Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sfprmdvdsmersenne Structured version   Visualization version   GIF version

Theorem sfprmdvdsmersenne 47528
Description: If 𝑄 is a safe prime (i.e. 𝑄 = ((2 · 𝑃) + 1) for a prime 𝑃) with 𝑄≡7 (mod 8), then 𝑄 divides the 𝑃-th Mersenne number MP. (Contributed by AV, 20-Aug-2021.)
Assertion
Ref Expression
sfprmdvdsmersenne ((𝑃 ∈ ℙ ∧ (𝑄 ∈ ℙ ∧ (𝑄 mod 8) = 7 ∧ 𝑄 = ((2 · 𝑃) + 1))) → 𝑄 ∥ ((2↑𝑃) − 1))

Proof of Theorem sfprmdvdsmersenne
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 olc 868 . . . . . . 7 ((𝑄 mod 8) = 7 → ((𝑄 mod 8) = 1 ∨ (𝑄 mod 8) = 7))
2 ovex 7464 . . . . . . . 8 (𝑄 mod 8) ∈ V
3 elprg 4653 . . . . . . . 8 ((𝑄 mod 8) ∈ V → ((𝑄 mod 8) ∈ {1, 7} ↔ ((𝑄 mod 8) = 1 ∨ (𝑄 mod 8) = 7)))
42, 3mp1i 13 . . . . . . 7 ((𝑄 mod 8) = 7 → ((𝑄 mod 8) ∈ {1, 7} ↔ ((𝑄 mod 8) = 1 ∨ (𝑄 mod 8) = 7)))
51, 4mpbird 257 . . . . . 6 ((𝑄 mod 8) = 7 → (𝑄 mod 8) ∈ {1, 7})
6 2lgs 27466 . . . . . . . 8 (𝑄 ∈ ℙ → ((2 /L 𝑄) = 1 ↔ (𝑄 mod 8) ∈ {1, 7}))
76ad2antlr 727 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) → ((2 /L 𝑄) = 1 ↔ (𝑄 mod 8) ∈ {1, 7}))
8 2z 12647 . . . . . . . . 9 2 ∈ ℤ
9 simpr 484 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → 𝑄 ∈ ℙ)
109adantr 480 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) → 𝑄 ∈ ℙ)
11 2re 12338 . . . . . . . . . . . 12 2 ∈ ℝ
1211a1i 11 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) → 2 ∈ ℝ)
13 2m1e1 12390 . . . . . . . . . . . . . . 15 (2 − 1) = 1
1411a1i 11 . . . . . . . . . . . . . . . 16 (𝑃 ∈ ℙ → 2 ∈ ℝ)
15 prmnn 16708 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
1615nnred 12279 . . . . . . . . . . . . . . . 16 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ)
17 1lt2 12435 . . . . . . . . . . . . . . . . 17 1 < 2
1817a1i 11 . . . . . . . . . . . . . . . 16 (𝑃 ∈ ℙ → 1 < 2)
19 prmgt1 16731 . . . . . . . . . . . . . . . 16 (𝑃 ∈ ℙ → 1 < 𝑃)
2014, 16, 18, 19mulgt1d 12202 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℙ → 1 < (2 · 𝑃))
2113, 20eqbrtrid 5183 . . . . . . . . . . . . . 14 (𝑃 ∈ ℙ → (2 − 1) < (2 · 𝑃))
22 1red 11260 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℙ → 1 ∈ ℝ)
23 2nn 12337 . . . . . . . . . . . . . . . . . 18 2 ∈ ℕ
2423a1i 11 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ ℙ → 2 ∈ ℕ)
2524, 15nnmulcld 12317 . . . . . . . . . . . . . . . 16 (𝑃 ∈ ℙ → (2 · 𝑃) ∈ ℕ)
2625nnred 12279 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℙ → (2 · 𝑃) ∈ ℝ)
2714, 22, 26ltsubaddd 11857 . . . . . . . . . . . . . 14 (𝑃 ∈ ℙ → ((2 − 1) < (2 · 𝑃) ↔ 2 < ((2 · 𝑃) + 1)))
2821, 27mpbid 232 . . . . . . . . . . . . 13 (𝑃 ∈ ℙ → 2 < ((2 · 𝑃) + 1))
