Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sfprmdvdsmersenne Structured version   Visualization version   GIF version

Theorem sfprmdvdsmersenne 45785
Description: If 𝑄 is a safe prime (i.e. 𝑄 = ((2 · 𝑃) + 1) for a prime 𝑃) with 𝑄≡7 (mod 8), then 𝑄 divides the 𝑃-th Mersenne number MP. (Contributed by AV, 20-Aug-2021.)
Assertion
Ref Expression
sfprmdvdsmersenne ((𝑃 ∈ ℙ ∧ (𝑄 ∈ ℙ ∧ (𝑄 mod 8) = 7 ∧ 𝑄 = ((2 · 𝑃) + 1))) → 𝑄 ∥ ((2↑𝑃) − 1))

Proof of Theorem sfprmdvdsmersenne
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 olc 866 . . . . . . 7 ((𝑄 mod 8) = 7 → ((𝑄 mod 8) = 1 ∨ (𝑄 mod 8) = 7))
2 ovex 7390 . . . . . . . 8 (𝑄 mod 8) ∈ V
3 elprg 4607 . . . . . . . 8 ((𝑄 mod 8) ∈ V → ((𝑄 mod 8) ∈ {1, 7} ↔ ((𝑄 mod 8) = 1 ∨ (𝑄 mod 8) = 7)))
42, 3mp1i 13 . . . . . . 7 ((𝑄 mod 8) = 7 → ((𝑄 mod 8) ∈ {1, 7} ↔ ((𝑄 mod 8) = 1 ∨ (𝑄 mod 8) = 7)))
51, 4mpbird 256 . . . . . 6 ((𝑄 mod 8) = 7 → (𝑄 mod 8) ∈ {1, 7})
6 2lgs 26755 . . . . . . . 8 (𝑄 ∈ ℙ → ((2 /L 𝑄) = 1 ↔ (𝑄 mod 8) ∈ {1, 7}))
76ad2antlr 725 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) → ((2 /L 𝑄) = 1 ↔ (𝑄 mod 8) ∈ {1, 7}))
8 2z 12535 . . . . . . . . 9 2 ∈ ℤ
9 simpr 485 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → 𝑄 ∈ ℙ)
109adantr 481 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) → 𝑄 ∈ ℙ)
11 2re 12227 . . . . . . . . . . . 12 2 ∈ ℝ
1211a1i 11 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) → 2 ∈ ℝ)
13 2m1e1 12279 . . . . . . . . . . . . . . 15 (2 − 1) = 1
1411a1i 11 . . . . . . . . . . . . . . . 16 (𝑃 ∈ ℙ → 2 ∈ ℝ)
15 prmnn 16550 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
1615nnred 12168 . . . . . . . . . . . . . . . 16 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ)
17 1lt2 12324 . . . . . . . . . . . . . . . . 17 1 < 2
1817a1i 11 . . . . . . . . . . . . . . . 16 (𝑃 ∈ ℙ → 1 < 2)
19 prmgt1 16573 . . . . . . . . . . . . . . . 16 (𝑃 ∈ ℙ → 1 < 𝑃)
2014, 16, 18, 19mulgt1d 12091 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℙ → 1 < (2 · 𝑃))
2113, 20eqbrtrid 5140 . . . . . . . . . . . . . 14 (𝑃 ∈ ℙ → (2 − 1) < (2 · 𝑃))
22 1red 11156 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℙ → 1 ∈ ℝ)
23 2nn 12226 . . . . . . . . . . . . . . . . . 18 2 ∈ ℕ
2423a1i 11 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ ℙ → 2 ∈ ℕ)
2524, 15nnmulcld 12206 . . . . . . . . . . . . . . . 16 (𝑃 ∈ ℙ → (2 · 𝑃) ∈ ℕ)
2625nnred 12168 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℙ → (2 · 𝑃) ∈ ℝ)
2714, 22, 26ltsubaddd 11751 . . . . . . . . . . . . . 14 (𝑃 ∈ ℙ → ((2 − 1) < (2 · 𝑃) ↔ 2 < ((2 · 𝑃) + 1)))
2821, 27mpbid 231 . . . . . . . . . . . . 13 (𝑃 ∈ ℙ → 2 < ((2 · 𝑃) + 1))
