Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sfprmdvdsmersenne Structured version   Visualization version   GIF version

Theorem sfprmdvdsmersenne 42045
Description: If 𝑄 is a safe prime (i.e. 𝑄 = ((2 · 𝑃) + 1) for a prime 𝑃) with 𝑄≡7 (mod 8), then 𝑄 divides the 𝑃-th Mersenne number MP. (Contributed by AV, 20-Aug-2021.)
Assertion
Ref Expression
sfprmdvdsmersenne ((𝑃 ∈ ℙ ∧ (𝑄 ∈ ℙ ∧ (𝑄 mod 8) = 7 ∧ 𝑄 = ((2 · 𝑃) + 1))) → 𝑄 ∥ ((2↑𝑃) − 1))

Proof of Theorem sfprmdvdsmersenne
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 olc 857 . . . . . . 7 ((𝑄 mod 8) = 7 → ((𝑄 mod 8) = 1 ∨ (𝑄 mod 8) = 7))
2 ovex 6826 . . . . . . . 8 (𝑄 mod 8) ∈ V
3 elprg 4337 . . . . . . . 8 ((𝑄 mod 8) ∈ V → ((𝑄 mod 8) ∈ {1, 7} ↔ ((𝑄 mod 8) = 1 ∨ (𝑄 mod 8) = 7)))
42, 3mp1i 13 . . . . . . 7 ((𝑄 mod 8) = 7 → ((𝑄 mod 8) ∈ {1, 7} ↔ ((𝑄 mod 8) = 1 ∨ (𝑄 mod 8) = 7)))
51, 4mpbird 247 . . . . . 6 ((𝑄 mod 8) = 7 → (𝑄 mod 8) ∈ {1, 7})
6 2lgs 25352 . . . . . . . 8 (𝑄 ∈ ℙ → ((2 /L 𝑄) = 1 ↔ (𝑄 mod 8) ∈ {1, 7}))
76ad2antlr 706 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) → ((2 /L 𝑄) = 1 ↔ (𝑄 mod 8) ∈ {1, 7}))
8 2z 11615 . . . . . . . . 9 2 ∈ ℤ
9 simpr 471 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → 𝑄 ∈ ℙ)
109adantr 466 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) → 𝑄 ∈ ℙ)
11 2re 11295 . . . . . . . . . . . 12 2 ∈ ℝ
1211a1i 11 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) → 2 ∈ ℝ)
13 2m1e1 11341 . . . . . . . . . . . . . . 15 (2 − 1) = 1
1411a1i 11 . . . . . . . . . . . . . . . 16 (𝑃 ∈ ℙ → 2 ∈ ℝ)
15 prmnn 15594 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
1615nnred 11240 . . . . . . . . . . . . . . . 16 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ)
17 1lt2 11400 . . . . . . . . . . . . . . . . 17 1 < 2
1817a1i 11 . . . . . . . . . . . . . . . 16 (𝑃 ∈ ℙ → 1 < 2)
19 prmgt1 15615 . . . . . . . . . . . . . . . 16 (𝑃 ∈ ℙ → 1 < 𝑃)
2014, 16, 18, 19mulgt1d 11165 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℙ → 1 < (2 · 𝑃))
2113, 20syl5eqbr 4822 . . . . . . . . . . . . . 14 (𝑃 ∈ ℙ → (2 − 1) < (2 · 𝑃))
22 1red 10260 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℙ → 1 ∈ ℝ)
23 2nn 11391 . . . . . . . . . . . . . . . . . 18 2 ∈ ℕ
2423a1i 11 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ ℙ → 2 ∈ ℕ)
2524, 15nnmulcld 11273 . . . . . . . . . . . . . . . 16 (𝑃 ∈ ℙ → (2 · 𝑃) ∈ ℕ)
2625nnred 11240 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℙ → (2 · 𝑃) ∈ ℝ)
2714, 22, 26ltsubaddd 10828 . . . . . . . . . . . . . 14 (𝑃 ∈ ℙ → ((2 − 1) < (2 · 𝑃) ↔ 2 < ((2 · 𝑃) + 1)))
2821, 27mpbid 222 . . . . . . . . . . . . 13 (𝑃 ∈ ℙ → 2 < ((2 · 𝑃) + 1))
2928ad2antrr 705 . . . . . . . . . . . 12 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) → 2 < ((2 · 𝑃) + 1))
30 breq2 4791 . . . . . . . . . . . . 13 (𝑄 = ((2 · 𝑃) + 1) → (2 < 𝑄 ↔ 2 < ((2 · 𝑃) + 1)))