2928ad2antrr 726 . . . . . . . . . . . 12 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) → 2 < ((2 · 𝑃) + 1))
30 breq2 5152 . . . . . . . . . . . . 13 (𝑄 = ((2 · 𝑃) + 1) → (2 < 𝑄 ↔ 2 < ((2 · 𝑃) + 1)))
3130adantl 481 . . . . . . . . . . . 12 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) → (2 < 𝑄 ↔ 2 < ((2 · 𝑃) + 1)))
3229, 31mpbird 257 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) → 2 < 𝑄)
3312, 32gtned 11394 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) → 𝑄 ≠ 2)
34 eldifsn 4791 . . . . . . . . . 10 (𝑄 ∈ (ℙ ∖ {2}) ↔ (𝑄 ∈ ℙ ∧ 𝑄 ≠ 2))
3510, 33, 34sylanbrc 583 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) → 𝑄 ∈ (ℙ ∖ {2}))
36 lgsqrmodndvds 27412 . . . . . . . . 9 ((2 ∈ ℤ ∧ 𝑄 ∈ (ℙ ∖ {2})) → ((2 /L 𝑄) = 1 → ∃𝑚 ∈ ℤ (((𝑚↑2) mod 𝑄) = (2 mod 𝑄) ∧ ¬ 𝑄𝑚)))
378, 35, 36sylancr 587 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) → ((2 /L 𝑄) = 1 → ∃𝑚 ∈ ℤ (((𝑚↑2) mod 𝑄) = (2 mod 𝑄) ∧ ¬ 𝑄𝑚)))
38 prmnn 16708 . . . . . . . . . . . . . . 15 (𝑄 ∈ ℙ → 𝑄 ∈ ℕ)
3938nncnd 12280 . . . . . . . . . . . . . 14 (𝑄 ∈ ℙ → 𝑄 ∈ ℂ)
4039adantl 481 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → 𝑄 ∈ ℂ)
41 1cnd 11254 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → 1 ∈ ℂ)
42 2cnd 12342 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℙ → 2 ∈ ℂ)
4315nncnd 12280 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℙ → 𝑃 ∈ ℂ)
4442, 43mulcld 11279 . . . . . . . . . . . . . 14 (𝑃 ∈ ℙ → (2 · 𝑃) ∈ ℂ)
4544adantr 480 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (2 · 𝑃) ∈ ℂ)
4640, 41, 45subadd2d 11637 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → ((𝑄 − 1) = (2 · 𝑃) ↔ ((2 · 𝑃) + 1) = 𝑄))
47 prmz 16709 . . . . . . . . . . . . . . . 16 (𝑄 ∈ ℙ → 𝑄 ∈ ℤ)
48 peano2zm 12658 . . . . . . . . . . . . . . . 16 (𝑄 ∈ ℤ → (𝑄 − 1) ∈ ℤ)
4947, 48syl 17 . . . . . . . . . . . . . . 15 (𝑄 ∈ ℙ → (𝑄 − 1) ∈ ℤ)
5049zcnd 12721 . . . . . . . . . . . . . 14 (𝑄 ∈ ℙ → (𝑄 − 1) ∈ ℂ)
5150adantl 481 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (𝑄 − 1) ∈ ℂ)
5243adantr 480 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → 𝑃 ∈ ℂ)
53 2cnne0 12474 . . . . . . . . . . . . . 14 (2 ∈ ℂ ∧ 2 ≠ 0)
5453a1i 11 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (2 ∈ ℂ ∧ 2 ≠ 0))
55 divmul2 11924 . . . . . . . . . . . . 13 (((𝑄 − 1) ∈ ℂ ∧ 𝑃 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (((𝑄 − 1) / 2) = 𝑃 ↔ (𝑄 − 1) = (2 · 𝑃)))
5651, 52, 54, 55syl3anc 1370 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (((𝑄 − 1) / 2) = 𝑃 ↔ (𝑄 − 1) = (2 · 𝑃)))
57 eqcom 2742 . . . . . . . . . . . . 13 (𝑄 = ((2 · 𝑃) + 1) ↔ ((2 · 𝑃) + 1) = 𝑄)
5857a1i 11 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (𝑄 = ((2 · 𝑃) + 1) ↔ ((2 · 𝑃) + 1) = 𝑄))