2928ad2antrr 724 . . . . . . . . . . . 12 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) → 2 < ((2 · 𝑃) + 1))
30 breq2 5109 . . . . . . . . . . . . 13 (𝑄 = ((2 · 𝑃) + 1) → (2 < 𝑄 ↔ 2 < ((2 · 𝑃) + 1)))
3130adantl 482 . . . . . . . . . . . 12 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) → (2 < 𝑄 ↔ 2 < ((2 · 𝑃) + 1)))
3229, 31mpbird 256 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) → 2 < 𝑄)
3312, 32gtned 11290 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) → 𝑄 ≠ 2)
34 eldifsn 4747 . . . . . . . . . 10 (𝑄 ∈ (ℙ ∖ {2}) ↔ (𝑄 ∈ ℙ ∧ 𝑄 ≠ 2))
3510, 33, 34sylanbrc 583 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) → 𝑄 ∈ (ℙ ∖ {2}))
36 lgsqrmodndvds 26701 . . . . . . . . 9 ((2 ∈ ℤ ∧ 𝑄 ∈ (ℙ ∖ {2})) → ((2 /L 𝑄) = 1 → ∃𝑚 ∈ ℤ (((𝑚↑2) mod 𝑄) = (2 mod 𝑄) ∧ ¬ 𝑄𝑚)))
378, 35, 36sylancr 587 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) → ((2 /L 𝑄) = 1 → ∃𝑚 ∈ ℤ (((𝑚↑2) mod 𝑄) = (2 mod 𝑄) ∧ ¬ 𝑄𝑚)))
38 prmnn 16550 . . . . . . . . . . . . . . 15 (𝑄 ∈ ℙ → 𝑄 ∈ ℕ)
3938nncnd 12169 . . . . . . . . . . . . . 14 (𝑄 ∈ ℙ → 𝑄 ∈ ℂ)
4039adantl 482 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → 𝑄 ∈ ℂ)
41 1cnd 11150 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → 1 ∈ ℂ)
42 2cnd 12231 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℙ → 2 ∈ ℂ)
4315nncnd 12169 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℙ → 𝑃 ∈ ℂ)
4442, 43mulcld 11175 . . . . . . . . . . . . . 14 (𝑃 ∈ ℙ → (2 · 𝑃) ∈ ℂ)
4544adantr 481 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (2 · 𝑃) ∈ ℂ)
4640, 41, 45subadd2d 11531 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → ((𝑄 − 1) = (2 · 𝑃) ↔ ((2 · 𝑃) + 1) = 𝑄))
47 prmz 16551 . . . . . . . . . . . . . . . 16 (𝑄 ∈ ℙ → 𝑄 ∈ ℤ)
48 peano2zm 12546 . . . . . . . . . . . . . . . 16 (𝑄 ∈ ℤ → (𝑄 − 1) ∈ ℤ)
4947, 48syl 17 . . . . . . . . . . . . . . 15 (𝑄 ∈ ℙ → (𝑄 − 1) ∈ ℤ)
5049zcnd 12608 . . . . . . . . . . . . . 14 (𝑄 ∈ ℙ → (𝑄 − 1) ∈ ℂ)
5150adantl 482 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (𝑄 − 1) ∈ ℂ)
5243adantr 481 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → 𝑃 ∈ ℂ)
53 2cnne0 12363 . . . . . . . . . . . . . 14 (2 ∈ ℂ ∧ 2 ≠ 0)
5453a1i 11 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (2 ∈ ℂ ∧ 2 ≠ 0))
55 divmul2 11817 . . . . . . . . . . . . 13 (((𝑄 − 1) ∈ ℂ ∧ 𝑃 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (((𝑄 − 1) / 2) = 𝑃 ↔ (𝑄 − 1) = (2 · 𝑃)))
5651, 52, 54, 55syl3anc 1371 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (((𝑄 − 1) / 2) = 𝑃 ↔ (𝑄 − 1) = (2 · 𝑃)))
57 eqcom 2743 . . . . . . . . . . . . 13 (𝑄 = ((2 · 𝑃) + 1) ↔ ((2 · 𝑃) + 1) = 𝑄)
5857a1i 11 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (𝑄 = ((2 · 𝑃) + 1) ↔ ((2 · 𝑃) + 1) = 𝑄))