3130adantl 467 . . . . . . . . . . . 12 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) → (2 < 𝑄 ↔ 2 < ((2 · 𝑃) + 1)))
3229, 31mpbird 247 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) → 2 < 𝑄)
3312, 32gtned 10377 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) → 𝑄 ≠ 2)
34 eldifsn 4454 . . . . . . . . . 10 (𝑄 ∈ (ℙ ∖ {2}) ↔ (𝑄 ∈ ℙ ∧ 𝑄 ≠ 2))
3510, 33, 34sylanbrc 572 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) → 𝑄 ∈ (ℙ ∖ {2}))
36 lgsqrmodndvds 25298 . . . . . . . . 9 ((2 ∈ ℤ ∧ 𝑄 ∈ (ℙ ∖ {2})) → ((2 /L 𝑄) = 1 → ∃𝑚 ∈ ℤ (((𝑚↑2) mod 𝑄) = (2 mod 𝑄) ∧ ¬ 𝑄𝑚)))
378, 35, 36sylancr 575 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) → ((2 /L 𝑄) = 1 → ∃𝑚 ∈ ℤ (((𝑚↑2) mod 𝑄) = (2 mod 𝑄) ∧ ¬ 𝑄𝑚)))
38 prmnn 15594 . . . . . . . . . . . . . . 15 (𝑄 ∈ ℙ → 𝑄 ∈ ℕ)
3938nncnd 11241 . . . . . . . . . . . . . 14 (𝑄 ∈ ℙ → 𝑄 ∈ ℂ)
4039adantl 467 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → 𝑄 ∈ ℂ)
41 1cnd 10261 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → 1 ∈ ℂ)
42 2cnd 11298 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℙ → 2 ∈ ℂ)
4315nncnd 11241 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℙ → 𝑃 ∈ ℂ)
4442, 43mulcld 10265 . . . . . . . . . . . . . 14 (𝑃 ∈ ℙ → (2 · 𝑃) ∈ ℂ)
4544adantr 466 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (2 · 𝑃) ∈ ℂ)
4640, 41, 45subadd2d 10616 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → ((𝑄 − 1) = (2 · 𝑃) ↔ ((2 · 𝑃) + 1) = 𝑄))
47 prmz 15595 . . . . . . . . . . . . . . . 16 (𝑄 ∈ ℙ → 𝑄 ∈ ℤ)
48 peano2zm 11626 . . . . . . . . . . . . . . . 16 (𝑄 ∈ ℤ → (𝑄 − 1) ∈ ℤ)
4947, 48syl 17 . . . . . . . . . . . . . . 15 (𝑄 ∈ ℙ → (𝑄 − 1) ∈ ℤ)
5049zcnd 11689 . . . . . . . . . . . . . 14 (𝑄 ∈ ℙ → (𝑄 − 1) ∈ ℂ)
5150adantl 467 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (𝑄 − 1) ∈ ℂ)
5243adantr 466 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → 𝑃 ∈ ℂ)
53 2cnne0 11448 . . . . . . . . . . . . . 14 (2 ∈ ℂ ∧ 2 ≠ 0)
5453a1i 11 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (2 ∈ ℂ ∧ 2 ≠ 0))
55 divmul2 10894 . . . . . . . . . . . . 13 (((𝑄 − 1) ∈ ℂ ∧ 𝑃 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (((𝑄 − 1) / 2) = 𝑃 ↔ (𝑄 − 1) = (2 · 𝑃)))
5651, 52, 54, 55syl3anc 1476 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (((𝑄 − 1) / 2) = 𝑃 ↔ (𝑄 − 1) = (2 · 𝑃)))
57 eqcom 2778 . . . . . . . . . . . . 13 (𝑄 = ((2 · 𝑃) + 1) ↔ ((2 · 𝑃) + 1) = 𝑄)
5857a1i 11 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (𝑄 = ((2 · 𝑃) + 1) ↔ ((2 · 𝑃) + 1) = 𝑄))
5946, 56, 583bitr4rd 301 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (𝑄 = ((2 · 𝑃) + 1) ↔ ((𝑄 − 1) / 2) = 𝑃))
6059biimpa 462 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) → ((𝑄 − 1) / 2) = 𝑃)
61 oveq2 6803 . . . . . . . . . . 11 (((𝑄 − 1) / 2) = 𝑃 → (2↑((𝑄 − 1) / 2)) = (2↑𝑃))
62 zsqcl 13140 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 ∈ ℤ → (𝑚↑2) ∈ ℤ)