5946, 56, 583bitr4rd 312 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (𝑄 = ((2 · 𝑃) + 1) ↔ ((𝑄 − 1) / 2) = 𝑃))
6059biimpa 476 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) → ((𝑄 − 1) / 2) = 𝑃)
61 oveq2 7439 . . . . . . . . . . 11 (((𝑄 − 1) / 2) = 𝑃 → (2↑((𝑄 − 1) / 2)) = (2↑𝑃))
62 zsqcl 14166 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 ∈ ℤ → (𝑚↑2) ∈ ℤ)
6362ad2antlr 727 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) ∧ ((𝑚↑2) mod 𝑄) = (2 mod 𝑄)) → (𝑚↑2) ∈ ℤ)
648a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) ∧ ((𝑚↑2) mod 𝑄) = (2 mod 𝑄)) → 2 ∈ ℤ)
65 oveq1 7438 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑄 = ((2 · 𝑃) + 1) → (𝑄 − 1) = (((2 · 𝑃) + 1) − 1))
6665adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) → (𝑄 − 1) = (((2 · 𝑃) + 1) − 1))
6766oveq1d 7446 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) → ((𝑄 − 1) / 2) = ((((2 · 𝑃) + 1) − 1) / 2))
68 pncan1 11685 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((2 · 𝑃) ∈ ℂ → (((2 · 𝑃) + 1) − 1) = (2 · 𝑃))
6944, 68syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑃 ∈ ℙ → (((2 · 𝑃) + 1) − 1) = (2 · 𝑃))
7069oveq1d 7446 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑃 ∈ ℙ → ((((2 · 𝑃) + 1) − 1) / 2) = ((2 · 𝑃) / 2))
71 2ne0 12368 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2 ≠ 0
7271a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑃 ∈ ℙ → 2 ≠ 0)
7343, 42, 72divcan3d 12046 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑃 ∈ ℙ → ((2 · 𝑃) / 2) = 𝑃)
7470, 73eqtrd 2775 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑃 ∈ ℙ → ((((2 · 𝑃) + 1) − 1) / 2) = 𝑃)
7574ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) → ((((2 · 𝑃) + 1) − 1) / 2) = 𝑃)
7667, 75eqtrd 2775 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) → ((𝑄 − 1) / 2) = 𝑃)
7715nnnn0d 12585 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ0)
7877ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) → 𝑃 ∈ ℕ0)
7976, 78eqeltrd 2839 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) → ((𝑄 − 1) / 2) ∈ ℕ0)
8038nnrpd 13073 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑄 ∈ ℙ → 𝑄 ∈ ℝ+)
8180ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) → 𝑄 ∈ ℝ+)
8279, 81jca 511 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) → (((𝑄 − 1) / 2) ∈ ℕ0𝑄 ∈ ℝ+))
8382ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) ∧ ((𝑚↑2) mod 𝑄) = (2 mod 𝑄)) → (((𝑄 − 1) / 2) ∈ ℕ0𝑄 ∈ ℝ+))
84 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) ∧ ((𝑚↑2) mod 𝑄) = (2 mod 𝑄)) → ((𝑚↑2) mod 𝑄) = (2 mod 𝑄))