5946, 56, 583bitr4rd 311 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (𝑄 = ((2 · 𝑃) + 1) ↔ ((𝑄 − 1) / 2) = 𝑃))
6059biimpa 477 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) → ((𝑄 − 1) / 2) = 𝑃)
61 oveq2 7365 . . . . . . . . . . 11 (((𝑄 − 1) / 2) = 𝑃 → (2↑((𝑄 − 1) / 2)) = (2↑𝑃))
62 zsqcl 14034 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 ∈ ℤ → (𝑚↑2) ∈ ℤ)
6362ad2antlr 725 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) ∧ ((𝑚↑2) mod 𝑄) = (2 mod 𝑄)) → (𝑚↑2) ∈ ℤ)
648a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) ∧ ((𝑚↑2) mod 𝑄) = (2 mod 𝑄)) → 2 ∈ ℤ)
65 oveq1 7364 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑄 = ((2 · 𝑃) + 1) → (𝑄 − 1) = (((2 · 𝑃) + 1) − 1))
6665adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) → (𝑄 − 1) = (((2 · 𝑃) + 1) − 1))
6766oveq1d 7372 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) → ((𝑄 − 1) / 2) = ((((2 · 𝑃) + 1) − 1) / 2))
68 pncan1 11579 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((2 · 𝑃) ∈ ℂ → (((2 · 𝑃) + 1) − 1) = (2 · 𝑃))
6944, 68syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑃 ∈ ℙ → (((2 · 𝑃) + 1) − 1) = (2 · 𝑃))
7069oveq1d 7372 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑃 ∈ ℙ → ((((2 · 𝑃) + 1) − 1) / 2) = ((2 · 𝑃) / 2))
71 2ne0 12257 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2 ≠ 0
7271a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑃 ∈ ℙ → 2 ≠ 0)
7343, 42, 72divcan3d 11936 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑃 ∈ ℙ → ((2 · 𝑃) / 2) = 𝑃)
7470, 73eqtrd 2776 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑃 ∈ ℙ → ((((2 · 𝑃) + 1) − 1) / 2) = 𝑃)
7574ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) → ((((2 · 𝑃) + 1) − 1) / 2) = 𝑃)
7667, 75eqtrd 2776 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) → ((𝑄 − 1) / 2) = 𝑃)
7715nnnn0d 12473 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ0)
7877ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) → 𝑃 ∈ ℕ0)
7976, 78eqeltrd 2838 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) → ((𝑄 − 1) / 2) ∈ ℕ0)
8038nnrpd 12955 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑄 ∈ ℙ → 𝑄 ∈ ℝ+)
8180ad2antlr 725 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) → 𝑄 ∈ ℝ+)
8279, 81jca 512 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) → (((𝑄 − 1) / 2) ∈ ℕ0𝑄 ∈ ℝ+))
8382ad2antrr 724 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) ∧ ((𝑚↑2) mod 𝑄) = (2 mod 𝑄)) → (((𝑄 − 1) / 2) ∈ ℕ0𝑄 ∈ ℝ+))
84 simpr 485 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) ∧ ((𝑚↑2) mod 𝑄) = (2 mod 𝑄)) → ((𝑚↑2) mod 𝑄) = (2 mod 𝑄))