6362ad2antlr 706 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) ∧ ((𝑚↑2) mod 𝑄) = (2 mod 𝑄)) → (𝑚↑2) ∈ ℤ)
648a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) ∧ ((𝑚↑2) mod 𝑄) = (2 mod 𝑄)) → 2 ∈ ℤ)
65 oveq1 6802 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑄 = ((2 · 𝑃) + 1) → (𝑄 − 1) = (((2 · 𝑃) + 1) − 1))
6665adantl 467 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) → (𝑄 − 1) = (((2 · 𝑃) + 1) − 1))
6766oveq1d 6810 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) → ((𝑄 − 1) / 2) = ((((2 · 𝑃) + 1) − 1) / 2))
68 pncan1 10659 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((2 · 𝑃) ∈ ℂ → (((2 · 𝑃) + 1) − 1) = (2 · 𝑃))
6944, 68syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑃 ∈ ℙ → (((2 · 𝑃) + 1) − 1) = (2 · 𝑃))
7069oveq1d 6810 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑃 ∈ ℙ → ((((2 · 𝑃) + 1) − 1) / 2) = ((2 · 𝑃) / 2))
71 2ne0 11318 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2 ≠ 0
7271a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑃 ∈ ℙ → 2 ≠ 0)
7343, 42, 72divcan3d 11011 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑃 ∈ ℙ → ((2 · 𝑃) / 2) = 𝑃)
7470, 73eqtrd 2805 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑃 ∈ ℙ → ((((2 · 𝑃) + 1) − 1) / 2) = 𝑃)
7574ad2antrr 705 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) → ((((2 · 𝑃) + 1) − 1) / 2) = 𝑃)
7667, 75eqtrd 2805 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) → ((𝑄 − 1) / 2) = 𝑃)
7715nnnn0d 11557 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ0)
7877ad2antrr 705 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) → 𝑃 ∈ ℕ0)
7976, 78eqeltrd 2850 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) → ((𝑄 − 1) / 2) ∈ ℕ0)
8038nnrpd 12072 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑄 ∈ ℙ → 𝑄 ∈ ℝ+)
8180ad2antlr 706 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) → 𝑄 ∈ ℝ+)
8279, 81jca 501 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) → (((𝑄 − 1) / 2) ∈ ℕ0𝑄 ∈ ℝ+))
8382ad2antrr 705 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) ∧ ((𝑚↑2) mod 𝑄) = (2 mod 𝑄)) → (((𝑄 − 1) / 2) ∈ ℕ0𝑄 ∈ ℝ+))
84 simpr 471 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) ∧ ((𝑚↑2) mod 𝑄) = (2 mod 𝑄)) → ((𝑚↑2) mod 𝑄) = (2 mod 𝑄))
85 modexp 13205 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑚↑2) ∈ ℤ ∧ 2 ∈ ℤ) ∧ (((𝑄 − 1) / 2) ∈ ℕ0𝑄 ∈ ℝ+) ∧ ((𝑚↑2) mod 𝑄) = (2 mod 𝑄)) → (((𝑚↑2)↑((𝑄 − 1) / 2)) mod 𝑄) = ((2↑((𝑄 − 1) / 2)) mod 𝑄))
8663, 64, 83, 84, 85syl211anc 1482 . . . . . . . . . . . . . . . . . . . 20 (((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) ∧ ((𝑚↑2) mod 𝑄) = (2 mod 𝑄)) → (((𝑚↑2)↑((𝑄 − 1) / 2)) mod 𝑄) = ((2↑((𝑄 − 1) / 2)) mod 𝑄))
8786ex 397 . . . . . . . . . . . . . . . . . . 19 ((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) → (((𝑚↑2) mod 𝑄) = (2 mod 𝑄) → (((𝑚↑2)↑((𝑄 − 1) / 2)) mod 𝑄) = ((2↑((𝑄 − 1) / 2)) mod 𝑄)))