85 modexp 14274 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑚↑2) ∈ ℤ ∧ 2 ∈ ℤ) ∧ (((𝑄 − 1) / 2) ∈ ℕ0𝑄 ∈ ℝ+) ∧ ((𝑚↑2) mod 𝑄) = (2 mod 𝑄)) → (((𝑚↑2)↑((𝑄 − 1) / 2)) mod 𝑄) = ((2↑((𝑄 − 1) / 2)) mod 𝑄))
8663, 64, 83, 84, 85syl211anc 1375 . . . . . . . . . . . . . . . . . . . 20 (((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) ∧ ((𝑚↑2) mod 𝑄) = (2 mod 𝑄)) → (((𝑚↑2)↑((𝑄 − 1) / 2)) mod 𝑄) = ((2↑((𝑄 − 1) / 2)) mod 𝑄))
8786ex 412 . . . . . . . . . . . . . . . . . . 19 ((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) → (((𝑚↑2) mod 𝑄) = (2 mod 𝑄) → (((𝑚↑2)↑((𝑄 − 1) / 2)) mod 𝑄) = ((2↑((𝑄 − 1) / 2)) mod 𝑄)))
8887adantr 480 . . . . . . . . . . . . . . . . . 18 (((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) ∧ ¬ 𝑄𝑚) → (((𝑚↑2) mod 𝑄) = (2 mod 𝑄) → (((𝑚↑2)↑((𝑄 − 1) / 2)) mod 𝑄) = ((2↑((𝑄 − 1) / 2)) mod 𝑄)))
89 2cnd 12342 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑄 ∈ ℙ → 2 ∈ ℂ)
9071a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑄 ∈ ℙ → 2 ≠ 0)
9150, 89, 90divcan2d 12043 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑄 ∈ ℙ → (2 · ((𝑄 − 1) / 2)) = (𝑄 − 1))
9291eqcomd 2741 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑄 ∈ ℙ → (𝑄 − 1) = (2 · ((𝑄 − 1) / 2)))
9392oveq2d 7447 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑄 ∈ ℙ → (𝑚↑(𝑄 − 1)) = (𝑚↑(2 · ((𝑄 − 1) / 2))))
9493ad3antlr 731 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) → (𝑚↑(𝑄 − 1)) = (𝑚↑(2 · ((𝑄 − 1) / 2))))
95 zcn 12616 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑚 ∈ ℤ → 𝑚 ∈ ℂ)
9695adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) → 𝑚 ∈ ℂ)
9779adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) → ((𝑄 − 1) / 2) ∈ ℕ0)
98 2nn0 12541 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2 ∈ ℕ0
9998a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) → 2 ∈ ℕ0)
10096, 97, 99expmuld 14186 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) → (𝑚↑(2 · ((𝑄 − 1) / 2))) = ((𝑚↑2)↑((𝑄 − 1) / 2)))
10194, 100eqtr2d 2776 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) → ((𝑚↑2)↑((𝑄 − 1) / 2)) = (𝑚↑(𝑄 − 1)))
102101oveq1d 7446 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) → (((𝑚↑2)↑((𝑄 − 1) / 2)) mod 𝑄) = ((𝑚↑(𝑄 − 1)) mod 𝑄))
103102adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) ∧ ¬ 𝑄𝑚) → (((𝑚↑2)↑((𝑄 − 1) / 2)) mod 𝑄) = ((𝑚↑(𝑄 − 1)) mod 𝑄))
104 vfermltl 16835 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑄 ∈ ℙ ∧ 𝑚 ∈ ℤ ∧ ¬ 𝑄𝑚) → ((𝑚↑(𝑄 − 1)) mod 𝑄) = 1)
105104ad5ant245 1360 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) ∧ ¬ 𝑄𝑚) → ((𝑚↑(𝑄 − 1)) mod 𝑄) = 1)
106103, 105eqtrd 2775 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) ∧ ¬ 𝑄𝑚) → (((𝑚↑2)↑((𝑄 − 1) / 2)) mod 𝑄) = 1)