85 modexp 14141 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑚↑2) ∈ ℤ ∧ 2 ∈ ℤ) ∧ (((𝑄 − 1) / 2) ∈ ℕ0𝑄 ∈ ℝ+) ∧ ((𝑚↑2) mod 𝑄) = (2 mod 𝑄)) → (((𝑚↑2)↑((𝑄 − 1) / 2)) mod 𝑄) = ((2↑((𝑄 − 1) / 2)) mod 𝑄))
8663, 64, 83, 84, 85syl211anc 1376 . . . . . . . . . . . . . . . . . . . 20 (((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) ∧ ((𝑚↑2) mod 𝑄) = (2 mod 𝑄)) → (((𝑚↑2)↑((𝑄 − 1) / 2)) mod 𝑄) = ((2↑((𝑄 − 1) / 2)) mod 𝑄))
8786ex 413 . . . . . . . . . . . . . . . . . . 19 ((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) → (((𝑚↑2) mod 𝑄) = (2 mod 𝑄) → (((𝑚↑2)↑((𝑄 − 1) / 2)) mod 𝑄) = ((2↑((𝑄 − 1) / 2)) mod 𝑄)))
8887adantr 481 . . . . . . . . . . . . . . . . . 18 (((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) ∧ ¬ 𝑄𝑚) → (((𝑚↑2) mod 𝑄) = (2 mod 𝑄) → (((𝑚↑2)↑((𝑄 − 1) / 2)) mod 𝑄) = ((2↑((𝑄 − 1) / 2)) mod 𝑄)))
89 2cnd 12231 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑄 ∈ ℙ → 2 ∈ ℂ)
9071a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑄 ∈ ℙ → 2 ≠ 0)
9150, 89, 90divcan2d 11933 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑄 ∈ ℙ → (2 · ((𝑄 − 1) / 2)) = (𝑄 − 1))
9291eqcomd 2742 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑄 ∈ ℙ → (𝑄 − 1) = (2 · ((𝑄 − 1) / 2)))
9392oveq2d 7373 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑄 ∈ ℙ → (𝑚↑(𝑄 − 1)) = (𝑚↑(2 · ((𝑄 − 1) / 2))))
9493ad3antlr 729 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) → (𝑚↑(𝑄 − 1)) = (𝑚↑(2 · ((𝑄 − 1) / 2))))
95 zcn 12504 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑚 ∈ ℤ → 𝑚 ∈ ℂ)
9695adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) → 𝑚 ∈ ℂ)
9779adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) → ((𝑄 − 1) / 2) ∈ ℕ0)
98 2nn0 12430 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2 ∈ ℕ0
9998a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) → 2 ∈ ℕ0)
10096, 97, 99expmuld 14054 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) → (𝑚↑(2 · ((𝑄 − 1) / 2))) = ((𝑚↑2)↑((𝑄 − 1) / 2)))
10194, 100eqtr2d 2777 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) → ((𝑚↑2)↑((𝑄 − 1) / 2)) = (𝑚↑(𝑄 − 1)))
102101oveq1d 7372 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) → (((𝑚↑2)↑((𝑄 − 1) / 2)) mod 𝑄) = ((𝑚↑(𝑄 − 1)) mod 𝑄))
103102adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) ∧ ¬ 𝑄𝑚) → (((𝑚↑2)↑((𝑄 − 1) / 2)) mod 𝑄) = ((𝑚↑(𝑄 − 1)) mod 𝑄))
104 vfermltl 16673 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑄 ∈ ℙ ∧ 𝑚 ∈ ℤ ∧ ¬ 𝑄𝑚) → ((𝑚↑(𝑄 − 1)) mod 𝑄) = 1)
105104ad5ant245 1361 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) ∧ ¬ 𝑄𝑚) → ((𝑚↑(𝑄 − 1)) mod 𝑄) = 1)
106103, 105eqtrd 2776 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) ∧ ¬ 𝑄𝑚) → (((𝑚↑2)↑((𝑄 − 1) / 2)) mod 𝑄) = 1)