8887adantr 466 . . . . . . . . . . . . . . . . . 18 (((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) ∧ ¬ 𝑄𝑚) → (((𝑚↑2) mod 𝑄) = (2 mod 𝑄) → (((𝑚↑2)↑((𝑄 − 1) / 2)) mod 𝑄) = ((2↑((𝑄 − 1) / 2)) mod 𝑄)))
89 2cnd 11298 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑄 ∈ ℙ → 2 ∈ ℂ)
9071a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑄 ∈ ℙ → 2 ≠ 0)
9150, 89, 90divcan2d 11008 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑄 ∈ ℙ → (2 · ((𝑄 − 1) / 2)) = (𝑄 − 1))
9291eqcomd 2777 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑄 ∈ ℙ → (𝑄 − 1) = (2 · ((𝑄 − 1) / 2)))
9392oveq2d 6811 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑄 ∈ ℙ → (𝑚↑(𝑄 − 1)) = (𝑚↑(2 · ((𝑄 − 1) / 2))))
9493ad3antlr 710 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) → (𝑚↑(𝑄 − 1)) = (𝑚↑(2 · ((𝑄 − 1) / 2))))
95 zcn 11588 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑚 ∈ ℤ → 𝑚 ∈ ℂ)
9695adantl 467 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) → 𝑚 ∈ ℂ)
9779adantr 466 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) → ((𝑄 − 1) / 2) ∈ ℕ0)
98 2nn0 11515 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2 ∈ ℕ0
9998a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) → 2 ∈ ℕ0)
10096, 97, 99expmuld 13217 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) → (𝑚↑(2 · ((𝑄 − 1) / 2))) = ((𝑚↑2)↑((𝑄 − 1) / 2)))
10194, 100eqtr2d 2806 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) → ((𝑚↑2)↑((𝑄 − 1) / 2)) = (𝑚↑(𝑄 − 1)))
102101oveq1d 6810 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) → (((𝑚↑2)↑((𝑄 − 1) / 2)) mod 𝑄) = ((𝑚↑(𝑄 − 1)) mod 𝑄))
103102adantr 466 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) ∧ ¬ 𝑄𝑚) → (((𝑚↑2)↑((𝑄 − 1) / 2)) mod 𝑄) = ((𝑚↑(𝑄 − 1)) mod 𝑄))
104 vfermltl 15712 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑄 ∈ ℙ ∧ 𝑚 ∈ ℤ ∧ ¬ 𝑄𝑚) → ((𝑚↑(𝑄 − 1)) mod 𝑄) = 1)
105104ad5ant245 1454 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) ∧ ¬ 𝑄𝑚) → ((𝑚↑(𝑄 − 1)) mod 𝑄) = 1)
106103, 105eqtrd 2805 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) ∧ ¬ 𝑄𝑚) → (((𝑚↑2)↑((𝑄 − 1) / 2)) mod 𝑄) = 1)
107 oveq1 6802 . . . . . . . . . . . . . . . . . . . . . 22 ((2↑((𝑄 − 1) / 2)) = (2↑𝑃) → ((2↑((𝑄 − 1) / 2)) mod 𝑄) = ((2↑𝑃) mod 𝑄))
108106, 107eqeqan12d 2787 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) ∧ ¬ 𝑄𝑚) ∧ (2↑((𝑄 − 1) / 2)) = (2↑𝑃)) → ((((𝑚↑2)↑((𝑄 − 1) / 2)) mod 𝑄) = ((2↑((𝑄 − 1) / 2)) mod 𝑄) ↔ 1 = ((2↑𝑃) mod 𝑄)))
109 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (1 = ((2↑𝑃) mod 𝑄) → 1 = ((2↑𝑃) mod 𝑄))
110109eqcomd 2777 . . . . . . . . . . . . . . . . . . . . . . . . 25 (1 = ((2↑𝑃) mod 𝑄) → ((2↑𝑃) mod 𝑄) = 1)
11138nnred 11240 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑄 ∈ ℙ → 𝑄 ∈ ℝ)
112 prmgt1 15615 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑄 ∈ ℙ → 1 < 𝑄)
113 1mod 12909 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑄 ∈ ℝ ∧ 1 < 𝑄) → (1 mod 𝑄) = 1)
114111, 112, 113syl2anc 573 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑄 ∈ ℙ → (1 mod 𝑄) = 1)
115114eqcomd 2777 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑄 ∈ ℙ → 1 = (1 mod 𝑄))
116115ad3antlr 710 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) → 1 = (1 mod 𝑄))
117110, 116sylan9eqr 2827 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) ∧ 1 = ((2↑𝑃) mod 𝑄)) → ((2↑𝑃) mod 𝑄) = (1 mod 𝑄))
11838ad4antlr 714 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) ∧ 1 = ((2↑𝑃) mod 𝑄)) → 𝑄 ∈ ℕ)
119 zexpcl 13081 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((2 ∈ ℤ ∧ 𝑃 ∈ ℕ0) → (2↑𝑃) ∈ ℤ)
1208, 77, 119sylancr 575 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑃 ∈ ℙ → (2↑𝑃) ∈ ℤ)
121120ad4antr 712 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) ∧ 1 = ((2↑𝑃) mod 𝑄)) → (2↑𝑃) ∈ ℤ)
122 1zzd 11614 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) ∧ 1 = ((2↑𝑃) mod 𝑄)) → 1 ∈ ℤ)
123 moddvds 15199 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑄 ∈ ℕ ∧ (2↑𝑃) ∈ ℤ ∧ 1 ∈ ℤ) → (((2↑𝑃) mod 𝑄) = (1 mod 𝑄) ↔ 𝑄 ∥ ((2↑𝑃) − 1)))
124118, 121, 122, 123syl3anc 1476 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) ∧ 1 = ((2↑𝑃) mod 𝑄)) → (((2↑𝑃) mod 𝑄) = (1 mod 𝑄) ↔ 𝑄 ∥ ((2↑𝑃) − 1)))
125117, 124mpbid 222 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) ∧ 1 = ((2↑𝑃) mod 𝑄)) → 𝑄 ∥ ((2↑𝑃) − 1))
126125ex 397 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) → (1 = ((2↑𝑃) mod 𝑄) → 𝑄 ∥ ((2↑𝑃) − 1)))
127126ad2antrr 705 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) ∧ ¬ 𝑄𝑚) ∧ (2↑((𝑄 − 1) / 2)) = (2↑𝑃)) → (1 = ((2↑𝑃) mod 𝑄) → 𝑄 ∥ ((2↑𝑃) − 1)))
128108, 127sylbid 230 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) ∧ ¬ 𝑄𝑚) ∧ (2↑((𝑄 − 1) / 2)) = (2↑𝑃)) → ((((𝑚↑2)↑((𝑄 − 1) / 2)) mod 𝑄) = ((2↑((𝑄 − 1) / 2)) mod 𝑄) → 𝑄 ∥ ((2↑𝑃) − 1)))
129128ex 397 . . . . . . . . . . . . . . . . . . 19 (((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) ∧ ¬ 𝑄𝑚) → ((2↑((𝑄 − 1) / 2)) = (2↑𝑃) → ((((𝑚↑2)↑((𝑄 − 1) / 2)) mod 𝑄) = ((2↑((𝑄 − 1) / 2)) mod 𝑄) → 𝑄 ∥ ((2↑𝑃) − 1))))
130129com23 86 . . . . . . . . . . . . . . . . . 18 (((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) ∧ ¬ 𝑄𝑚) → ((((𝑚↑2)↑((𝑄 − 1) / 2)) mod 𝑄) = ((2↑((𝑄 − 1) / 2)) mod 𝑄) → ((2↑((𝑄 − 1) / 2)) = (2↑𝑃) → 𝑄 ∥ ((2↑𝑃) − 1))))
13188, 130syld 47 . . . . . . . . . . . . . . . . 17 (((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) ∧ ¬ 𝑄𝑚) → (((𝑚↑2) mod 𝑄) = (2 mod 𝑄) → ((2↑((𝑄 − 1) / 2)) = (2↑𝑃) → 𝑄 ∥ ((2↑𝑃) − 1))))
132131ex 397 . . . . . . . . . . . . . . . 16 ((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) → (¬ 𝑄𝑚 → (((𝑚↑2) mod 𝑄) = (2 mod 𝑄) → ((2↑((𝑄 − 1) / 2)) = (2↑𝑃) → 𝑄 ∥ ((2↑𝑃) − 1)))))
133132com23 86 . . . . . . . . . . . . . . 15 ((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) → (((𝑚↑2) mod 𝑄) = (2 mod 𝑄) → (¬ 𝑄𝑚 → ((2↑((𝑄 − 1) / 2)) = (2↑𝑃) → 𝑄 ∥ ((2↑𝑃) − 1)))))
134133impd 396 . . . . . . . . . . . . . 14 ((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) → ((((𝑚↑2) mod 𝑄) = (2 mod 𝑄) ∧ ¬ 𝑄𝑚) → ((2↑((𝑄 − 1) / 2)) = (2↑𝑃) → 𝑄 ∥ ((2↑𝑃) − 1))))
135134com23 86 . . . . . . . . . . . . 13 ((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) → ((2↑((𝑄 − 1) / 2)) = (2↑𝑃) → ((((𝑚↑2) mod 𝑄) = (2 mod 𝑄) ∧ ¬ 𝑄𝑚) → 𝑄 ∥ ((2↑𝑃) − 1))))
136135ex 397 . . . . . . . . . . . 12 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) → (𝑚 ∈ ℤ → ((2↑((𝑄 − 1) / 2)) = (2↑𝑃) → ((((𝑚↑2) mod 𝑄) = (2 mod 𝑄) ∧ ¬ 𝑄𝑚) → 𝑄 ∥ ((2↑𝑃) − 1)))))
137136com23 86 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) → ((2↑((𝑄 − 1) / 2)) = (2↑𝑃) → (𝑚 ∈ ℤ → ((((𝑚↑2) mod 𝑄) = (2 mod 𝑄) ∧ ¬ 𝑄𝑚) → 𝑄 ∥ ((2↑𝑃) − 1)))))
13861, 137syl5 34 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) → (((𝑄 − 1) / 2) = 𝑃 → (𝑚 ∈ ℤ → ((((𝑚↑2) mod 𝑄) = (2 mod 𝑄) ∧ ¬ 𝑄𝑚) → 𝑄 ∥ ((2↑𝑃) − 1)))))
13960, 138mpd 15 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) → (𝑚 ∈ ℤ → ((((𝑚↑2) mod 𝑄) = (2 mod 𝑄) ∧ ¬ 𝑄𝑚) → 𝑄 ∥ ((2↑𝑃) − 1))))
140139rexlimdv 3178 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) → (∃𝑚 ∈ ℤ (((𝑚↑2) mod 𝑄) = (2 mod 𝑄) ∧ ¬ 𝑄𝑚) → 𝑄 ∥ ((2↑𝑃) − 1)))
14137, 140syld 47 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) → ((2 /L 𝑄) = 1 → 𝑄 ∥ ((2↑𝑃) − 1)))
1427, 141sylbird 250 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) → ((𝑄 mod 8) ∈ {1, 7} → 𝑄 ∥ ((2↑𝑃) − 1)))
1435, 142syl5 34 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) → ((𝑄 mod 8) = 7 → 𝑄 ∥ ((2↑𝑃) − 1)))
144143ex 397 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (𝑄 = ((2 · 𝑃) + 1) → ((𝑄 mod 8) = 7 → 𝑄 ∥ ((2↑𝑃) − 1))))
145144com23 86 . . 3 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → ((𝑄 mod 8) = 7 → (𝑄 = ((2 · 𝑃) + 1) → 𝑄 ∥ ((2↑𝑃) − 1))))
146145ex 397 . 2 (𝑃 ∈ ℙ → (𝑄 ∈ ℙ → ((𝑄 mod 8) = 7 → (𝑄 = ((2 · 𝑃) + 1) → 𝑄 ∥ ((2↑𝑃) − 1)))))
1471463imp2 1442 1 ((𝑃 ∈ ℙ ∧ (𝑄 ∈ ℙ ∧ (𝑄 mod 8) = 7 ∧ 𝑄 = ((2 · 𝑃) + 1))) → 𝑄 ∥ ((2↑𝑃) − 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382  wo 836  w3a 1071   = wceq 1631  wcel 2145  wne 2943  wrex 3062  Vcvv 3351  cdif 3720  {csn 4317  {cpr 4319   class class class wbr 4787  (class class class)co 6795  cc 10139  cr 10140  0cc0 10141  1c1 10142   + caddc 10144   · cmul 10146   < clt 10279  cmin 10471   / cdiv 10889  cn 11225  2c2 11275  7c7 11280  8c8 11281  0cn0 11498  cz 11583  +crp 12034   mod cmo 12875  cexp 13066  cdvds 15188  cprime 15591   /L clgs 25239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7099  ax-inf2 8705  ax-cnex 10197  ax-resscn 10198  ax-1cn 10199  ax-icn 10200  ax-addcl 10201  ax-addrcl 10202  ax-mulcl 10203  ax-mulrcl 10204  ax-mulcom 10205  ax-addass 10206  ax-mulass 10207  ax-distr 10208  ax-i2m1 10209  ax-1ne0 10210  ax-1rid 10211  ax-rnegex 10212  ax-rrecex 10213  ax-cnre 10214  ax-pre-lttri 10215  ax-pre-lttrn 10216  ax-pre-ltadd 10217  ax-pre-mulgt0 10218  ax-pre-sup 10219  ax-addf 10220  ax-mulf 10221
