3533, 34sylibr 237 . . . . 5 ((𝐵𝐷𝜑) → ¬ (𝐶 = 𝐵𝐶 = 𝐷))
36 edgval 26994 . . . . . . . . 9 (Edg‘𝐺) = ran (iEdg‘𝐺)
377rneqd 5782 . . . . . . . . . 10 (𝜑 → ran (iEdg‘𝐺) = ran {⟨𝐴, {𝐵, 𝐷}⟩})
38 rnsnopg 6054 . . . . . . . . . . 11 (𝐴𝑋 → ran {⟨𝐴, {𝐵, 𝐷}⟩} = {{𝐵, 𝐷}})
393, 38syl 17 . . . . . . . . . 10 (𝜑 → ran {⟨𝐴, {𝐵, 𝐷}⟩} = {{𝐵, 𝐷}})
4037, 39eqtrd 2773 . . . . . . . . 9 (𝜑 → ran (iEdg‘𝐺) = {{𝐵, 𝐷}})
4136, 40syl5eq 2785 . . . . . . . 8 (𝜑 → (Edg‘𝐺) = {{𝐵, 𝐷}})
4241adantl 485 . . . . . . 7 ((𝐵𝐷𝜑) → (Edg‘𝐺) = {{𝐵, 𝐷}})
4342rexeqdv 3317 . . . . . 6 ((𝐵𝐷𝜑) → (∃𝑒 ∈ (Edg‘𝐺)𝐶𝑒 ↔ ∃𝑒 ∈ {{𝐵, 𝐷}}𝐶𝑒))
44 prex 5300 . . . . . . 7 {𝐵, 𝐷} ∈ V
45 eleq2 2821 . . . . . . . 8 (𝑒 = {𝐵, 𝐷} → (𝐶𝑒𝐶 ∈ {𝐵, 𝐷}))
4645rexsng 4566 . . . . . . 7 ({𝐵, 𝐷} ∈ V → (∃𝑒 ∈ {{𝐵, 𝐷}}𝐶𝑒𝐶 ∈ {𝐵, 𝐷}))
4744, 46mp1i 13 . . . . . 6 ((𝐵𝐷𝜑) → (∃𝑒 ∈ {{𝐵, 𝐷}}𝐶𝑒𝐶 ∈ {𝐵, 𝐷}))
48 elprg 4538 . . . . . . . 8 (𝐶𝑉 → (𝐶 ∈ {𝐵, 𝐷} ↔ (𝐶 = 𝐵𝐶 = 𝐷)))
4917, 48syl 17 . . . . . . 7 (𝜑 → (𝐶 ∈ {𝐵, 𝐷} ↔ (𝐶 = 𝐵𝐶 = 𝐷)))
5049adantl 485 . . . . . 6 ((𝐵𝐷𝜑) → (𝐶 ∈ {𝐵, 𝐷} ↔ (𝐶 = 𝐵𝐶 = 𝐷)))
5143, 47, 503bitrd 308 . . . . 5 ((𝐵𝐷𝜑) → (∃𝑒 ∈ (Edg‘𝐺)𝐶𝑒 ↔ (𝐶 = 𝐵𝐶 = 𝐷)))
5235, 51mtbird 328 . . . 4 ((𝐵𝐷𝜑) → ¬ ∃𝑒 ∈ (Edg‘𝐺)𝐶𝑒)
53 eqid 2738 . . . . . 6 (Vtx‘𝐺) = (Vtx‘𝐺)
543adantl 485 . . . . . 6 ((𝐵𝐷𝜑) → 𝐴𝑋)
555, 1eleqtrrd 2836 . . . . . . 7 (𝜑𝐵 ∈ (Vtx‘𝐺))
5655adantl 485 . . . . . 6 ((𝐵𝐷𝜑) → 𝐵 ∈ (Vtx‘𝐺))
57 1egrvtxdg0.d . . . . . . . 8 (𝜑𝐷𝑉)
5857, 1eleqtrrd 2836 . . . . . . 7 (𝜑𝐷 ∈ (Vtx‘𝐺))
5958adantl 485 . . . . . 6 ((𝐵𝐷𝜑) → 𝐷 ∈ (Vtx‘𝐺))
607adantl 485 . . . . . 6 ((𝐵𝐷𝜑) → (iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐷}⟩})
61 simpl 486 . . . . . 6 ((𝐵𝐷𝜑) → 𝐵𝐷)
6253, 54, 56, 59, 60, 61usgr1e 27187 . . . . 5 ((𝐵𝐷𝜑) → 𝐺 ∈ USGraph)
6317, 1eleqtrrd 2836 . . . . . 6 (𝜑𝐶 ∈ (Vtx‘𝐺))
6463adantl 485 . . . . 5 ((𝐵𝐷𝜑) → 𝐶 ∈ (Vtx‘𝐺))
65 eqid 2738 . . . . . 6 (Edg‘𝐺) = (Edg‘𝐺)
66 eqid 2738 . . . . . 6 (VtxDeg‘𝐺) = (VtxDeg‘𝐺)
6753, 65, 66vtxdusgr0edgnel 27437 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝐶 ∈ (Vtx‘𝐺)) → (((VtxDeg‘𝐺)‘𝐶) = 0 ↔ ¬ ∃𝑒 ∈ (Edg‘𝐺)𝐶𝑒))