107 oveq1 7438 . . . . . . . . . . . . . . . . . . . . . 22 ((2↑((𝑄 − 1) / 2)) = (2↑𝑃) → ((2↑((𝑄 − 1) / 2)) mod 𝑄) = ((2↑𝑃) mod 𝑄))
108106, 107eqeqan12d 2749 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) ∧ ¬ 𝑄𝑚) ∧ (2↑((𝑄 − 1) / 2)) = (2↑𝑃)) → ((((𝑚↑2)↑((𝑄 − 1) / 2)) mod 𝑄) = ((2↑((𝑄 − 1) / 2)) mod 𝑄) ↔ 1 = ((2↑𝑃) mod 𝑄)))
109 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (1 = ((2↑𝑃) mod 𝑄) → 1 = ((2↑𝑃) mod 𝑄))
110109eqcomd 2741 . . . . . . . . . . . . . . . . . . . . . . . . 25 (1 = ((2↑𝑃) mod 𝑄) → ((2↑𝑃) mod 𝑄) = 1)
11138nnred 12279 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑄 ∈ ℙ → 𝑄 ∈ ℝ)
112 prmgt1 16731 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑄 ∈ ℙ → 1 < 𝑄)
113 1mod 13940 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑄 ∈ ℝ ∧ 1 < 𝑄) → (1 mod 𝑄) = 1)
114111, 112, 113syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑄 ∈ ℙ → (1 mod 𝑄) = 1)
115114eqcomd 2741 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑄 ∈ ℙ → 1 = (1 mod 𝑄))
116115ad3antlr 731 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) → 1 = (1 mod 𝑄))
117110, 116sylan9eqr 2797 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) ∧ 1 = ((2↑𝑃) mod 𝑄)) → ((2↑𝑃) mod 𝑄) = (1 mod 𝑄))
11838ad4antlr 733 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) ∧ 1 = ((2↑𝑃) mod 𝑄)) → 𝑄 ∈ ℕ)
119 zexpcl 14114 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((2 ∈ ℤ ∧ 𝑃 ∈ ℕ0) → (2↑𝑃) ∈ ℤ)
1208, 77, 119sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑃 ∈ ℙ → (2↑𝑃) ∈ ℤ)
121120ad4antr 732 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) ∧ 1 = ((2↑𝑃) mod 𝑄)) → (2↑𝑃) ∈ ℤ)
122 1zzd 12646 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) ∧ 1 = ((2↑𝑃) mod 𝑄)) → 1 ∈ ℤ)
123 moddvds 16298 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑄 ∈ ℕ ∧ (2↑𝑃) ∈ ℤ ∧ 1 ∈ ℤ) → (((2↑𝑃) mod 𝑄) = (1 mod 𝑄) ↔ 𝑄 ∥ ((2↑𝑃) − 1)))
124118, 121, 122, 123syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) ∧ 1 = ((2↑𝑃) mod 𝑄)) → (((2↑𝑃) mod 𝑄) = (1 mod 𝑄) ↔ 𝑄 ∥ ((2↑𝑃) − 1)))
125117, 124mpbid 232 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) ∧ 1 = ((2↑𝑃) mod 𝑄)) → 𝑄 ∥ ((2↑𝑃) − 1))
126125ex 412 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) → (1 = ((2↑𝑃) mod 𝑄) → 𝑄 ∥ ((2↑𝑃) − 1)))
127126ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) ∧ ¬ 𝑄𝑚) ∧ (2↑((𝑄 − 1) / 2)) = (2↑𝑃)) → (1 = ((2↑𝑃) mod 𝑄) → 𝑄 ∥ ((2↑𝑃) − 1)))
128108, 127sylbid 240 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) ∧ ¬ 𝑄𝑚) ∧ (2↑((𝑄 − 1) / 2)) = (2↑𝑃)) → ((((𝑚↑2)↑((𝑄 − 1) / 2)) mod 𝑄) = ((2↑((𝑄 − 1) / 2)) mod 𝑄) → 𝑄 ∥ ((2↑𝑃) − 1)))