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-iin 4658  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-se 5210  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-isom 6039  df-riota 6756  df-ov 6798  df-oprab 6799  df-mpt2 6800  df-of 7047  df-ofr 7048  df-om 7216  df-1st 7318  df-2nd 7319  df-supp 7450  df-tpos 7507  df-wrecs 7562  df-recs 7624  df-rdg 7662  df-1o 7716  df-2o 7717  df-oadd 7720  df-er 7899  df-ec 7901  df-qs 7905  df-map 8014  df-pm 8015  df-ixp 8066  df-en 8113  df-dom 8114  df-sdom 8115  df-fin 8116  df-fsupp 8435  df-sup 8507  df-inf 8508  df-oi 8574  df-card 8968  df-cda 9195  df-pnf 10281  df-mnf 10282  df-xr 10283  df-ltxr 10284  df-le 10285  df-sub 10473  df-neg 10474  df-div 10890  df-nn 11226  df-2 11284  df-3 11285  df-4 11286  df-5 11287  df-6 11288  df-7 11289  df-8 11290  df-9 11291  df-n0 11499  df-xnn0 11570  df-z 11584  df-dec 11700  df-uz 11893  df-q 11996  df-rp 12035  df-ioo 12383  df-ico 12385  df-fz 12533  df-fzo 12673  df-fl 12800  df-mod 12876  df-seq 13008  df-exp 13067  df-fac 13264  df-hash 13321  df-cj 14046  df-re 14047  df-im 14048  df-sqrt 14182  df-abs 14183  df-clim 14426  df-prod 14842  df-dvds 15189  df-gcd 15424  df-prm 15592  df-phi 15677  df-pc 15748  df-struct 16065  df-ndx 16066  df-slot 16067  df-base 16069  df-sets 16070  df-ress 16071  df-plusg 16161  df-mulr 16162  df-starv 16163  df-sca 16164  df-vsca 16165  df-ip 16166  df-tset 16167  df-ple 16168  df-ds 16171  df-unif 16172  df-hom 16173  df-cco 16174  df-0g 16309  df-gsum 16310  df-prds 16315  df-pws 16317  df-imas 16375  df-qus 16376  df-mre 16453  df-mrc 16454  df-acs 16456  df-mgm 17449  df-sgrp 17491  df-mnd 17502  df-mhm 17542  df-submnd 17543  df-grp 17632  df-minusg 17633  df-sbg 17634  df-mulg 17748  df-subg 17798  df-nsg 17799  df-eqg 17800  df-ghm 17865  df-cntz 17956  df-cmn 18401  df-abl 18402  df-mgp 18697  df-ur 18709  df-srg 18713  df-ring 18756  df-cring 18757  df-oppr 18830  df-dvdsr 18848  df-unit 18849  df-invr 18879  df-dvr 18890  df-rnghom 18924  df-drng 18958  df-field 18959  df-subrg 18987  df-lmod 19074  df-lss 19142  df-lsp 19184  df-sra 19386  df-rgmod 19387  df-lidl 19388  df-rsp 19389  df-2idl 19446  df-nzr 19472  df-rlreg 19497  df-domn 19498  df-idom 19499  df-assa 19526  df-asp 19527  df-ascl 19528  df-psr 19570  df-mvr 19571  df-mpl 19572  df-opsr 19574  df-evls 19720  df-evl 19721  df-psr1 19764  df-vr1 19765  df-ply1 19766  df-coe1 19767  df-evl1 19895  df-cnfld 19961  df-zring 20033  df-zrh 20066  df-zn 20069  df-mdeg 24034  df-deg1 24035  df-mon1 24109  df-uc1p 24110  df-q1p 24111  df-r1p 24112  df-lgs 25240
This theorem is referenced by:  sgprmdvdsmersenne  42046
  Copyright terms: Public domain W3C validator