6862, 64, 67syl2anc 587 . . . 4 ((𝐵𝐷𝜑) → (((VtxDeg‘𝐺)‘𝐶) = 0 ↔ ¬ ∃𝑒 ∈ (Edg‘𝐺)𝐶𝑒))
6952, 68mpbird 260 . . 3 ((𝐵𝐷𝜑) → ((VtxDeg‘𝐺)‘𝐶) = 0)
7069ex 416 . 2 (𝐵𝐷 → (𝜑 → ((VtxDeg‘𝐺)‘𝐶) = 0))
7125, 70pm2.61ine 3017 1 (𝜑 → ((VtxDeg‘𝐺)‘𝐶) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 846   = wceq 1542  wcel 2113  wne 2934  wrex 3054  Vcvv 3398  cdif 3841  {csn 4517  {cpr 4519  cop 4523  ran crn 5527  cfv 6340  0cc0 10616  Vtxcvtx 26941  iEdgciedg 26942  Edgcedg 26992  USGraphcusgr 27094  VtxDegcvtxdg 27407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5233  ax-pr 5297  ax-un 7480  ax-cnex 10672  ax-resscn 10673  ax-1cn 10674  ax-icn 10675  ax-addcl 10676  ax-addrcl 10677  ax-mulcl 10678  ax-mulrcl 10679  ax-mulcom 10680  ax-addass 10681  ax-mulass 10682  ax-distr 10683  ax-i2m1 10684  ax-1ne0 10685  ax-1rid 10686  ax-rnegex 10687  ax-rrecex 10688  ax-cnre 10689  ax-pre-lttri 10690  ax-pre-lttrn 10691  ax-pre-ltadd 10692  ax-pre-mulgt0 10693
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3400  df-sbc 3683  df-csb 3792  df-dif 3847  df-un 3849  df-in 3851  df-ss 3861  df-pss 3863  df-nul 4213  df-if 4416  df-pw 4491  df-sn 4518  df-pr 4520  df-tp 4522  df-op 4524  df-uni 4798  df-int 4838  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5484  df-we 5486  df-xp 5532  df-rel 5533  df-cnv 5534  df-co 5535  df-dm 5536  df-rn 5537  df-res 5538  df-ima 5539  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7128  df-ov 7174  df-oprab 7175  df-mpo 7176  df-om 7601  df-1st 7715  df-2nd 7716  df-wrecs 7977  df-recs 8038  df-rdg 8076  df-1o 8132  df-oadd 8136  df-er 8321  df-en 8557  df-dom 8558  df-sdom 8559  df-fin 8560  df-dju 9404  df-card 9442  df-pnf 10756  df-mnf 10757  df-xr 10758  df-ltxr 10759  df-le 10760  df-sub 10951  df-neg 10952  df-nn 11718  df-2 11780  df-n0 11978  df-xnn0 12050  df-z 12064  df-uz 12326  df-xadd 12592  df-fz 12983  df-hash 13784  df-edg 26993  df-uhgr 27003  df-upgr 27027  df-uspgr 27095  df-usgr 27096  df-vtxdg 27408
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator