| Step | Hyp | Ref
| Expression |
| 1 | | 1egrvtxdg1.v |
. . . . 5
⊢ (𝜑 → (Vtx‘𝐺) = 𝑉) |
| 2 | 1 | adantl 481 |
. . . 4
⊢ ((𝐵 = 𝐷 ∧ 𝜑) → (Vtx‘𝐺) = 𝑉) |
| 3 | | 1egrvtxdg1.a |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ 𝑋) |
| 4 | 3 | adantl 481 |
. . . 4
⊢ ((𝐵 = 𝐷 ∧ 𝜑) → 𝐴 ∈ 𝑋) |
| 5 | | 1egrvtxdg1.b |
. . . . 5
⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| 6 | 5 | adantl 481 |
. . . 4
⊢ ((𝐵 = 𝐷 ∧ 𝜑) → 𝐵 ∈ 𝑉) |
| 7 | | 1egrvtxdg0.i |
. . . . . 6
⊢ (𝜑 → (iEdg‘𝐺) = {〈𝐴, {𝐵, 𝐷}〉}) |
| 8 | 7 | adantl 481 |
. . . . 5
⊢ ((𝐵 = 𝐷 ∧ 𝜑) → (iEdg‘𝐺) = {〈𝐴, {𝐵, 𝐷}〉}) |
| 9 | | preq2 4715 |
. . . . . . . . . 10
⊢ (𝐷 = 𝐵 → {𝐵, 𝐷} = {𝐵, 𝐵}) |
| 10 | 9 | eqcoms 2744 |
. . . . . . . . 9
⊢ (𝐵 = 𝐷 → {𝐵, 𝐷} = {𝐵, 𝐵}) |
| 11 | | dfsn2 4619 |
. . . . . . . . 9
⊢ {𝐵} = {𝐵, 𝐵} |
| 12 | 10, 11 | eqtr4di 2789 |
. . . . . . . 8
⊢ (𝐵 = 𝐷 → {𝐵, 𝐷} = {𝐵}) |
| 13 | 12 | adantr 480 |
. . . . . . 7
⊢ ((𝐵 = 𝐷 ∧ 𝜑) → {𝐵, 𝐷} = {𝐵}) |
| 14 | 13 | opeq2d 4861 |
. . . . . 6
⊢ ((𝐵 = 𝐷 ∧ 𝜑) → 〈𝐴, {𝐵, 𝐷}〉 = 〈𝐴, {𝐵}〉) |
| 15 | 14 | sneqd 4618 |
. . . . 5
⊢ ((𝐵 = 𝐷 ∧ 𝜑) → {〈𝐴, {𝐵, 𝐷}〉} = {〈𝐴, {𝐵}〉}) |
| 16 | 8, 15 | eqtrd 2771 |
. . . 4
⊢ ((𝐵 = 𝐷 ∧ 𝜑) → (iEdg‘𝐺) = {〈𝐴, {𝐵}〉}) |
| 17 | | 1egrvtxdg1.c |
. . . . . . 7
⊢ (𝜑 → 𝐶 ∈ 𝑉) |
| 18 | | 1egrvtxdg1.n |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ≠ 𝐶) |
| 19 | 18 | necomd 2988 |
. . . . . . 7
⊢ (𝜑 → 𝐶 ≠ 𝐵) |
| 20 | 17, 19 | jca 511 |
. . . . . 6
⊢ (𝜑 → (𝐶 ∈ 𝑉 ∧ 𝐶 ≠ 𝐵)) |
| 21 | | eldifsn 4767 |
. . . . . 6
⊢ (𝐶 ∈ (𝑉 ∖ {𝐵}) ↔ (𝐶 ∈ 𝑉 ∧ 𝐶 ≠ 𝐵)) |
| 22 | 20, 21 | sylibr 234 |
. . . . 5
⊢ (𝜑 → 𝐶 ∈ (𝑉 ∖ {𝐵})) |
| 23 | 22 | adantl 481 |
. . . 4
⊢ ((𝐵 = 𝐷 ∧ 𝜑) → 𝐶 ∈ (𝑉 ∖ {𝐵})) |
| 24 | 2, 4, 6, 16, 23 | 1loopgrvd0 29489 |
. . 3
⊢ ((𝐵 = 𝐷 ∧ 𝜑) → ((VtxDeg‘𝐺)‘𝐶) = 0) |
| 25 | 24 | ex 412 |
. 2
⊢ (𝐵 = 𝐷 → (𝜑 → ((VtxDeg‘𝐺)‘𝐶) = 0)) |
| 26 | | necom 2986 |
. . . . . . . . . 10
⊢ (𝐵 ≠ 𝐶 ↔ 𝐶 ≠ 𝐵) |
| 27 | | df-ne 2934 |
. . . . . . . . . 10
⊢ (𝐶 ≠ 𝐵 ↔ ¬ 𝐶 = 𝐵) |
| 28 | 26, 27 | sylbb 219 |
. . . . . . . . 9
⊢ (𝐵 ≠ 𝐶 → ¬ 𝐶 = 𝐵) |
| 29 | 18, 28 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → ¬ 𝐶 = 𝐵) |
| 30 | | 1egrvtxdg0.n |
. . . . . . . . 9
⊢ (𝜑 → 𝐶 ≠ 𝐷) |
| 31 | 30 | neneqd 2938 |
. . . . . . . 8
⊢ (𝜑 → ¬ 𝐶 = 𝐷) |
| 32 | 29, 31 | jca 511 |
. . . . . . 7
⊢ (𝜑 → (¬ 𝐶 = 𝐵 ∧ ¬ 𝐶 = 𝐷)) |
| 33 | 32 | adantl 481 |
. . . . . 6
⊢ ((𝐵 ≠ 𝐷 ∧ 𝜑) → (¬ 𝐶 = 𝐵 ∧ ¬ 𝐶 = 𝐷)) |
| 34 | | ioran 985 |
. . . . . 6
⊢ (¬
(𝐶 = 𝐵 ∨ 𝐶 = 𝐷) ↔ (¬ 𝐶 = 𝐵 ∧ ¬ 𝐶 = 𝐷)) |
| 35 | 33, 34 | sylibr 234 |
. . . . 5
⊢ ((𝐵 ≠ 𝐷 ∧ 𝜑) → ¬ (𝐶 = 𝐵 ∨ 𝐶 = 𝐷)) |
| 36 | | edgval 29033 |
. . . . . . . . 9
⊢
(Edg‘𝐺) = ran
(iEdg‘𝐺) |
| 37 | 7 | rneqd 5923 |
. . . . . . . . . 10
⊢ (𝜑 → ran (iEdg‘𝐺) = ran {〈𝐴, {𝐵, 𝐷}〉}) |
| 38 | | rnsnopg 6215 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ 𝑋 → ran {〈𝐴, {𝐵, 𝐷}〉} = {{𝐵, 𝐷}}) |
| 39 | 3, 38 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → ran {〈𝐴, {𝐵, 𝐷}〉} = {{𝐵, 𝐷}}) |
| 40 | 37, 39 | eqtrd 2771 |
. . . . . . . . 9
⊢ (𝜑 → ran (iEdg‘𝐺) = {{𝐵, 𝐷}}) |
| 41 | 36, 40 | eqtrid 2783 |
. . . . . . . 8
⊢ (𝜑 → (Edg‘𝐺) = {{𝐵, 𝐷}}) |
| 42 | 41 | adantl 481 |
. . . . . . 7
⊢ ((𝐵 ≠ 𝐷 ∧ 𝜑) → (Edg‘𝐺) = {{𝐵, 𝐷}}) |
| 43 | 42 | rexeqdv 3310 |
. . . . . 6
⊢ ((𝐵 ≠ 𝐷 ∧ 𝜑) → (∃𝑒 ∈ (Edg‘𝐺)𝐶 ∈ 𝑒 ↔ ∃𝑒 ∈ {{𝐵, 𝐷}}𝐶 ∈ 𝑒)) |
| 44 | | prex 5412 |
. . . . . . 7
⊢ {𝐵, 𝐷} ∈ V |
| 45 | | eleq2 2824 |
. . . . . . . 8
⊢ (𝑒 = {𝐵, 𝐷} → (𝐶 ∈ 𝑒 ↔ 𝐶 ∈ {𝐵, 𝐷})) |
| 46 | 45 | rexsng 4657 |
. . . . . . 7
⊢ ({𝐵, 𝐷} ∈ V → (∃𝑒 ∈ {{𝐵, 𝐷}}𝐶 ∈ 𝑒 ↔ 𝐶 ∈ {𝐵, 𝐷})) |
| 47 | 44, 46 | mp1i 13 |
. . . . . 6
⊢ ((𝐵 ≠ 𝐷 ∧ 𝜑) → (∃𝑒 ∈ {{𝐵, 𝐷}}𝐶 ∈ 𝑒 ↔ 𝐶 ∈ {𝐵, 𝐷})) |
| 48 | | elprg 4629 |
. . . . . . . 8
⊢ (𝐶 ∈ 𝑉 → (𝐶 ∈ {𝐵, 𝐷} ↔ (𝐶 = 𝐵 ∨ 𝐶 = 𝐷))) |
| 49 | 17, 48 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝐶 ∈ {𝐵, 𝐷} ↔ (𝐶 = 𝐵 ∨ 𝐶 = 𝐷))) |
| 50 | 49 | adantl 481 |
. . . . . 6
⊢ ((𝐵 ≠ 𝐷 ∧ 𝜑) → (𝐶 ∈ {𝐵, 𝐷} ↔ (𝐶 = 𝐵 ∨ 𝐶 = 𝐷))) |
| 51 | 43, 47, 50 | 3bitrd 305 |
. . . . 5
⊢ ((𝐵 ≠ 𝐷 ∧ 𝜑) → (∃𝑒 ∈ (Edg‘𝐺)𝐶 ∈ 𝑒 ↔ (𝐶 = 𝐵 ∨ 𝐶 = 𝐷))) |
| 52 | 35, 51 | mtbird 325 |
. . . 4
⊢ ((𝐵 ≠ 𝐷 ∧ 𝜑) → ¬ ∃𝑒 ∈ (Edg‘𝐺)𝐶 ∈ 𝑒) |
| 53 | | eqid 2736 |
. . . . . 6
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
| 54 | 3 | adantl 481 |
. . . . . 6
⊢ ((𝐵 ≠ 𝐷 ∧ 𝜑) → 𝐴 ∈ 𝑋) |
| 55 | 5, 1 | eleqtrrd 2838 |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ (Vtx‘𝐺)) |
| 56 | 55 | adantl 481 |
. . . . . 6
⊢ ((𝐵 ≠ 𝐷 ∧ 𝜑) → 𝐵 ∈ (Vtx‘𝐺)) |
| 57 | | 1egrvtxdg0.d |
. . . . . . . 8
⊢ (𝜑 → 𝐷 ∈ 𝑉) |
| 58 | 57, 1 | eleqtrrd 2838 |
. . . . . . 7
⊢ (𝜑 → 𝐷 ∈ (Vtx‘𝐺)) |
| 59 | 58 | adantl 481 |
. . . . . 6
⊢ ((𝐵 ≠ 𝐷 ∧ 𝜑) → 𝐷 ∈ (Vtx‘𝐺)) |
| 60 | 7 | adantl 481 |
. . . . . 6
⊢ ((𝐵 ≠ 𝐷 ∧ 𝜑) → (iEdg‘𝐺) = {〈𝐴, {𝐵, 𝐷}〉}) |
| 61 | | simpl 482 |
. . . . . 6
⊢ ((𝐵 ≠ 𝐷 ∧ 𝜑) → 𝐵 ≠ 𝐷) |
| 62 | 53, 54, 56, 59, 60, 61 | usgr1e 29229 |
. . . . 5
⊢ ((𝐵 ≠ 𝐷 ∧ 𝜑) → 𝐺 ∈ USGraph) |
| 63 | 17, 1 | eleqtrrd 2838 |
. . . . . 6
⊢ (𝜑 → 𝐶 ∈ (Vtx‘𝐺)) |
| 64 | 63 | adantl 481 |
. . . . 5
⊢ ((𝐵 ≠ 𝐷 ∧ 𝜑) → 𝐶 ∈ (Vtx‘𝐺)) |
| 65 | | eqid 2736 |
. . . . . 6
⊢
(Edg‘𝐺) =
(Edg‘𝐺) |
| 66 | | eqid 2736 |
. . . . . 6
⊢
(VtxDeg‘𝐺) =
(VtxDeg‘𝐺) |
| 67 | 53, 65, 66 | vtxdusgr0edgnel 29480 |
. . . . 5
⊢ ((𝐺 ∈ USGraph ∧ 𝐶 ∈ (Vtx‘𝐺)) → (((VtxDeg‘𝐺)‘𝐶) = 0 ↔ ¬ ∃𝑒 ∈ (Edg‘𝐺)𝐶 ∈ 𝑒)) |
| 68 | 62, 64, 67 | syl2anc 584 |
. . . 4
⊢ ((𝐵 ≠ 𝐷 ∧ 𝜑) → (((VtxDeg‘𝐺)‘𝐶) = 0 ↔ ¬ ∃𝑒 ∈ (Edg‘𝐺)𝐶 ∈ 𝑒)) |
| 69 | 52, 68 | mpbird 257 |
. . 3
⊢ ((𝐵 ≠ 𝐷 ∧ 𝜑) → ((VtxDeg‘𝐺)‘𝐶) = 0) |
| 70 | 69 | ex 412 |
. 2
⊢ (𝐵 ≠ 𝐷 → (𝜑 → ((VtxDeg‘𝐺)‘𝐶) = 0)) |
| 71 | 25, 70 | pm2.61ine 3016 |
1
⊢ (𝜑 → ((VtxDeg‘𝐺)‘𝐶) = 0) |