129128ex 412 . . . . . . . . . . . . . . . . . . 19 (((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) ∧ ¬ 𝑄𝑚) → ((2↑((𝑄 − 1) / 2)) = (2↑𝑃) → ((((𝑚↑2)↑((𝑄 − 1) / 2)) mod 𝑄) = ((2↑((𝑄 − 1) / 2)) mod 𝑄) → 𝑄 ∥ ((2↑𝑃) − 1))))
130129com23 86 . . . . . . . . . . . . . . . . . 18 (((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) ∧ ¬ 𝑄𝑚) → ((((𝑚↑2)↑((𝑄 − 1) / 2)) mod 𝑄) = ((2↑((𝑄 − 1) / 2)) mod 𝑄) → ((2↑((𝑄 − 1) / 2)) = (2↑𝑃) → 𝑄 ∥ ((2↑𝑃) − 1))))
13188, 130syld 47 . . . . . . . . . . . . . . . . 17 (((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) ∧ ¬ 𝑄𝑚) → (((𝑚↑2) mod 𝑄) = (2 mod 𝑄) → ((2↑((𝑄 − 1) / 2)) = (2↑𝑃) → 𝑄 ∥ ((2↑𝑃) − 1))))
132131ex 412 . . . . . . . . . . . . . . . 16 ((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) → (¬ 𝑄𝑚 → (((𝑚↑2) mod 𝑄) = (2 mod 𝑄) → ((2↑((𝑄 − 1) / 2)) = (2↑𝑃) → 𝑄 ∥ ((2↑𝑃) − 1)))))
133132com23 86 . . . . . . . . . . . . . . 15 ((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) → (((𝑚↑2) mod 𝑄) = (2 mod 𝑄) → (¬ 𝑄𝑚 → ((2↑((𝑄 − 1) / 2)) = (2↑𝑃) → 𝑄 ∥ ((2↑𝑃) − 1)))))
134133impd 410 . . . . . . . . . . . . . 14 ((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) → ((((𝑚↑2) mod 𝑄) = (2 mod 𝑄) ∧ ¬ 𝑄𝑚) → ((2↑((𝑄 − 1) / 2)) = (2↑𝑃) → 𝑄 ∥ ((2↑𝑃) − 1))))
135134com23 86 . . . . . . . . . . . . 13 ((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) → ((2↑((𝑄 − 1) / 2)) = (2↑𝑃) → ((((𝑚↑2) mod 𝑄) = (2 mod 𝑄) ∧ ¬ 𝑄𝑚) → 𝑄 ∥ ((2↑𝑃) − 1))))
136135ex 412 . . . . . . . . . . . 12 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) → (𝑚 ∈ ℤ → ((2↑((𝑄 − 1) / 2)) = (2↑𝑃) → ((((𝑚↑2) mod 𝑄) = (2 mod 𝑄) ∧ ¬ 𝑄𝑚) → 𝑄 ∥ ((2↑𝑃) − 1)))))
137136com23 86 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) → ((2↑((𝑄 − 1) / 2)) = (2↑𝑃) → (𝑚 ∈ ℤ → ((((𝑚↑2) mod 𝑄) = (2 mod 𝑄) ∧ ¬ 𝑄𝑚) → 𝑄 ∥ ((2↑𝑃) − 1)))))
13861, 137syl5 34 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) → (((𝑄 − 1) / 2) = 𝑃 → (𝑚 ∈ ℤ → ((((𝑚↑2) mod 𝑄) = (2 mod 𝑄) ∧ ¬ 𝑄𝑚) → 𝑄 ∥ ((2↑𝑃) − 1)))))
13960, 138mpd 15 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) → (𝑚 ∈ ℤ → ((((𝑚↑2) mod 𝑄) = (2 mod 𝑄) ∧ ¬ 𝑄𝑚) → 𝑄 ∥ ((2↑𝑃) − 1))))
140139rexlimdv 3151 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) → (∃𝑚 ∈ ℤ (((𝑚↑2) mod 𝑄) = (2 mod 𝑄) ∧ ¬ 𝑄𝑚) → 𝑄 ∥ ((2↑𝑃) − 1)))
14137, 140syld 47 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) → ((2 /L 𝑄) = 1 → 𝑄 ∥ ((2↑𝑃) − 1)))
1427, 141sylbird 260 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) → ((𝑄 mod 8) ∈ {1, 7} → 𝑄 ∥ ((2↑𝑃) − 1)))
1435, 142syl5 34 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) → ((𝑄 mod 8) = 7 → 𝑄 ∥ ((2↑𝑃) − 1)))
144143ex 412 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (𝑄 = ((2 · 𝑃) + 1) → ((𝑄 mod 8) = 7 → 𝑄 ∥ ((2↑𝑃) − 1))))