107 oveq1 7364 . . . . . . . . . . . . . . . . . . . . . 22 ((2↑((𝑄 − 1) / 2)) = (2↑𝑃) → ((2↑((𝑄 − 1) / 2)) mod 𝑄) = ((2↑𝑃) mod 𝑄))
108106, 107eqeqan12d 2750 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) ∧ ¬ 𝑄𝑚) ∧ (2↑((𝑄 − 1) / 2)) = (2↑𝑃)) → ((((𝑚↑2)↑((𝑄 − 1) / 2)) mod 𝑄) = ((2↑((𝑄 − 1) / 2)) mod 𝑄) ↔ 1 = ((2↑𝑃) mod 𝑄)))
109 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (1 = ((2↑𝑃) mod 𝑄) → 1 = ((2↑𝑃) mod 𝑄))
110109eqcomd 2742 . . . . . . . . . . . . . . . . . . . . . . . . 25 (1 = ((2↑𝑃) mod 𝑄) → ((2↑𝑃) mod 𝑄) = 1)
11138nnred 12168 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑄 ∈ ℙ → 𝑄 ∈ ℝ)
112 prmgt1 16573 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑄 ∈ ℙ → 1 < 𝑄)
113 1mod 13808 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑄 ∈ ℝ ∧ 1 < 𝑄) → (1 mod 𝑄) = 1)
114111, 112, 113syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑄 ∈ ℙ → (1 mod 𝑄) = 1)
115114eqcomd 2742 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑄 ∈ ℙ → 1 = (1 mod 𝑄))
116115ad3antlr 729 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) → 1 = (1 mod 𝑄))
117110, 116sylan9eqr 2798 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) ∧ 1 = ((2↑𝑃) mod 𝑄)) → ((2↑𝑃) mod 𝑄) = (1 mod 𝑄))
11838ad4antlr 731 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) ∧ 1 = ((2↑𝑃) mod 𝑄)) → 𝑄 ∈ ℕ)
119 zexpcl 13982 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((2 ∈ ℤ ∧ 𝑃 ∈ ℕ0) → (2↑𝑃) ∈ ℤ)
1208, 77, 119sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑃 ∈ ℙ → (2↑𝑃) ∈ ℤ)
121120ad4antr 730 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) ∧ 1 = ((2↑𝑃) mod 𝑄)) → (2↑𝑃) ∈ ℤ)
122 1zzd 12534 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) ∧ 1 = ((2↑𝑃) mod 𝑄)) → 1 ∈ ℤ)
123 moddvds 16147 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑄 ∈ ℕ ∧ (2↑𝑃) ∈ ℤ ∧ 1 ∈ ℤ) → (((2↑𝑃) mod 𝑄) = (1 mod 𝑄) ↔ 𝑄 ∥ ((2↑𝑃) − 1)))
124118, 121, 122, 123syl3anc 1371 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) ∧ 1 = ((2↑𝑃) mod 𝑄)) → (((2↑𝑃) mod 𝑄) = (1 mod 𝑄) ↔ 𝑄 ∥ ((2↑𝑃) − 1)))
125117, 124mpbid 231 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) ∧ 1 = ((2↑𝑃) mod 𝑄)) → 𝑄 ∥ ((2↑𝑃) − 1))
126125ex 413 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) → (1 = ((2↑𝑃) mod 𝑄) → 𝑄 ∥ ((2↑𝑃) − 1)))
127126ad2antrr 724 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) ∧ ¬ 𝑄𝑚) ∧ (2↑((𝑄 − 1) / 2)) = (2↑𝑃)) → (1 = ((2↑𝑃) mod 𝑄) → 𝑄 ∥ ((2↑𝑃) − 1)))
128108, 127sylbid 239 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) ∧ ¬ 𝑄𝑚) ∧ (2↑((𝑄 − 1) / 2)) = (2↑𝑃)) → ((((𝑚↑2)↑((𝑄 − 1) / 2)) mod 𝑄) = ((2↑((𝑄 − 1) / 2)) mod 𝑄) → 𝑄 ∥ ((2↑𝑃) − 1)))
129128ex 413 . . . . . . . . . . . . . . . . . . 19 (((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) ∧ ¬ 𝑄𝑚) → ((2↑((𝑄 − 1) / 2)) = (2↑𝑃) → ((((𝑚↑2)↑((𝑄 − 1) / 2)) mod 𝑄) = ((2↑((𝑄 − 1) / 2)) mod 𝑄) → 𝑄 ∥ ((2↑𝑃) − 1))))
130129com23 86 . . . . . . . . . . . . . . . . . 18 (((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) ∧ ¬ 𝑄𝑚) → ((((𝑚↑2)↑((𝑄 − 1) / 2)) mod 𝑄) = ((2↑((𝑄 − 1) / 2)) mod 𝑄) → ((2↑((𝑄 − 1) / 2)) = (2↑𝑃) → 𝑄 ∥ ((2↑𝑃) − 1))))
13188, 130syld 47 . . . . . . . . . . . . . . . . 17 (((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) ∧ ¬ 𝑄𝑚) → (((𝑚↑2) mod 𝑄) = (2 mod 𝑄) → ((2↑((𝑄 − 1) / 2)) = (2↑𝑃) → 𝑄 ∥ ((2↑𝑃) − 1))))
132131ex 413 . . . . . . . . . . . . . . . 16 ((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) → (¬ 𝑄𝑚 → (((𝑚↑2) mod 𝑄) = (2 mod 𝑄) → ((2↑((𝑄 − 1) / 2)) = (2↑𝑃) → 𝑄 ∥ ((2↑𝑃) − 1)))))
133132com23 86 . . . . . . . . . . . . . . 15 ((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) → (((𝑚↑2) mod 𝑄) = (2 mod 𝑄) → (¬ 𝑄𝑚 → ((2↑((𝑄 − 1) / 2)) = (2↑𝑃) → 𝑄 ∥ ((2↑𝑃) − 1)))))
134133impd 411 . . . . . . . . . . . . . 14 ((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) → ((((𝑚↑2) mod 𝑄) = (2 mod 𝑄) ∧ ¬ 𝑄𝑚) → ((2↑((𝑄 − 1) / 2)) = (2↑𝑃) → 𝑄 ∥ ((2↑𝑃) − 1))))
135134com23 86 . . . . . . . . . . . . 13 ((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) ∧ 𝑚 ∈ ℤ) → ((2↑((𝑄 − 1) / 2)) = (2↑𝑃) → ((((𝑚↑2) mod 𝑄) = (2 mod 𝑄) ∧ ¬ 𝑄𝑚) → 𝑄 ∥ ((2↑𝑃) − 1))))
136135ex 413 . . . . . . . . . . . 12 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) → (𝑚 ∈ ℤ → ((2↑((𝑄 − 1) / 2)) = (2↑𝑃) → ((((𝑚↑2) mod 𝑄) = (2 mod 𝑄) ∧ ¬ 𝑄𝑚) → 𝑄 ∥ ((2↑𝑃) − 1)))))
137136com23 86 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) → ((2↑((𝑄 − 1) / 2)) = (2↑𝑃) → (𝑚 ∈ ℤ → ((((𝑚↑2) mod 𝑄) = (2 mod 𝑄) ∧ ¬ 𝑄𝑚) → 𝑄 ∥ ((2↑𝑃) − 1)))))
13861, 137syl5 34 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) → (((𝑄 − 1) / 2) = 𝑃 → (𝑚 ∈ ℤ → ((((𝑚↑2) mod 𝑄) = (2 mod 𝑄) ∧ ¬ 𝑄𝑚) → 𝑄 ∥ ((2↑𝑃) − 1)))))
13960, 138mpd 15 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) → (𝑚 ∈ ℤ → ((((𝑚↑2) mod 𝑄) = (2 mod 𝑄) ∧ ¬ 𝑄𝑚) → 𝑄 ∥ ((2↑𝑃) − 1))))
140139rexlimdv 3150 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) → (∃𝑚 ∈ ℤ (((𝑚↑2) mod 𝑄) = (2 mod 𝑄) ∧ ¬ 𝑄𝑚) → 𝑄 ∥ ((2↑𝑃) − 1)))
14137, 140syld 47 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) → ((2 /L 𝑄) = 1 → 𝑄 ∥ ((2↑𝑃) − 1)))
1427, 141sylbird 259 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) → ((𝑄 mod 8) ∈ {1, 7} → 𝑄 ∥ ((2↑𝑃) − 1)))
1435, 142syl5 34 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑄 = ((2 · 𝑃) + 1)) → ((𝑄 mod 8) = 7 → 𝑄 ∥ ((2↑𝑃) − 1)))
144143ex 413 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (𝑄 = ((2 · 𝑃) + 1) → ((𝑄 mod 8) = 7 → 𝑄 ∥ ((2↑𝑃) − 1))))