145144com23 86 . . 3 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → ((𝑄 mod 8) = 7 → (𝑄 = ((2 · 𝑃) + 1) → 𝑄 ∥ ((2↑𝑃) − 1))))
146145ex 412 . 2 (𝑃 ∈ ℙ → (𝑄 ∈ ℙ → ((𝑄 mod 8) = 7 → (𝑄 = ((2 · 𝑃) + 1) → 𝑄 ∥ ((2↑𝑃) − 1)))))
1471463imp2 1348 1 ((𝑃 ∈ ℙ ∧ (𝑄 ∈ ℙ ∧ (𝑄 mod 8) = 7 ∧ 𝑄 = ((2 · 𝑃) + 1))) → 𝑄 ∥ ((2↑𝑃) − 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1537  wcel 2106  wne 2938  wrex 3068  Vcvv 3478  cdif 3960  {csn 4631  {cpr 4633   class class class wbr 5148  (class class class)co 7431  cc 11151  cr 11152  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158   < clt 11293  cmin 11490   / cdiv 11918  cn 12264  2c2 12319  7c7 12324  8c8 12325  0cn0 12524  cz 12611  +crp 13032   mod cmo 13906  cexp 14099  cdvds 16287  cprime 16705   /L clgs 27353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232  ax-mulf 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-er 8744  df-ec 8746  df-qs 8750  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-sup 9480  df-inf 9481  df-oi 9548  df-dju 9939  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-xnn0 12598  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-ioo 13388  df-ico 13390  df-fz 13545  df-fzo 13692  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-fac 14310  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-prod 15937  df-dvds 16288  df-gcd 16529  df-prm 16706  df-phi 16800  df-pc 16871  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-0g 17488  df-gsum 17489  df-prds 17494  df-pws 17496  df-imas 17555  df-qus 17556  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mhm 18809  df-submnd 18810  df-grp 18967  df-minusg 18968  df-sbg 18969  df-mulg 19099  df-subg 19154  df-nsg 19155  df-eqg 19156  df-ghm 19244  df-cntz 19348  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-srg 20205  df-ring 20253  df-cring 20254  df-oppr 20351  df-dvdsr 20374  df-unit 20375  df-invr 20405  df-dvr 20418  df-rhm 20489  df-nzr 20530  df-subrng 20563  df-subrg 20587  df-rlreg 20711  df-domn 20712  df-idom 20713  df-drng 20748  df-field 20749  df-lmod 20877  df-lss 20948  df-lsp 20988  df-sra 21190  df-rgmod 21191  df-lidl 21236  df-rsp 21237  df-2idl 21278  df-cnfld 21383  df-zring 21476  df-zrh 21532  df-zn 21535  df-assa 21891  df-asp 21892  df-ascl 21893  df-psr 21947  df-mvr 21948  df-mpl 21949  df-opsr 21951  df-evls 22116  df-evl 22117  df-psr1 22197  df-vr1 22198  df-ply1 22199  df-coe1 22200  df-evl1 22336  df-mdeg 26109  df-deg1 26110  df-mon1 26185  df-uc1p 26186  df-q1p 26187  df-r1p 26188  df-lgs 27354
This theorem is referenced by:  sgprmdvdsmersenne  47529
  Copyright terms: Public domain W3C validator