145144com23 86 . . 3 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → ((𝑄 mod 8) = 7 → (𝑄 = ((2 · 𝑃) + 1) → 𝑄 ∥ ((2↑𝑃) − 1))))
146145ex 413 . 2 (𝑃 ∈ ℙ → (𝑄 ∈ ℙ → ((𝑄 mod 8) = 7 → (𝑄 = ((2 · 𝑃) + 1) → 𝑄 ∥ ((2↑𝑃) − 1)))))
1471463imp2 1349 1 ((𝑃 ∈ ℙ ∧ (𝑄 ∈ ℙ ∧ (𝑄 mod 8) = 7 ∧ 𝑄 = ((2 · 𝑃) + 1))) → 𝑄 ∥ ((2↑𝑃) − 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wrex 3073  Vcvv 3445  cdif 3907  {csn 4586  {cpr 4588   class class class wbr 5105  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056   < clt 11189  cmin 11385   / cdiv 11812  cn 12153  2c2 12208  7c7 12213  8c8 12214  0cn0 12413  cz 12499  +crp 12915   mod cmo 13774  cexp 13967  cdvds 16136  cprime 16547   /L clgs 26642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-ofr 7618  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-tpos 8157  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-er 8648  df-ec 8650  df-qs 8654  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-sup 9378  df-inf 9379  df-oi 9446  df-dju 9837  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-xnn0 12486  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-ioo 13268  df-ico 13270  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-fac 14174  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-prod 15789  df-dvds 16137  df-gcd 16375  df-prm 16548  df-phi 16638  df-pc 16709  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-0g 17323  df-gsum 17324  df-prds 17329  df-pws 17331  df-imas 17390  df-qus 17391  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-mhm 18601  df-submnd 18602  df-grp 18751  df-minusg 18752  df-sbg 18753  df-mulg 18873  df-subg 18925  df-nsg 18926  df-eqg 18927  df-ghm 19006  df-cntz 19097  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-srg 19918  df-ring 19966  df-cring 19967  df-oppr 20049  df-dvdsr 20070  df-unit 20071  df-invr 20101  df-dvr 20112  df-rnghom 20146  df-drng 20187  df-field 20188  df-subrg 20220  df-lmod 20324  df-lss 20393  df-lsp 20433  df-sra 20633  df-rgmod 20634  df-lidl 20635  df-rsp 20636  df-2idl 20702  df-nzr 20728  df-rlreg 20753  df-domn 20754  df-idom 20755  df-cnfld 20797  df-zring 20870  df-zrh 20904  df-zn 20907  df-assa 21259  df-asp 21260  df-ascl 21261  df-psr 21311  df-mvr 21312  df-mpl 21313  df-opsr 21315  df-evls 21482  df-evl 21483  df-psr1 21551  df-vr1 21552  df-ply1 21553  df-coe1 21554  df-evl1 21682  df-mdeg 25417  df-deg1 25418  df-mon1 25495  df-uc1p 25496  df-q1p 25497  df-r1p 25498  df-lgs 26643
This theorem is referenced by:  sgprmdvdsmersenne  45786
  Copyright terms: Public domain W3C validator